EP3147104A1 - Verwendung eines mit einer isolationsschicht versehenen widerstandsdrahts für eine elektroschweissmuffe - Google Patents

Verwendung eines mit einer isolationsschicht versehenen widerstandsdrahts für eine elektroschweissmuffe Download PDF

Info

Publication number
EP3147104A1
EP3147104A1 EP16190691.2A EP16190691A EP3147104A1 EP 3147104 A1 EP3147104 A1 EP 3147104A1 EP 16190691 A EP16190691 A EP 16190691A EP 3147104 A1 EP3147104 A1 EP 3147104A1
Authority
EP
European Patent Office
Prior art keywords
resistance wire
insulation layer
thermoplastic material
insulating layer
use according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16190691.2A
Other languages
English (en)
French (fr)
Inventor
Bernd Barthel
Martin Gertler
Alexander Rühl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Berkenhoff and Co KG
Original Assignee
Berkenhoff and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berkenhoff and Co KG filed Critical Berkenhoff and Co KG
Publication of EP3147104A1 publication Critical patent/EP3147104A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/342Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising at least a single wire, e.g. in the form of a winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • B29C65/348Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic with a polymer coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5229Joining tubular articles involving the use of a socket
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • F16L47/03Welded joints with an electrical resistance incorporated in the joint

Definitions

  • the present invention relates to the use of a resistance wire provided with an electrically insulating insulation layer for an electrofusion joint.
  • pipe sections In many areas of technology, it is necessary to construct individual piping sections permanently and fluid tightly, i.e., to construct pipelines. liquid and gas tight to connect with each other. If the pipe sections are formed from a thermoplastic material or have a thermoplastic material, for example, they can be welded together.
  • Electric welding sleeves have a tubular or hollow cylindrical sleeve body with an elongated cavity, which may have, for example, a circular, oval, square or rectangular cross-section.
  • the sleeve body which is thus a tubular component, is formed entirely or at least in the region of the wall defining the cavity of a thermoplastic material and has at two along a longitudinal axis of the cavity opposite ends in each case an opening through which one end of a pipe section in the cavity can be inserted.
  • the sleeve body and the pipe sections can preferably be formed from the same material.
  • the electrofusion sleeve has at least one electrically conductive resistance wire or heating wire, which extends helically or helically along at least part of the length of the cavity.
  • the longitudinal direction of the helix extends along the longitudinal axis of the cavity
  • the resistance wire has a plurality of Windings which extend around the longitudinal axis of the cavity.
  • the resistance wire is attached to the sleeve body and in particular to its thermoplastic material. For this purpose, it can be fastened, for example, to an inner surface delimiting the cavity. However, it is preferred if the resistance wire is embedded in the thermoplastic material of the sleeve body.
  • an axial end section of each of the two pipe sections is inserted in each case through one of the openings from opposite directions along the longitudinal axis of the cavity in each case.
  • the electric welding sleeve should preferably be chosen so that the pipe sections abut with an outer wall completely on the cavity bounding the inner wall of the sleeve body.
  • the resistance wire is supplied with the aid of an external current source with an electric current to heat the resistance wire by the flow of current.
  • thermoplastic material of the sleeve body and the thermoplastic material of the end portions of the pipe sections are heated and at least partially softened or melted, so that in each case a cohesive weld between the end portions and the sleeve body is made.
  • the two pipe sections together with the sleeve body form a continuous pipe section. It is of course also possible to weld the end portions of two other elongated, non-tubular elements in the same way.
  • the resistance wire is usually arranged so that adjacent turns are closely spaced, and because the resistance wire can shift even with greater spacing of the turns after softening or melting of the thermoplastic material, inter alia due to thermal expansion, touching adjacent turns and bridge a portion of the resistance wire by short circuit, the resistance wire must be provided with an electrically insulating insulating layer, ie, a coating or sheath of an electrically insulating material, or have this.
  • the insulating layers must maintain their electrical insulating properties at a temperature of 250 ° C for at least two minutes, and preferably during welding operations at that temperature with a length of two to fifteen minutes, and more preferably two to ten minutes.
  • an electrically conductive resistance wire or heating wire provided with an electrically insulating insulating layer-that is, a coating or sheathing made of an electrically insulating material-for an electrofusion joint whose Insulation layer at room temperature has a breakdown voltage of 50 to 1000 V, preferably 100 to 1000 V and more preferably 300 to 800 V.
  • the electrofusion coupler has the structure described above in detail and in particular has a component made of a thermoplastic material, wherein the resistance wire is arranged to at least partially melt the component in use by current flow through the resistance wire.
  • the invention is based on the finding that in the prior art due to a technical misconception resistance wires with insulating layers with much higher Durschlagschreiben of 2500 V, for example, were used and that this is actually not only not necessary, but disadvantageous.
  • the high durometer stresses were equated with the desired and necessary thermal stability or temperature resistance, and were therefore targeted.
  • the combination of several features of electrofusion joints was overlooked. On the one hand, they are typically operated with voltages of only a maximum of 48 V and for typically only a maximum of 2 to 15 minutes, and secondly, only very small forces occur during the displacement of the turns of the resistance wire during the melting or softening of the thermoplastic material of the electrofusion sleeve touching adjacent turns on.
  • the insulation layer has at least one insulation class 250 (thermal class 250 in ° C.) according to DIN EN 60085.
  • the insulation layer can be designed to last at a temperature of 250 ° C. for at least two to 15 minutes and more preferably remains electrically insulating for at least two to 10 minutes.
  • the thickness of the insulating layer is 5 to 18 microns.
  • the resistance wire - or an electrically conductive, surrounding of the insulating layer core of the resistance wire - made of copper or a copper alloy is formed.
  • the insulating layer is a lacquer layer or coating, which may consist of, for example, polyesterimide or may comprise it.
  • Electrowelding sleeve 1 shown schematically in cross-section has a tubular or hollow cylindrical sleeve body 2, which is formed from a thermoplastic material. It defines in its interior an elongated cylindrical cavity 3, which may for example have a circular, oval, square or rectangular cross-section and in the example shown defines a straight central longitudinal axis or central axis 4. But it is also possible to provide the cavity 3 and thus the longitudinal axis 4 curved.
  • the sleeve body 2 has at two opposite along the longitudinal axis 4 opposite ends in each case an opening 5a, 5b, through which the cavity 3 is accessible from the outside.
  • an electrically conductive resistance wire or heating wire 6 is embedded, in such a manner that it orbits the longitudinal axis 4 concentric and helical.
  • the wire 6 therefore generally extends with a plurality of turns of which only the two right-hand dashed lines are indicated in the cross-sectional view, along the longitudinal axis 4 and over substantially the entire length of the sleeve body 2.
  • the resistance wire 6 When the resistance wire 6 is connected to an external power source and an electric current flows through it, it heats up due to the ohmic losses and transmits its heat on the surrounding thermoplastic material of the sleeve body 2. This can be melted in this way, at least in the region of the cavity 3 bounding wall.
  • thermoplastic material of the sleeve body 2 and preferably also at least partially the adjacent thermoplastic material of the end portions 7a, 7b - is then melted in the manner described, in each case a cohesive welded joint between each of the two end portions 7a, 7b and the sleeve body second
  • the turns of the resistance wire 6 are relatively loosely packed so that adjacent turns are spaced apart.
  • the resistance wire 6, which in FIG. 2 is shown schematically in a more detailed cross-sectional view and is formed or consists for example of copper or a copper alloy, completely surrounded by a layer 9 of an electrically insulating material, for example polyester imide.
  • the resistance wire 6 is thus part of an arrangement which has the actual resistance wire 6 as the core 8 and the insulating layer 9 surrounding it. It would also be possible to refer to this entire arrangement 8, 9 as a resistance wire.
  • the insulation layer 9 has a breakdown voltage of 50 to 1000 V at a thickness of 5 to 18 microns.
  • the breakdown voltage is generally the DC voltage between the core 8 and an in FIG. 2 dotted indicated, with the insulating layer 9 in contact sample body, in which a current flow through the insulating layer 9 due to an electrical breakdown or voltage breakdown occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

Die vorliegende Erfindung bezieht sich auf die Verwendung eines mit einer elektrisch isolierenden Isolationsschicht (9) versehenen Widerstandsdrahts (6) für eine Elektroschweißmuffe (1). Die Elektroschweißmuffe (1) weist eine Komponente (2) aus einem thermoplastischen Material auf, und der Widerstandsdraht (6) ist angeordnet, um die Komponente (2) im Einsatz durch Stromfluss durch den Widerstandsdraht (6) zumindest teilweise zu schmelzen. Die Durchschlagsspannung der Isolationsschicht (9) bei Raumtemperatur beträgt 50 bis 1000 V.

Description

  • Die vorliegende Erfindung betrifft die Verwendung eines mit einer elektrisch isolierenden Isolationsschicht versehenen Widerstandsdrahts für eine Elektroschweißmuffe.
  • In vielen Bereichen der Technik ist es erforderlich, zum Aufbau von Rohrleitungen einzelne Rohrabschnitte dauerhaft und fluiddicht, d.h. flüssigkeits- und gasdicht, miteinander zu verbinden. Wenn die Rohrabschnitte aus einem thermoplastischen Kunststoffmaterial ausgebildet sind oder ein thermoplastisches Kunststoffmaterial aufweisen, können sie beispielsweise miteinander verschweißt werden.
  • Eine Möglichkeit, einen solchen Schweißvorgang durchzuführen, besteht in der Verwendung einer Elektroschweißmuffe. Elektroschweißmuffen weisen einen rohrförmigen bzw. hohlzylindrischen Muffenkörper mit einem länglichen Hohlraum auf, der beispielsweise einen kreisförmigen, ovalen, quadratischen oder rechteckigen Querschnitt haben kann. Der Muffenkörper, der somit eine rohrförmige Komponente ist, ist vollständig oder zumindest in dem Bereich der den Hohlraum begrenzenden Wandung aus einem thermoplastischen Kunststoffmaterial ausgebildet und weist an zwei entlang einer Längsachse des Hohlraums gegenüberliegenden Enden jeweils eine Öffnung auf, durch die ein Ende eines Rohrabschnitts in den Hohlraum eingeschoben werden kann. Der Muffenkörper und die Rohrabschnitte können dabei bevorzugt aus dem gleichen Material ausgebildet sein. Ferner weist die Elektroschweißmuffe mindestens einen elektrisch leitenden Widerstandsdraht bzw. Heizdraht auf, der wendelförmig bzw. helixförmig entlang zumindest eines Teils der Länge des Hohlraums verläuft. Mit anderen Worten erstreckt sich die Längsrichtung der Wendel bzw. Helix entlang der Längsachse des Hohlraums, und der Widerstandsdraht weist eine Vielzahl von Windungen auf, die um Längsachse des Hohlraums verlaufen. Der Widerstandsdraht ist dabei an dem Muffenkörper und insbesondere an dessen thermoplastischem Material befestigt. Dazu kann er zum Beispiel an einer den Hohlraum begrenzenden Innenfläche befestigt sein. Es ist jedoch bevorzugt, wenn der Widerstandsdraht in dem thermoplastischen Material des Muffenkörpers eingebettet ist.
  • Zum Verschweißen zweier Rohrabschnitte aus thermoplastischem Material wird jeweils ein axialer Endabschnitt von jedem der beiden Rohrabschnitte durch jeweils eine der Öffnungen aus gegenüberliegenden Richtungen entlang der Längsachse des Hohlraums in diesen eingeschoben. Dabei sollte die Elektroschweißmuffe bevorzugt so gewählt werden, dass die Rohrabschnitte mit einer Außenwandung vollumfänglich an der den Hohlraum begrenzenden Innenwandung des Muffenkörpers anliegen. Anschließend wird der Widerstandsdraht mit Hilfe einer externen Stromquelle mit einem elektrischen Strom beaufschlagt, um den Widerstandsdraht durch den Stromfluss zu erwärmen. Dadurch werden das thermoplastische Material des Muffenkörpers und das thermoplastische Material der Endabschnitte der Rohrabschnitte erwärmt und zumindest teilweise erweicht bzw. aufgeschmolzen, so dass jeweils eine stoffschlüssige Schweißverbindung zwischen den Endabschnitten und dem Muffenkörper hergestellt wird. Im Ergebnis bilden die beiden Rohrabschnitte zusammen mit dem Muffenkörper einen durchgehenden Rohrabschnitt. Es ist selbstverständliche auch möglich, die Endabschnitte zweier anderer länglicher, nicht rohrförmiger Elemente in derselben Weise zu verschweißen.
  • Für die Funktionsfähigkeit der Elektroschweißmuffe ist es von Bedeutung, dass der Strom den Widerstandsdraht entlang seiner gesamten Länge durchfließt, weil ansonsten der Muffenkörper nicht im gesamten Bereich des Widerstandsdrahtes erweicht bzw. aufgeschmolzen wird und sich die wirksame Heizlänge, der Widerstand und die Heizleistung des Widerstandsdrahtes in unvorhersehbarer Weise ändern würde. Da der Widerstandsdraht üblicherweise so angeordnet ist, dass benachbarte Windungen eng voneinander beabstandet sind, und da sich der Widerstandsdraht selbst bei größerer Beabstandung der Windungen nach dem Erweichen bzw. Aufschmelzen des thermoplastischen Materials u.a. aufgrund der thermischen Längenausdehnung so verlagern kann, dass sich benachbarte Windungen berühren und einen Teilabschnitt des Widerstandsdrahtes durch Kurzschluss überbrücken, muss der Widerstandsdraht mit einer elektrisch isolierenden Isolationsschicht, d.h. einer Beschichtung oder Ummantelung aus einem elektrisch isolierenden Material, versehen sein bzw. diese aufweisen. Diese muss ihre elektrisch isolierenden Eigenschaften für ausreichend lange Zeiträume während des Schweißvorgangs beibehalten. Typischerweise müssen die Isolationsschichten bei einer Temperatur von 250 °C ihre elektrisch isolierenden Eigenschaften für mindestens zwei Minuten und bevorzugt während Schweißvorgängen bei dieser Temperatur mit einer Länge von zwei bis 15 Minuten und mehr bevorzugt zwei bis zehn Minuten aufrecht erhalten.
  • Vor diesem Hintergrund werden die Eigenschaften von Elektroschweißmuffen entscheidend durch die Eigenschaften des verwendeten Widerstandsdrahtes sowie dessen Isolationsschicht beeinflusst.
  • Es ist daher eine Aufgabe der vorliegenden Erfindung, eine Verbesserung in Bezug auf die Verwendung von Widerstandsdraht für Elektroschweißmuffen bereit zu stellen.
  • Nach der vorliegenden Erfindung ist vorgesehen, einen mit einer elektrisch isolierenden Isolationsschicht - d.h. einer Beschichtung oder Ummantelung aus einem elektrisch isolierenden Material - versehenen elektrisch leitenden Widerstandsdraht bzw. Heizdraht für eine Elektroschweißmuffe zu verwenden, dessen Isolationsschicht bei Raumtemperatur eine Durchschlagspannung von 50 bis 1000 V, bevorzugt 100 bis 1000 V und mehr bevorzugt 300 bis 800 V aufweist. Die Elektroschweißmuffe hat dabei den oben im Detail beschriebenen Aufbau und weist insbesondere eine Komponente aus einem thermoplastischen Material auf, wobei der Widerstandsdraht angeordnet ist, um die Komponente im Einsatz durch Stromfluss durch den Widerstandsdraht zumindest teilweise zu schmelzen.
  • Dies hat den Vorteil, dass gegenüber den nach dem Stand der Technik für Elektroschweißmuffen verwendeten Widerstandsdrähten eine effizientere Wärmeübertragung von dem Widerstandsdraht auf des thermoplastische Material der Elektroschweißmuffe erfolgen kann, weil die Isolationsschichten, die eine elektrische und thermische Isolation bereitstellen, dünner ausgebildet werden können.
  • Die Erfindung basiert auf der Erkenntnis, dass im Stand der Technik aufgrund einer technischen Fehlvorstellung Widerstandsdrähte mit Isolationsschichten mit sehr viel höheren Durschlagspannungen von zum Beispiel 2500 V verwendet wurden und dass dies tatsächlich nicht nur nicht notwendig, sondern nachteilig ist. Nach herkömmlicher Vorstellung wurden die hohen Durschlagspannungen mit der gewünschten und notwendigen thermischen Stabilität bzw. Temperaturfestigkeit gleichgesetzt und daher gezielt vorgesehen. Dabei wurde die Kombination von mehreren Besonderheiten von Elektroschweißmuffen übersehen. Zum einen werden diese typischerweise mit Spannungen von nur maximal 48 V und für typischerweise nur maximal 2 bis 15 Minuten betrieben, und zum anderen treten bei der Verlagerung der Windungen des Widerstandsdrahtes während des Aufschmelzens bzw. Erweichens des thermoplastischen Materials der Elektroschweißmuffe nur sehr geringe Kräfte zwischen sich berührenden benachbarten Windungen auf. Das liegt daran, dass im Unterschied zu beispielsweise Transformatorwicklungen bei Widerstandsdrähten für Elektroschweißmuffen die Windungen nicht mit einer hohen Packungsdichte vorgesehen werden bzw. vorgesehen werden müssen und dass sich die Windungen zwar im erweichten bzw. aufgeschmolzenen Material bewegen können, ohne dass allerdings große Kräfte auf sie ausgeübt werden.
  • Daher ist es möglich, Isolationsschichten mit den oben angegebenen deutlich niedrigeren Durchschlagspannungen zu verwenden und dennoch eine für die Verwendung bei Elektroschweißmuffen ausreichende thermische Stabilität bereitzustellen, was den Vorteil einer effizienteren Wärmeübertragung, schnelleren Erwärmung des thermoplastischen Materials der Elektroschweißmuffe und insgesamt besseren Energieausnutzung mit sich bringt.
  • In einer bevorzugten Ausführungsform hat die Isolationsschicht mindestens eine Isolierstoffklasse 250 (thermische Klasse 250 in °C) nach DIN EN 60085. Zum Beispiel kann die Isolationsschicht so ausgestaltet sein, dass sie bei einer Temperatur von 250 °C für mindestens zwei bis 15 Minuten und mehr bevorzugt mindestens zwei bis 10 Minuten elektrisch isolierend bleibt.
  • In einer bevorzugten Ausführungsform beträgt die Dicke der Isolationsschicht 5 bis 18 µm.
  • In einer bevorzugten Ausführungsform ist der Widerstandsdraht - bzw. ein elektrisch leitender, von der Isolationsschicht umgebender Kern des Widerstandsdrahts - aus Kupfer oder einer Kupferlegierung ausgebildet.
  • In einer bevorzugten Ausführungsform ist die Isolationsschicht eine Lackschicht oder Beschichtung, die zum Beispiel aus Polyesterimid bestehen oder dieses aufweisen kann.
  • Im Folgenden wird die Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
    • Figur 1 zeigt eine schematische Querschnittsansicht einer Elektroschweißmuffe, in die zwei Endabschnitte von Rohrelementen eingeschoben sind.
    • Figur 2 zeigt eine schematische Querschnittsansicht eines Widerstandsdrahtes der Elektroschweißmuffe der Figur 1.
  • Die in Figur 1 schematisch im Querschnitt gezeigte Elektroschweißmuffe 1 weist einen rohrförmigen bzw. hohlzylindrischen Muffenkörper 2 aus, der aus einem thermoplastischen Kunststoffmaterial ausgebildet ist. Er definiert in seinem Inneren einen länglichen zylindrischen Hohlraum 3, der beispielsweise einen kreisförmigen, ovalen, quadratischen oder rechteckigen Querschnitt haben kann und im gezeigten Beispiel eine gerade zentrale Längsachse bzw. Mittelachse 4 definiert. Es ist aber auch möglich, den Hohlraum 3 und damit die Längsachse 4 gekrümmt vorzusehen. Der Muffenkörper 2 weist an zwei entlang der Längsachse 4 gegenüberliegenden Enden jeweils eine Öffnung 5a, 5b auf, durch die der Hohlraum 3 jeweils von außen zugänglich ist.
  • In das thermoplastische Material des Muffenkörpers 2 ist ein elektrisch leitender Widerstandsdraht bzw. Heizdraht 6 eingebettet, und zwar in der Weise, dass er die Längsachse 4 konzentrisch und wendel- bzw. helixförmig umläuft. Der Draht 6 erstreckt sich daher allgemein mit einer Vielzahl von Windungen, von denen nur die beiden rechten gestrichelt in der Querschnittsansicht angedeutet sind, entlang der Längsachse 4 und über im Wesentlichen die gesamte Länge des Muffenkörpers 2. Wenn der Widerstandsdraht 6 an eine externe Stromquelle angeschlossen und von einem elektrischen Strom durchflossen wird, erwärmt er sich aufgrund der ohmschen Verluste und überträgt sein Wärme auf das ihn umgebende thermoplastische Material des Muffenkörpers 2. Dieses kann auf diese Weise zumindest im Bereich der den Hohlraum 3 begrenzenden Wandung aufgeschmolzen werden.
  • Zum Verschweißen zweier Rohrabschnitte aus thermoplastischem Material werden ihre Endabschnitte 7a, 7b jeweils durch die gegenüberliegenden Öffnungen 5a bzw. 5b entlang der Längsachse 4 in den Hohlraum 3 eingeschoben. Zum Verschweißen der beiden Rohrabschnitt ist der Muffenkörper 2 so gewählt, dass die Außenseiten der Endabschnitte 7a, 7b vollumfänglich an der den Hohlraum 3 begrenzenden Innenfläche des Muffenkörpers 2 anliegen. Wenn das thermoplastische Material des Muffenkörpers 2 - und bevorzugt auch zumindest teilweise das angrenzende thermoplastische Material der Endabschnitte 7a, 7b - anschließend in der beschriebenen Weise aufgeschmolzen wird, entsteht jeweils eine stoffschlüssige Schweißverbindung zwischen jedem der beiden Endabschnitten 7a, 7b und dem Muffenkörper 2.
  • Die Windungen des Widerstandsdrahtes 6 sind relativ lose gepackt, so dass benachbarte Windungen voneinander beabstandet sind. Um jedoch zu verhindern, dass bei einem Kontakt benachbarter Windungen aufgrund einer relativen Verlagerung der Windungen im aufgeschmolzenen Material des Muffenkörpers 2 ein kürzerer Stromweg entsteht, der einen Teil des Verlaufs des Widerstandsdrahtes 6 überbrückt, ist der Widerstandsdraht 6, der in Figur 2 schematisch in einer detaillierteren Querschnittsansicht gezeigt ist und zum Beispiel aus Kupfer oder einer Kupferlegierung ausgebildet ist oder besteht, vollumfänglich von einer Schicht 9 aus einem elektrisch isolierenden Material umgeben, zum Beispiel Polyesterimid. Der Widerstandsdraht 6 ist somit Teil einer Anordnung, die den eigentlichen Widerstandsdraht 6 als Kern 8 und die diesen umgebende Isolationsschicht 9 aufweist. Es wäre auch möglich, diese gesamte Anordnung 8, 9 als Widerstandsdraht zu bezeichnen. Bei letzterer Definition des Begriffs "Widerstandsdraht" würde die Isolationsschicht zum Widerstandsdraht gehören. Die Isolationsschicht 9 weist eine Durchschlagspannung von 50 bis 1000 V bei einer Dicke von 5 bis 18 µm auf. Die Durchschlagspannung ist allgemein diejenige Gleichspannung zwischen dem Kern 8 und einem in Figur 2 gepunktet angedeuteten, mit der Isolationsschicht 9 in Kontakt stehend Probenkörper, bei der ein Stromfluss durch die Isolationsschicht 9 aufgrund eines elektrischen Durchschlags bzw. Spannungsdurchschlags auftritt.

Claims (8)

  1. Verwendung eines mit einer elektrisch isolierenden Isolationsschicht (9) versehenen Widerstandsdrahts (6) für eine Elektroschweißmuffe (1), wobei die Elektroschweißmuffe (1) eine Komponente (2) aus einem thermoplastischen Material aufweist und der Widerstandsdraht (6) angeordnet ist, um die Komponente (2) im Einsatz durch Stromfluss durch den Widerstandsdraht (6) zumindest teilweise zu schmelzen, und wobei
    die Durchschlagsspannung der Isolationsschicht (9) bei Raumtemperatur 50 bis 1000 V beträgt.
  2. Verwendung nach Anspruch 1, bei der die Durchschlagsspannung der Isolationsschicht (9) bei Raumtemperatur 100 bis 1000 V beträgt.
  3. Verwendung nach Anspruch 2, bei der die Durchschlagsspannung der Isolationsschicht (9) bei Raumtemperatur 300 bis 800 V beträgt.
  4. Verwendung nach einem der vorhergehenden Ansprüche, bei der die Isolationsschicht (9) mindestens eine Isolierstoffklasse 250 nach DIN EN 60085 hat.
  5. Verwendung nach einem der vorhergehenden Ansprüche, bei der die Dicke der Isolationsschicht (9) 5 bis 18 µm beträgt.
  6. Verwendung nach einem der vorhergehenden Ansprüche, bei der der Widerstandsdraht (6) aus Kupfer oder einer Kupferlegierung ausgebildet ist.
  7. Verwendung nach einem der vorhergehenden Ansprüche, bei der die Isolationsschicht (9) eine Lackschicht ist.
  8. Verwendung nach Anspruch 7, bei der die Lackschicht aus Polyesterimid besteht.
EP16190691.2A 2015-09-25 2016-09-26 Verwendung eines mit einer isolationsschicht versehenen widerstandsdrahts für eine elektroschweissmuffe Withdrawn EP3147104A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015116313.6A DE102015116313A1 (de) 2015-09-25 2015-09-25 Verwendung eines mit einer Isolationsschicht versehenen Widerstandsdrahts für eine Elektroschweißmuffe

Publications (1)

Publication Number Publication Date
EP3147104A1 true EP3147104A1 (de) 2017-03-29

Family

ID=57288112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16190691.2A Withdrawn EP3147104A1 (de) 2015-09-25 2016-09-26 Verwendung eines mit einer isolationsschicht versehenen widerstandsdrahts für eine elektroschweissmuffe

Country Status (2)

Country Link
EP (1) EP3147104A1 (de)
DE (1) DE102015116313A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301864A1 (de) * 1987-07-29 1989-02-01 Mitsui Petrochemical Industries, Ltd. Elektroschmelzverbindung
JPH04347094A (ja) * 1991-05-21 1992-12-02 Sekisui Chem Co Ltd 溶着継手用の絶縁抵抗線

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH671819A5 (de) 1986-07-31 1989-09-29 Meier Schenk Ag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301864A1 (de) * 1987-07-29 1989-02-01 Mitsui Petrochemical Industries, Ltd. Elektroschmelzverbindung
JPH04347094A (ja) * 1991-05-21 1992-12-02 Sekisui Chem Co Ltd 溶着継手用の絶縁抵抗線

Also Published As

Publication number Publication date
DE102015116313A1 (de) 2017-03-30

Similar Documents

Publication Publication Date Title
DE69019114T2 (de) Verfahren und Verbindungsteil mit einem elektrischen Widerstand zum Verschweissen von Elementen aus thermoplastischem Material.
DE2724981C3 (de) Schweißring zur Verbindung von Kunststoff rohren
DE3103305C2 (de) Elektrisch schweißbare Muffe zum Verbinden von Leitungselementen
DE3307161A1 (de) Bifilares widerstandselement, aus diesem hergestelltes heizelement sowie verfahren zur herstellung eines heizelements aus diesem widerstandselement
DE202010006739U1 (de) Durchlauferhitzer
DE69311428T2 (de) Verfahren zur Herstellung eines Widerstandes zum Verschweissen in Form eines Netzes, eine mit diesem Verfahren hergestellter Widerstand für das Zusammenfügen paralleller oder transversaler Kunststoffröhren und damit ausgerüstete Rohrverzweigung
DE1303140B (de)
DE102019127691A1 (de) Elektrisches Heizelement, elektrische Heizvorrichtung und Verfahren zur Herstellung einer elektrischen Heizvorrichtung mit einem solchen Heizelement
DE2841143A1 (de) Verfahren zur herstellung einer elektrischen verbindung sowie verbindungsteil, verbindungssatz und abstandshalter zur durchfuehrung des verfahrens
DE1588425B2 (de) In die zuleitung zu einem elektrischen geraet einzubauende schmelzsicherung
EP2886285B1 (de) Verfahren und vorrichtung zum verbinden von kunststoffmantelrohren
EP3494294B1 (de) Elektrisch beheizbarer wabenkörper zur abgasbehandlung mit einer mehrzahl von heizelementen
EP3147104A1 (de) Verwendung eines mit einer isolationsschicht versehenen widerstandsdrahts für eine elektroschweissmuffe
DE102010029715A1 (de) Muffe, insbesondere Schweißmuffe, zum Verbinden von Kunststoff- oder Kunststoffverbundrohren
EP2407267A1 (de) Schweißbrenner mit einem einen Isolierschlauch aufweisenden Brennerhals
DE60010003T2 (de) Elektroschweissmuffe und Verfahren zu ihrer Herstellung
CH695968A5 (de) Kopfelektrode einer Ausleitung für Leistungstransformatoren sowie Verfahren zu deren Herstellung.
EP0183188A2 (de) Elektrisch schweissbares Verbindungselement zum Verbinden von bzw. mit Rohrleitungsteilen
DE29706501U1 (de) Schweißfitting für ein Kunststoffrohr
DE102012110150B4 (de) Durchlauferhitzer
EP2463080B1 (de) Heizelement und Verfahren zum Verschweißen von rohrförmigen Kunststoffbauteilen mit einem Heizelement sowie System aus rohrförmigen Bauteilen und Heizelement
EP3349226B1 (de) Transformatorspule
DE2236684C2 (de) Sicherungshohlkörper und Verfahren zu seiner Herstellung
EP0780620A1 (de) Rohr oder dgl. Formstück mit Elektromuffe, Verfahren zur Herstellung der Elektromuffe und Verfahren zur Herstellung einer Verbindung derartiger Rohre oder dgl. Formstücke
DE2112888A1 (de) Hochfrequenz-Induktionsplasmabrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170930