EP3145896A2 - Wringing together of ceramics - Google Patents
Wringing together of ceramicsInfo
- Publication number
- EP3145896A2 EP3145896A2 EP15730055.9A EP15730055A EP3145896A2 EP 3145896 A2 EP3145896 A2 EP 3145896A2 EP 15730055 A EP15730055 A EP 15730055A EP 3145896 A2 EP3145896 A2 EP 3145896A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- components
- composite component
- component
- ceramic
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/001—Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
- C04B35/443—Magnesium aluminate spinel
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/003—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
- C04B37/005—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/003—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
- C04B37/006—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/04—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/04—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
- C04B37/042—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass in a direct manner
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/04—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
- C04B37/045—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24B—DOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
- F24B13/00—Details solely applicable to stoves or ranges burning solid fuels
- F24B13/004—Doors specially adapted for stoves or ranges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C15/00—Details
- F24C15/004—Windows not in a door
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C15/00—Details
- F24C15/02—Doors specially adapted for stoves or ranges
- F24C15/04—Doors specially adapted for stoves or ranges with transparent panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/42—Polarizing, birefringent, filtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/704—Crystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2315/00—Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
- B32B2315/02—Ceramics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/963—Surface properties, e.g. surface roughness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/10—Glass interlayers, e.g. frit or flux
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/52—Pre-treatment of the joining surfaces, e.g. cleaning, machining
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/55—Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/55—Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer
- C04B2237/555—Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer on a substrate not containing an interlayer coating, leading to the formation of an interlayer coating
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/60—Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/704—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0266—Details of the structure or mounting of specific components for a display module assembly
Definitions
- the present invention is a cohesive composite component, process for its preparation and its use.
- the invention relates to cohesive transparent ceramic composite components, methods for producing such ceramic composite components and their use.
- transparent ceramics may have advantages over other transparent materials such as plastics or glasses in heavily loaded areas. Its high chemical, thermal and mechanical resistance predestine it for applications with extreme loads.
- the breaking strength of thin ceramic substrates is not sufficient for many applications.
- a transparent ceramic could be used as a scratch-resistant display panel for mobile electronic devices.
- the standards required here in terms of thickness and weight with ceramic discs are difficult to achieve, since they must have a certain thickness in order to ensure a sufficient breaking strength can.
- One way to solve this problem is to provide ceramic-substrate composites or laminates in which the ceramic can be made very thin and provide the functional surface.
- the substrate serves as a support for the ceramic and may provide other functions, such as sufficient bond strength of the composite.
- the ceramic and the substrate must be durable, preferably cohesively, connected to each other.
- Bonded composites made of amorphous materials such as glass which are produced by means of wringing two individual components, are known in the field of optics in particular. It is about establishing a connection between two components that are very good in terms of their surface quality and form fit to each other in terms of their surface shape. In such components, the corresponding surfaces can bring by juxtaposition in such close contact with each other that there is a firm connection between the two components.
- the force that sustains this connection is, according to common doctrine, attributable to the van der Waals forces between the individual atoms or molecules of the two components.
- DE 102011012835 A1 a method for the addition of glasses and crystalline ceramics by pretreatment in a low-pressure oxygen plasma with subsequent temperature treatment under reduced pressure conditions ( ⁇ 10 mbar) of at least 100 ° C described. Additional coating processes (eg with S1O2) are not required. This is made possible by the application of high contact pressures in the range of 20 kPa to 5 MPa.
- the object of the present invention is to provide a solid connection of a technical ceramic with another component.
- the compound according to the invention should moreover have no negative effect on the transparency of the composite.
- a composite component between ceramic and ceramic or ceramic and other materials ie, for example, ceramic with (tempered) glass or ceramic with plastic is to be provided.
- the problem underlying the invention is achieved by a composite component having the features of the main claim.
- Preferred embodiments can be found in the subclaims.
- the inventive method for producing the composite component according to the invention is characterized by the features of the independent method claim. Accordingly, the method according to the invention provides for a connection of one ceramic component to another component by breaking them up.
- Preferably embodiments of the method according to the invention can be found in the dependent method claims. According to a preferred embodiment of the invention, the two components are joined together directly, ie without adhesion promoter. For this purpose, a joining pressure is required.
- a bonding agent to one or both components and then to abut the components via the bonding agent or adhesives.
- adhesion promoters particularly preferred metals or metal oxides are used according to the invention, which can be applied to the individual components by a wide variety of methods. Coating processes, in particular PVD (for example sputtering, electron beam evaporation, ion-assisted deposition), CVD or else sol-gel processes are particularly preferred.
- the PVD methods have proven to be particularly suitable because they allow the flatnesses required for wringing to be realized.
- the layer thicknesses are preferably in the range of 1 nm to 10 ⁇ m.
- the layers can also be applied to the components by screen printing or pad printing or similar methods.
- the metals may be provided as metal layers or as oxide layers.
- Oxide layers can preferably also be formed only during the joining of the components, if, for example, the joining is carried out under oxidizing conditions, for example an oxidizing atmosphere.
- adhesion promoters are preferably Si and Ti, more preferably S1O 2 , ⁇ 2 or ITO (indium-tin-oxide), which are transparent, used.
- Other metals or metal oxides, especially those which are transparent, are also suitable as adhesion promoters according to the invention.
- non-transparent metals or metal oxides can be used.
- An alternative method is the surface silicization by means of flame pyrolytic deposition of a silicon precursor. The surface is coated with SiO 2 by burning monosilane (SiH 4 ). A pre-cleaning of the surface is particularly preferred in this case (eg by means of plasma cleaning).
- the surfaces to be embossed should have a flatness of ⁇ 10 m, preferably ⁇ 1 ⁇ m, particularly preferably ⁇ 100 nm.
- the distance between the surfaces of the components to be joined during the joining process is very small; it is particularly preferred according to the invention to bring the surfaces of the components to be joined into intimate contact, i. the distance of the surfaces is equal to zero according to the invention, the surfaces of the components to be joined touch as full as possible.
- the flatness of the surfaces described above is particularly preferred.
- the surfaces to be joined are designed precisely matching one another. In particular, when the components are to be sprinkled without bonding agent, extremely high demands are placed on the accuracy of fit.
- an application of pressure and / or temperature may be necessary, depending on which materials are to be connected to one another.
- High pressures are between atmospheric pressure and 2,000 MPa.
- High pressures can be generated, for example, in a hot isostatic press (HIP) by gas pressure (argon, nitrogen, air).
- gas pressure argon, nitrogen, air
- the preferred temperature range for the joining process is between room temperature and temperatures, below the melting / softening temperature of the component, with the lower melting / softening temperature. If the joining process according to the invention is carried out in a HIP plant, this offers the advantage that it is simultaneously possible to apply temperature and pressure, if necessary even under a certain atmosphere.
- a treatment in a vacuum oven, in pressure sintering furnace or in other aggregates are possible, which allow a treatment with pressure and / or temperature.
- the pressure and temperature treatment according to the invention by means of rapid sintering technologies such as the FAST method (Field Assisted Sintering Technology) is possible.
- a cleaning of the surfaces to be joined may be useful.
- plasma etching, chemical cleaning, tempering in air, in the vacuum or under H2 atmos- sphere or by ion milling the surfaces according to the invention of water, OH groups, hydrocarbons and other substances can be freed
- the coefficients of thermal expansion (CTE) of the components to be abutted are matched to one another.
- CTE coefficients of thermal expansion
- a composite component in which the one component is made of a material having a higher CTE exists, a compressive stress is generated in the respective other component. For example, if a ceramic component with a low CTE is connected to a glass with a higher CTE, a compressive stress is generated in the ceramic surface, which can increase the fracture strength of the ceramic.
- the composite component produced is part of a display, for example for a mobile electronic device.
- the ceramic composite component therefore consists of a thin ceramic layer, which has been connected, for example, with a chemically hardened glass or a plastic.
- the ceramic layer or the ceramic component has a thickness of ⁇ 50 mm, preferably a thickness of ⁇ 1 mm, more preferably a thickness of ⁇ 0.5 mm and most preferably a thickness of ⁇ 0.1 mm ,
- the principle underlying the invention is based on the generation of a diffusion layer between the ceramic component and the component material to be abutted. A minimum penetration of the component material to be sprayed into the ceramic surface or an adaptation of the grids in the contact layer is also possible.
- connection of the blasted components should be cohesively forming a chemical reaction zone.
- flatness ⁇ 10 ⁇ , preferably ⁇ 1 pm and more preferably ⁇ 100 nm
- roughness ⁇ 20 nm, preferably ⁇ 10 nm and more preferably ⁇ 1 nm
- the joining partners are made thin (thickness ⁇ 1.5 mm, preferably ⁇ 0.75 mm and particularly preferably ⁇ 0.3 mm), even more suitable joining compounds with RIT values> 80% can be produced, since the transparency increases with reduced thickness .
- the reason for this is that with a thin version of the ceramic component, the already low defect frequency (porosity ⁇ 100 ppm) is reduced and light strikes the component almost unhindered.
- the geometric requirements decrease because the glass and ceramic components become deformable and can cling flexibly. For this a joining pressure is necessary.
- the thin ceramic components have a polycrystalline structure, preferably the g-Al spinel (MgAl 2 0 4 ) or the polycrystalline corundum (a-Al 2 0 3 ) is used.
- a rigid ceramic is made thin enough, it can be flexible: the bending stiffness is proportional to the cube of the thickness, and a thin component design significantly reduces its rigidity. This is particularly pronounced when the ceramic thickness is ⁇ 300 pm, preferably ⁇ 200 pm and particularly preferably ⁇ 100 pm.
- the present invention describes:
- Composite component according to one of the preceding points, wherein one component is a technical ceramic and the other component is selected from a ceramic, a second technical ceramic, a transparent material, a glass, preferably an alkali aluminosilicate glass, particularly preferably one Alkalialumosilikatglas that is biased in the near-surface layer under pressure, made of a tempered glass or a plastic.
- Composite component according to one of the preceding claims characterized in that the technical ceramic is a polycrystalline transparent technical ceramic.
- the technical ceramic is a polycrystalline transparent technical ceramic, preferably Mg-Al-spinel (MgAbC) or the polycrystalline corundum (a-Al 2 0 3 ).
- Composite component according to one of the preceding points wherein it is transparent and has an RIT> 60%, preferably> 70% and particularly preferably> 75%, stain frequencies ⁇ 10%, preferably ⁇ 3% and particularly preferably ⁇ 1% and haze (haze) ) of ⁇ 10%, preferably 5% and more preferably ⁇ 2%.
- adhesion promoters are applied by means of coating methods, in particular PVD (for example sputtering, electron-beam evaporation, ion-assisted deposition), CVD or sol-gel methods.
- PVD for example sputtering, electron-beam evaporation, ion-assisted deposition
- CVD chemical vapor deposition
- sol-gel methods sol-gel methods.
- Si and Ti more preferably SiO 2 , TiO 2 or ITO (indium tin oxide), which are transparent, are used as adhesion promoters.
- Method according to one of the preceding points wherein the surface is coated by the burning of monosilane (SiH 4 ) with S1O 2 .
- Method according to one of the preceding points wherein the surfaces of the components to be blown have a flatness of ⁇ 10 pm, preferably of ⁇ 1 pm, particularly preferably of ⁇ 100 nm.
- the pressure and temperature treatment rapid sintering technologies such as the FAST method (Field Assisted Sintering Technology) are used.
- the one component consists of a material with a higher CTE, thereby to generate a compressive stress in the respective other component.
- the present invention describes the use of the composite component according to the invention or the composite component produced according to the invention, for example as part of a display, such as for a mobile electronic device or as a stove or chimney window.
- Two square spinel tiles with polished (r a ⁇ 20 nm, preferably r a ⁇ 10 nm and more preferably r a ⁇ 4 nm) surface are pretreated by chemical means and plasma cleaning.
- the surfaces are contacted at room temperature, aligned and annealed in a hot isostatic press using isostatic pressure of> 500 bar, preferably> 1000 bar, and more preferably> 1500 bar.
- the necessary temperatures are> 1200 ° C, preferably> 1350 ° C and more preferably> 1500 ° C.
- After the temperature treatment has a cohesive connection formed by diffusion processes that allows transparent composite components with RIT values> 75%.
- An alkali aluminosilicate glass which may be biased under pressure in the near-surface layer, is blasted with a transparent spinel ceramic.
- the dimensions of the square samples are 10 mm x 10 mm.
- the glass has a thickness of 1 mm, the ceramic thickness is 500 m.
- the flatness is ⁇ 5 pm, the roughness is less than 1 nm.
- Chamfered edges of both joining surfaces allow a precise alignment before the temperature treatment.
- the joint surfaces are pre-cleaned.
- the spinel ceramic is provided with a thin Si0 2 layer which is rendered hydrophilic by treatment with chemical agents such as nitric acid and an aqueous NH 4 OH: H 2 C> 2 solution at elevated temperatures> 80 ° C.
- the temperature treatment is carried out in a high vacuum oven at temperatures between 200 and 400 ° C. After the temperature treatment, a cohesive bond has formed which allows transparent composite components with RIT values> 75%.
- An alkali aluminosilicate glass which may be biased under pressure in the near-surface layer, is blasted with a transparent spinel ceramic.
- the dimensions of the square samples are 10 mm x 10 mm.
- the glass has a thickness of 1 mm, the ceramic thickness is 200 pm.
- the flatness is ⁇ 500 nm, the roughness is less than 1 nm.
- Chamfered edges of both joining surfaces allow precise alignment before the temperature treatment.
- the joining surfaces are plasma cleaned, uncoated and hydrophilic.
- the temperature treatment is carried out in a high vacuum oven at temperatures between 200 and 400 ° C. After the temperature treatment, a cohesive bond has formed which enables transparent composite components with RIT values> 75%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Products (AREA)
- Laminated Bodies (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
Description
Ansprengen von Keramik Wringing ceramic
Gegenstand der vorliegenden Erfindung ist ein stoffschlüssiges Verbundbauteil, Verfahren zu dessen Herstellung sowie dessen Verwendung. Insbesondere betrifft die Erfindung stoffschlüssige transparente Keramik-Verbundbauteile, Verfahren zur Herstellung solcher Keramik-Verbundbauteile sowie deren Verwendung. The present invention is a cohesive composite component, process for its preparation and its use. In particular, the invention relates to cohesive transparent ceramic composite components, methods for producing such ceramic composite components and their use.
Technische Keramik hat gegenüber vielen anderen Materialien den Vorteil, chemisch, thermisch und/oder mechanisch stabiler zu sein. Aus diesem Grund wäre es von Vorteil, wenn die Verwendungsmöglichkeiten von Keramiken ausgeweitet werden könnten. Technical ceramics have the advantage over many other materials of being chemically, thermally and / or mechanically stable. For this reason, it would be advantageous if the uses of ceramics could be extended.
Insbesondere transparente Keramiken können in stark belasteten Bereichen Vorteile gegenüber anderen transparenten Materialien wie Kunststoffen oder Gläsern aufweisen. Ihre hohe chemische, thermische und mechanische Beständigkeit prädestiniert sie für Anwendungen mit extremen Belastungen. In particular, transparent ceramics may have advantages over other transparent materials such as plastics or glasses in heavily loaded areas. Its high chemical, thermal and mechanical resistance predestine it for applications with extreme loads.
Allerdings haben auch technische Keramiken Nachteile. Beispielsweise ist die Bruchfestigkeit von dünnen Keramik-Substraten für viele Anwendungen nicht ausreichend. Eine transparente Keramik könnte beispielsweise als kratzfeste Display- Scheibe für mobile elektronische Geräte Verwendung finden. Allerdings sind die hier geforderten Standards hinsichtlich Dicke und Gewicht mit Keramikscheiben nur schwer zu erreichen, da diese eine bestimmte Dicke aufweisen müssen, um eine ausreichende Bruchfestigkeit gewährleisten zu können. Eine Möglichkeit, dieses Problem zu lösen, besteht in der Bereitstellung von Keramik- Substrat-Verbunden oder Laminaten, bei denen die Keramik sehr dünn ausgeführt sein kann und die Funktionsoberfläche bereitstellt. Das Substrat dient als Träger für die Keramik und kann weitere Funktionen, beispielsweise eine ausreichende Bruchfestigkeit des Verbunds, ermöglichen. Allerdings müssen die Keramik und das Trägermaterial haltbar, vorzugsweise stoffschlüssig, miteinander verbunden werden. However, technical ceramics have disadvantages. For example, the breaking strength of thin ceramic substrates is not sufficient for many applications. For example, a transparent ceramic could be used as a scratch-resistant display panel for mobile electronic devices. However, the standards required here in terms of thickness and weight with ceramic discs are difficult to achieve, since they must have a certain thickness in order to ensure a sufficient breaking strength can. One way to solve this problem is to provide ceramic-substrate composites or laminates in which the ceramic can be made very thin and provide the functional surface. The substrate serves as a support for the ceramic and may provide other functions, such as sufficient bond strength of the composite. However, the ceramic and the substrate must be durable, preferably cohesively, connected to each other.
BESTÄTIG U NGSKOPI E Aus dem Stand der Technik sind Keramik-Substrat-Laminate bekannt, die mittels einer Klebeschicht miteinander verbunden sind. Eine solche Klebeschicht ist aber, insbesondere, wenn eine möglichst hohe Festigkeit des Gesamtlaminats in Verbindung mit extremer Schichthaftung angestrebt wird, nachteilig. CONFIRMED U NGSKOPI E Ceramic substrate laminates are known from the prior art, which are interconnected by means of an adhesive layer. However, such an adhesive layer is disadvantageous, in particular if the highest possible strength of the overall laminate in conjunction with extreme layer adhesion is sought.
Insbesondere aus dem Bereich der Optik sind stoffschlüssige Verbünde aus amorphen Materialien wie Glas bekannt, die mittels Ansprengen zweier Einzelbauteile hergestellt werden. Es handelt sich dabei um das Herstellen einer Verbindung zwischen zwei Bauteilen, die hinsichtlich ihrer Oberflächenqualität sehr gut und hinsichtlich ihrer Oberflächenform formschlüssig zueinander ausgeführt sind. Bei derartigen Bauteilen lassen sich die korrespondierenden Oberflächen durch Aneinandersetzen in so dichten Kontakt zueinander bringen, dass es zu einer festen Verbindung zwischen den beiden Bauteilen kommt. Die Kraft, die diese Verbindung aufrechterhält, ist dabei nach gängiger Lehrmeinung den Van-der-Waals-Kräften zwischen den einzelnen Atomen oder Molekülen der beiden Bauteile zuzuschreiben. Bonded composites made of amorphous materials such as glass, which are produced by means of wringing two individual components, are known in the field of optics in particular. It is about establishing a connection between two components that are very good in terms of their surface quality and form fit to each other in terms of their surface shape. In such components, the corresponding surfaces can bring by juxtaposition in such close contact with each other that there is a firm connection between the two components. The force that sustains this connection is, according to common doctrine, attributable to the van der Waals forces between the individual atoms or molecules of the two components.
Oer Vorteil des Ansprengens liegt darin, dass die Verbindung der Bauteile ohne Verwendung eines verbindenden Materials, beispielsweise eines Klebers auskommt. Es wird vermutet, dass die Bauteile im Wesentlichen aufgrund von Adhäsionskräften zusammenhalten. Der Fügemechanismus von Silizium- und Quarz-Wafern beruht auf Si-O-Si-Verbindungen, die bei erhöhten Temperaturen (> 100 °C) ausgebildet werden (Gösele, Tong: Semiconductor wafer bonding, Annual Review of Matehals Science 28 (1), 1998, 215-241). Eine ausreichende Hydrophilisierung der Oberfläche wird als notwendig angenommen, um die Si-O-Si-Bindungen auszubilden. Voraussetzung für die Haltbarkeit der Verbindung sind saubere, extrem glatte und passgenaue Oberflächen. Oer advantage of Aufenggens is that the connection of the components without using a connecting material, such as an adhesive manages. It is believed that the components are held together mainly due to adhesion forces. The joining mechanism of silicon and quartz wafers is based on Si-O-Si compounds which are formed at elevated temperatures (> 100 ° C.) (Gösele, Tong: Semiconductor wafer bonding, Annual Review of Matehals Science 28 (1), 1998, 215-241). Sufficient hydrophilization of the surface is believed to be necessary to form the Si-O-Si bonds. Prerequisite for the durability of the connection are clean, extremely smooth and precisely fitting surfaces.
In der DE102011012835 A1 ist ein Verfahren zur Fügung von Gläsern und kristallinen Keramiken durch Vorbehandlung in einem Sauerstoff-Niederdruckplasma mit anschließender Temperaturbehandlung bei Unterdruckbedingungen (< 10 mbar) von mindestens 100 °C beschrieben. Zusätzlich durchgeführte Beschichtungsverfahren (z.B. mit S1O2) sind nicht erforderlich. Dies wird möglich durch die Anwendung von hohen Anpressdrücken im Bereich von 20 kPa bis 5 MPa. Die Aufgabe der vorliegenden Erfindung besteht in der Bereitstellung einer festen Verbindung aus einer technischen Keramik mit einem anderen Bauteil. Insbesondere bei transparenten Keramiken soll die erfindungsgemäße Verbindung darüber hinaus keinen negativen Effekt auf die Transparenz des Verbunds haben. Erfindungsgemäß soll ein Verbundbauteil zwischen Keramik und Keramik oder Keramik und anderen Materialien, also beispielsweise Keramik mit (gehärtetem) Glas oder auch Keramik mit Kunststoff bereitgestellt werden. In DE 102011012835 A1 a method for the addition of glasses and crystalline ceramics by pretreatment in a low-pressure oxygen plasma with subsequent temperature treatment under reduced pressure conditions (<10 mbar) of at least 100 ° C described. Additional coating processes (eg with S1O2) are not required. This is made possible by the application of high contact pressures in the range of 20 kPa to 5 MPa. The object of the present invention is to provide a solid connection of a technical ceramic with another component. In particular, in the case of transparent ceramics, the compound according to the invention should moreover have no negative effect on the transparency of the composite. According to the invention, a composite component between ceramic and ceramic or ceramic and other materials, ie, for example, ceramic with (tempered) glass or ceramic with plastic is to be provided.
Erst durch die Entwicklung von polykristallinen transparenten Keramiken, wie beispielsweise in der WO 2013/068418 A1 beschrieben, mit RIT-Werten > 75 % bei 600 nm Wellenlänge (Dicke: 2 mm) ist es erfindungsgemäß erstmals möglich, transparente Werkstoffverbunde mit mindestens einer Keramikkomponente durch Ansprengen herzustellen. Die Transparenz ist mittels Messung von Only by the development of polycrystalline transparent ceramics, as described, for example, in WO 2013/068418 A1, with RIT values> 75% at 600 nm wavelength (thickness: 2 mm) is it possible for the first time according to the invention to have transparent composite materials with at least one ceramic component To make wringing. The transparency is measured by measuring
- Real-Inline-Transmission (RIT) mit einem engen Aperturwinkel < 0,5 0 - Real Inline Transmission (RIT) with a narrow aperture angle <0.5 0
- Fleckenhäufigkeit - stain frequency
- Haze (Trübung) - Haze (haze)
zuverlässig zu quantifizieren. reliably quantify.
Die der Erfindung zugrundeliegende Aufgabe wird durch ein Verbundbauteil mit den Merkmalen des Hauptanspruchs gelöst. Vorzugsweise Ausgestaltungen finden sich in den Unteransprüchen. Das erfindungsgemäße Verfahren zur Herstellung des erfindungsgemäßen Verbundbauteils ist durch die Merkmale des unabhängigen Verfahrensanspruchs charakterisiert. Demgemäß sieht das erfindungsgemäße Verfahren eine Verbindung von einem Keramik-Bauteil mit einem anderen Bauteil vor, indem diese angesprengt werden. Vorzugsweise Ausgestaltungen des erfindungsgemäßen Verfahrens finden sich in den abhängigen Verfahrensansprüchen. Gemäß einer bevorzugten Ausführungsform der Erfindung werden die beiden Bauteile direkt, also ohne Haftvermittler, aneinander gefügt. Hierzu ist ein Fügedruck erforderlich. The problem underlying the invention is achieved by a composite component having the features of the main claim. Preferred embodiments can be found in the subclaims. The inventive method for producing the composite component according to the invention is characterized by the features of the independent method claim. Accordingly, the method according to the invention provides for a connection of one ceramic component to another component by breaking them up. Preferably embodiments of the method according to the invention can be found in the dependent method claims. According to a preferred embodiment of the invention, the two components are joined together directly, ie without adhesion promoter. For this purpose, a joining pressure is required.
Es ist jedoch gemäß einer weiteren Ausführungsform der Erfindung ebenfalls möglich, einen Haftvermittler auf eines oder beide Bauteile aufzubringen und anschließend die Bauteile über den oder die Haftvermittler anzusprengen. Als Haftvermittler werden erfindungsgemäß besonders bevorzugt Metalle oder Metalloxide verwendet, die über die unterschiedlichsten Verfahren auf die einzelnen Bauteile aufgebracht werden können. Besonders bevorzugt sind hierbei Beschichtungsverfahren, insbesondere PVD- (z.B. Sputtern, Elektronen-Strahl-Verdampfen, lon-Assisted-Deposition), CVD- oder auch Sol-Gel-Verfahren. Als besonders geeignet haben sich die PVD-Verfahren gezeigt, da sich hiermit die für das Ansprengen erforderlichen Ebenheiten realisieren lassen. Die Schichtdicken liegen vorzugsweise im Bereich von 1 nm bis 10 pm. Natürlich können die Schichten auch durch Siebdruck oder Tampondruck oder ähnliche Verfahren auf die Bauteile aufgebracht werden. However, according to a further embodiment of the invention, it is also possible to apply a bonding agent to one or both components and then to abut the components via the bonding agent or adhesives. As adhesion promoters, particularly preferred metals or metal oxides are used according to the invention, which can be applied to the individual components by a wide variety of methods. Coating processes, in particular PVD (for example sputtering, electron beam evaporation, ion-assisted deposition), CVD or else sol-gel processes are particularly preferred. The PVD methods have proven to be particularly suitable because they allow the flatnesses required for wringing to be realized. The layer thicknesses are preferably in the range of 1 nm to 10 μm. Of course, the layers can also be applied to the components by screen printing or pad printing or similar methods.
Die Metalle können als Metallschichten oder als Oxidschichten vorgesehen sein. Oxidschichten können bevorzugt auch erst beim Fügen der Bauteile entstehen, wenn beispielsweise das Fügen unter oxidierenden Bedingungen, beispielsweise einer oxidierenden Atmosphäre, vorgenommen wird. The metals may be provided as metal layers or as oxide layers. Oxide layers can preferably also be formed only during the joining of the components, if, for example, the joining is carried out under oxidizing conditions, for example an oxidizing atmosphere.
Als Haftvermittler werden bevorzugt Si und Ti, besonders bevorzugt S1O2, ΤΊΟ2 oder ITO (Indium-Zinn-Oxid), die transparent sind, verwendet. Andere Metalle oder Metalloxide, insbesondere solche, die transparent sind, sind als Haftvermittler erfindungsgemäß ebenfalls geeignet. Für Bauteile, die nicht transparent sein müssen, kommen natürlich auch nicht-transparente Metalle oder Metalloxide verwendet werden. Eine alternative Methode ist die Oberflächen-Silikatisierung mittels flammenpyrolytischer Abscheidung eines Silizium-Precursors. Dabei wird durch das Verbrennen von Monosilan (SiH4) die Oberfläche mit SiO2 beschichtet. Eine Vorreinigung der Oberfläche ist hierbei besonders bevorzugt (z.B. mittels Plasmareinigung). Um die Bauteile ansprengen zu können, sollten die anzusprengenden Oberflächen eine Ebenheit von < 10 m, vorzugsweise < 1 prn, besonders bevorzugt < 100 nm aufweisen. As adhesion promoters are preferably Si and Ti, more preferably S1O 2 , ΤΊΟ 2 or ITO (indium-tin-oxide), which are transparent, used. Other metals or metal oxides, especially those which are transparent, are also suitable as adhesion promoters according to the invention. For components that do not need to be transparent, of course, non-transparent metals or metal oxides can be used. An alternative method is the surface silicization by means of flame pyrolytic deposition of a silicon precursor. The surface is coated with SiO 2 by burning monosilane (SiH 4 ). A pre-cleaning of the surface is particularly preferred in this case (eg by means of plasma cleaning). In order to be able to blast the components, the surfaces to be embossed should have a flatness of <10 m, preferably <1 μm, particularly preferably <100 nm.
Erfindungsgemäß ist vorgesehen, dass der Abstand der Oberflächen der zu verbindenden Bauteile während des Fügeprozesses sehr klein ist, erfindungsgemäß besonders bevorzugt ist es, die Oberflächen der zu verbindenden Bauteile in einen innigen Kontakt zu verbringen, d.h. der Abstand der Oberflächen ist erfindungsgemäß gleich null, die Oberflächen der zu verbindenden Bauteile berühren sich möglichst vollflächig. Um diesen innigen Kontakt sicherzustellen, ist erfindungsgemäß die oben beschriebene Ebenheit der Oberflächen besonders bevorzugt. Darüber hinaus ist es erfindungsgemäß bevorzugt, wenn die zu verbindenden Oberflächen passgenau zueinander gestaltet werden. Insbesondere dann, wenn die Bauteile ohne Haftvermittler angesprengt werden sollen, sind an die Passgenauigkeit extrem hohe Anforderungen zu stellen. According to the invention, it is provided that the distance between the surfaces of the components to be joined during the joining process is very small; it is particularly preferred according to the invention to bring the surfaces of the components to be joined into intimate contact, i. the distance of the surfaces is equal to zero according to the invention, the surfaces of the components to be joined touch as full as possible. In order to ensure this intimate contact, according to the invention, the flatness of the surfaces described above is particularly preferred. In addition, it is preferred according to the invention if the surfaces to be joined are designed precisely matching one another. In particular, when the components are to be sprinkled without bonding agent, extremely high demands are placed on the accuracy of fit.
Nach oder während des Fügens kann erfindungsgemäß eine Beaufschlagung mit Druck und/oder Temperatur notwendig sein, je nachdem, welche Materialien miteinander verbunden werden sollen. After or during the joining, according to the invention, an application of pressure and / or temperature may be necessary, depending on which materials are to be connected to one another.
Erfindungsgemäß bevorzugte Drücke liegen zwischen Atmosphärendruck und 2.000 MPa. Hohe Drücke können beispielsweise in einer heißisostatischen Presse (HIP) durch Gasdruck (Argon, Stickstoff, Luft) erzeugt werden. According to preferred pressures are between atmospheric pressure and 2,000 MPa. High pressures can be generated, for example, in a hot isostatic press (HIP) by gas pressure (argon, nitrogen, air).
Der bevorzugte Temperaturbereich für den Fügeprozess liegt zwischen Raumtemperatur und Temperaturen, unterhalb der Schmelz-/Erweichungstemperatur des Bauteils, mit der niedrigeren Schmelz-/Erweichungstemperatur. Wird der erfindungsgemäße Fügeprozess in einer HIP-Anlage durchgeführt, bietet dies den Vorteil, dass gleichzeitig eine Temperatur- und eine Druckbeaufschlagung, wenn nötig sogar unter einer bestimmten Atmosphäre, möglich ist. Darüber hinaus ist auch eine Behandlung im Vakuumofen, im Drucksinterofen oder in weiteren Aggregaten möglich, die eine Behandlung mit Druck und/oder Temperatur erlauben. Außerdem ist es möglich, eine mechanische Druckkomponente, also beispielsweise eine Presse mit anschließender Temperaturbehandlung in einem Ofen zu verwenden. The preferred temperature range for the joining process is between room temperature and temperatures, below the melting / softening temperature of the component, with the lower melting / softening temperature. If the joining process according to the invention is carried out in a HIP plant, this offers the advantage that it is simultaneously possible to apply temperature and pressure, if necessary even under a certain atmosphere. In addition, a treatment in a vacuum oven, in pressure sintering furnace or in other aggregates are possible, which allow a treatment with pressure and / or temperature. In addition, it is possible to use a mechanical pressure component, so for example a press with subsequent temperature treatment in an oven.
Zur Verkürzung der Prozesszeiten ist erfindungsgemäß die Druck- und Temperaturbehandlung mittels Schnellsintertechnologien wie dem FAST-Verfahren (Field-Assisted-Sintering-Technology) möglich. Vor dem Ansprengen der Bauteile ist gegebenenfalls eine Reinigung der zu fügenden Oberflächen sinnvoll. Durch Plasmaätzen, chemisches Reinigen, Temperieren in Luft, im Vakuum- oder unter H2-Atmossphäre oder auch durch lonenstrahlätzen können die Oberflächen erfindungsgemäß von Wasser, OH-Gruppen, Kohlenwasserstoffen sowie anderen Substanzen befreit werden To shorten the process times, the pressure and temperature treatment according to the invention by means of rapid sintering technologies such as the FAST method (Field Assisted Sintering Technology) is possible. Before wringing the components, a cleaning of the surfaces to be joined may be useful. By plasma etching, chemical cleaning, tempering in air, in the vacuum or under H2 atmos- sphere or by ion milling, the surfaces according to the invention of water, OH groups, hydrocarbons and other substances can be freed
Gemäß einer bevorzugten Ausführungsform der Erfindung sind die Wärmeausdehnungskoeffizienten (WAK) der anzusprengenden Bauteile aufeinander abgestimmt. Für bestimmte Anwendungen, wenn beispielsweise das erfindungsgemäß hergestellte Verbundbauteil unter thermischer Belastung verwendet werden soll, z.B. als Ofen- oder Kaminfenster, ist es vorteilhaft, wenn die WAKs möglichst ähnlich sind. According to a preferred embodiment of the invention, the coefficients of thermal expansion (CTE) of the components to be abutted are matched to one another. For certain applications, for example, if the composite component produced according to the invention is to be used under thermal stress, e.g. as stove or fireplace windows, it is advantageous if the CTEs are as similar as possible.
Es kann jedoch auch Einsatzzwecke für das Verbundbauteil geben, für die es erfindungsgemäß vorteilhaft ist, wenn die beiden Bauteile unterschiedliche Wärmeausdehnungskoeffizienten aufweisen. Wird erfindungsgemäß ein Verbundbauteil bereitgestellt, bei dem das eine Bauteil aus einem Material mit einem höheren WAK besteht, so wird in dem jeweils anderen Bauteil eine Druckspannung erzeugt. Wird also beispielsweise ein Keramik-Bauteil mit einem niedrigen WAK mit einem Glas mit einem höheren WAK verbunden, wird in der Keramikoberfläche eine Druckspannung erzeugt, die die Bruchfestigkeit der Keramik erhöhen kann. However, there may also be uses for the composite component, for which it is advantageous according to the invention, if the two components have different thermal expansion coefficients. According to the invention, a composite component is provided in which the one component is made of a material having a higher CTE exists, a compressive stress is generated in the respective other component. For example, if a ceramic component with a low CTE is connected to a glass with a higher CTE, a compressive stress is generated in the ceramic surface, which can increase the fracture strength of the ceramic.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist das hergestellte Verbundbauteil ein Teil eines Displays, beispielsweise für ein mobiles Elektronikgerät. Hier ist es vorteilhaft, wenn die Gesamtstärke des Verbundbauteils möglichst klein ist. Das Keramik-Verbundbauteil besteht daher aus einer dünnen Keramikschicht, die beispielsweise mit einem chemisch gehärteten Glas oder einem Kunststoff verbunden wurde. Für einen solchen Verwendungszweck hat die Keramikschicht bzw. das Keramik-Bauteil eine Stärke von < 50 mm, bevorzugt eine Stärke von < 1 mm, besonders bevorzugt eine Stärke von < 0,5 mm und ganz besonders bevorzugt eine Stärke von < 0,1 mm. According to a particularly preferred embodiment of the invention, the composite component produced is part of a display, for example for a mobile electronic device. Here it is advantageous if the total thickness of the composite component is as small as possible. The ceramic composite component therefore consists of a thin ceramic layer, which has been connected, for example, with a chemically hardened glass or a plastic. For such a purpose, the ceramic layer or the ceramic component has a thickness of <50 mm, preferably a thickness of <1 mm, more preferably a thickness of <0.5 mm and most preferably a thickness of <0.1 mm ,
Das der Erfindung zugrundeliegende Prinzip beruht auf der Erzeugung einer Diffusionsschicht zwischen dem Keramik-Bauteil und dem anzusprengenden Bauteilmaterial. Auch eine minimale Penetration des anzusprengenden Bauteilmaterials in die Keramikoberfläche oder eine Anpassung der Gitter in der Kontaktschicht ist möglich. The principle underlying the invention is based on the generation of a diffusion layer between the ceramic component and the component material to be abutted. A minimum penetration of the component material to be sprayed into the ceramic surface or an adaptation of the grids in the contact layer is also possible.
Die Verbindung der angesprengten Bauteile soll stoffschlüssig unter Ausbildung einer chemischen Reaktionszone sein. Überraschenderweise hat sich herausgestellt, dass sich erfindungsgemäß transparente Verbundbauteile durch Ansprengen ohne eine störende Zwischenschicht mit The connection of the blasted components should be cohesively forming a chemical reaction zone. Surprisingly, it has been found that according to the invention transparent composite components by wringing without a disturbing intermediate layer with
- RIT > 60 %, vorzugsweise> 70 % und besonders bevorzugt > 75 % RIT> 60%, preferably> 70% and more preferably> 75%
- Fleckenhäufigkeiten < 10 %, vorzugsweise < 3 % und besonders bevorzugt < 1 % Stain frequencies <10%, preferably <3% and more preferably <1%
- Haze < 10 %, vorzugsweise 5 % und besonders bevorzugt < 2 % herstellen lassen. Durch hohe Anforderungen an Ebenheit (< 10 μιη, vorzugsweise < 1 pm und besonders bevorzugt < 100 nm) und Rauigkeit (< 20 nm, vorzugsweise < 10 nm und besonders bevorzugt < 1 nm) lassen sich Streulicht, das z.B. durch oberflächliche Poren erzeugt wird, und Interferenzmuster vermeiden. Haze <10%, preferably 5% and more preferably <2% let produce. By high demands on flatness (<10 μιη, preferably <1 pm and more preferably <100 nm) and roughness (<20 nm, preferably <10 nm and more preferably <1 nm) can be scattered light, which is generated for example by superficial pores , and avoid interference patterns.
Werden die Fügepartner dünn ausgeführt (Dicke < 1 ,5 mm, vorzugsweise < 0,75 mm und besonders bevorzugt < 0,3 mm), lassen sich noch geeignetere Fügeverbindungen mit RIT-Werten > 80 % erzeugen, da mit verminderter Dicke die Transparenz ansteigt. Der Grund hierfür liegt darin, dass bei dünner Ausführung der Keramikkomponente die ohnehin geringe Fehlstellenhäufigkeit (Porosität < 100 ppm) verringert wird und Licht annährend ungehindert durch das Bauteil trifft. Darüber hinaus sinken die geometrischen Anforderungen, da die Glas- und Keramikkomponente verformbar werden und sich flexibel anschmiegen können. Hierzu ist ein Fügedruck notwendig. Die dünnen Keramikkomponenten haben ein polykristallines Gefüge, bevorzugt wird der g-Al-Spinell (MgAI204) oder das polykristalline Korund (a-AI203) eingesetzt. If the joining partners are made thin (thickness <1.5 mm, preferably <0.75 mm and particularly preferably <0.3 mm), even more suitable joining compounds with RIT values> 80% can be produced, since the transparency increases with reduced thickness , The reason for this is that with a thin version of the ceramic component, the already low defect frequency (porosity <100 ppm) is reduced and light strikes the component almost unhindered. In addition, the geometric requirements decrease because the glass and ceramic components become deformable and can cling flexibly. For this a joining pressure is necessary. The thin ceramic components have a polycrystalline structure, preferably the g-Al spinel (MgAl 2 0 4 ) or the polycrystalline corundum (a-Al 2 0 3 ) is used.
Wird eine steife Keramik dünn genug ausgeführt, kann Sie flexibel werden: Die Biegesteifigkeit ist proportional zur dritten Potenz der Dicke, eine dünne Bauteilausführung vermindert die Steifigkeit demzufolge signifikant. Dies ist besonders ausgeprägt, wenn die Keramikdicke bei < 300 pm, vorzugsweise bei < 200 pm und besonders bevorzugt bei < 100 pm liegt. If a rigid ceramic is made thin enough, it can be flexible: the bending stiffness is proportional to the cube of the thickness, and a thin component design significantly reduces its rigidity. This is particularly pronounced when the ceramic thickness is <300 pm, preferably <200 pm and particularly preferably <100 pm.
Im Einzelnen beschreibt die vorliegende Erfindung ein: In detail, the present invention describes:
• Verbundbauteil aus einer festen Verbindung zweier Bauteile, wobei mindestens ein Bauteil eine technische Keramik ist und wobei die Bauteile ohne Verwendung eines verbindenden Materials verbunden sind. • Verbundbauteil gemäß vorhergehendem Punkt, wobei die beiden Bauteile stoffschlüssig unter Ausbildung einer chemischen Reaktionszone miteinander verbunden sind. • Composite component of a fixed connection of two components, wherein at least one component is a technical ceramic and wherein the components are connected without the use of a connecting material. • Composite component according to the previous point, wherein the two components are materially interconnected to form a chemical reaction zone.
• Verbundbauteil gemäß einem der vorhergehenden Punkte, wobei das eine Bauteil eine technische Keramik ist und das andere Bauteil ausgewählt ist aus einer Keramik, aus einer zweiten technischen Keramik, aus einem transparentem Material, aus einem Glas, vorzugsweise aus einem Alkalialumosilikatglas, besonders bevorzugt aus einem Alkalialumosilikatglas, das in der oberflächennahen Schicht unter Druck vorgespannt ist, aus einem gehärteten Glas oder aus einem Kunststoff. Composite component according to one of the preceding points, wherein one component is a technical ceramic and the other component is selected from a ceramic, a second technical ceramic, a transparent material, a glass, preferably an alkali aluminosilicate glass, particularly preferably one Alkalialumosilikatglas that is biased in the near-surface layer under pressure, made of a tempered glass or a plastic.
• Verbundbauteil gemäß einem der vorhergehenden Punkte, wobei die technische Keramik ein polykristallines Gefüge aufweist. Composite component according to one of the preceding points, wherein the technical ceramic has a polycrystalline structure.
• Verbundbauteil gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die technische Keramik eine polykristalline transparente technische Keramik ist. Composite component according to one of the preceding claims, characterized in that the technical ceramic is a polycrystalline transparent technical ceramic.
• Verbundbauteil gemäß einem der vorhergehenden Punkte, wobei die technische Keramik eine polykristalline transparente technische Keramik, bevorzugt Mg-Al- Spinell (MgAbC ) oder der polykristalline Korund (a-AI203) ist. Composite component according to one of the preceding points, wherein the technical ceramic is a polycrystalline transparent technical ceramic, preferably Mg-Al-spinel (MgAbC) or the polycrystalline corundum (a-Al 2 0 3 ).
• Verbundbauteil gemäß einem der vorhergehenden Punkte, wobei es transparent ist. Composite component according to one of the preceding points, wherein it is transparent.
• Verbundbauteil gemäß einem der vorhergehenden Punkte, wobei es transparent ist und einen RIT > 60 %, vorzugsweise > 70 % und besonders bevorzugt > 75 %, Fleckenhäufigkeiten < 10 %, vorzugsweise < 3 % und besonders bevorzugt < 1 % und eine Haze (Trübung) von < 10 %, vorzugsweise 5 % und besonders bevorzugt < 2 % aufweist. Verfahren zur Herstellung eines Verbundbauteils gemäß einem oder mehreren der vorhergehenden Punkte, wobei zwei Bauteile, von denen mindestens ein Bauteil eine technische Keramik ist, ohne Verwendung eines verbindenden Materials durch Ansprengen verbunden werden. Composite component according to one of the preceding points, wherein it is transparent and has an RIT> 60%, preferably> 70% and particularly preferably> 75%, stain frequencies <10%, preferably <3% and particularly preferably <1% and haze (haze) ) of <10%, preferably 5% and more preferably <2%. A method for producing a composite component according to one or more of the preceding points, wherein two components, of which at least one component is a technical ceramic, are joined by wringing without using a connecting material.
Verfahren gemäß einem der vorhergehenden Punkte, wobei zwei Bauteile, von denen mindestens ein Bauteil eine technische Keramik ist, ohne Verwendung eines verbindenden Materials durch einen Fügedruck verbunden werden. Method according to one of the preceding points, wherein two components, of which at least one component is a technical ceramic, are connected without the use of a connecting material by a joining pressure.
Verfahren gemäß einem der vorhergehenden Punkte, wobei ein Haftvermittler auf die Oberfläche von einem oder von beiden Bauteilen aufgebracht und anschließend die Bauteile über den oder die Haftvermittler angesprengt wird. Method according to one of the preceding points, wherein an adhesion promoter is applied to the surface of one or both components and then the components are sprinkled over the adhesion promoter (s).
Verfahren gemäß einem der vorhergehenden Punkte, wobei als Haftvermittler Metalle oder Metalloxide verwendet werden. Method according to one of the preceding points, wherein metals or metal oxides are used as adhesion promoters.
Verfahren gemäß einem der vorhergehenden Punkte, wobei die Haftvermittler mit Hilfe von Beschichtungsverfahren, insbesondere PVD- (z.B. Sputtern, Elektronen-Strahl-Verdampfen, lon-Assisted-Deposition), CVD- oder Sol-Gel- Verfahren aufgebracht werden. Method according to one of the preceding points, wherein the adhesion promoters are applied by means of coating methods, in particular PVD (for example sputtering, electron-beam evaporation, ion-assisted deposition), CVD or sol-gel methods.
Verfahren gemäß einem der vorhergehenden Punkte, wobei die Haftvermittler in Schichtdicken von 1 nm bis 10 pm aufgebracht werden. Method according to one of the preceding points, wherein the adhesion promoters are applied in layer thicknesses of 1 nm to 10 pm.
Verfahren gemäß einem der vorhergehenden Punkte, wobei als Haftvermittler Si und Ti, besonders bevorzugt SiO2, TiO2 oder ITO (Indium-Zinn-Oxid), die transparent sind, verwendet werden. Method according to one of the preceding points, wherein Si and Ti, more preferably SiO 2 , TiO 2 or ITO (indium tin oxide), which are transparent, are used as adhesion promoters.
Verfahren gemäß einem der vorhergehenden Punkte, wobei eine Oberflächen- Silikatisierung mittels flammenpyrolytischer Abscheidung eines Silizium- Precursors durchgeführt wird. Method according to one of the preceding points, wherein a surface silicate is carried out by means of flame pyrolytic deposition of a silicon precursor.
Verfahren gemäß einem der vorhergehenden Punkte, wobei die Oberfläche durch das Verbrennen von Monosilan (SiH4) mit S1O2 beschichtet wird. Verfahren gemäß einem der vorhergehenden Punkte, wobei die Oberflächen der anzusprengenden Bauteile eine Ebenheit von < 10 pm, vorzugsweise von < 1 pm, besonders bevorzugt von < 100 nm aufweisen. Method according to one of the preceding points, wherein the surface is coated by the burning of monosilane (SiH 4 ) with S1O 2 . Method according to one of the preceding points, wherein the surfaces of the components to be blown have a flatness of <10 pm, preferably of <1 pm, particularly preferably of <100 nm.
Verfahren gemäß einem der vorhergehenden Punkte, wobei zu verbindenden Oberflächen passgenau zueinander gestaltet werden. Method according to one of the preceding points, wherein surfaces to be joined are designed precisely to one another.
Verfahren gemäß einem der vorhergehenden Punkte, wobei nach oder während des Fügens eine Beaufschlagung mit Druck und/oder Temperatur vorgesehen wird. Method according to one of the preceding points, wherein after or during the joining, an application of pressure and / or temperature is provided.
Verfahren gemäß einem der vorhergehenden Punkte, wobei die beaufschlagten Drücke zwischen Atmosphärendruck und 2.000 MPa liegen. Method according to one of the preceding points, wherein the applied pressures between atmospheric pressure and 2,000 MPa.
Verfahren gemäß einem der vorhergehenden Punkte, wobei die Beaufschlagung mit Druck in einer heißisostatischen Presse (HIP) durch Gasdruck (Argon, Stickstoff, Luft) vorgenommen wird. Method according to one of the preceding points, wherein the application of pressure in a hot isostatic press (HIP) by gas pressure (argon, nitrogen, air) is made.
Verfahren gemäß einem der vorhergehenden Punkte, wobei der Temperaturbereich für den Fügeprozess zwischen Raumtemperatur und Temperaturen, die unterhalb der Schmelz-/Erweichungstemperatur des Bauteils mit der niedrigeren Schmelz-/Erweichungstemperatur liegen. Method according to one of the preceding points, wherein the temperature range for the joining process between room temperature and temperatures which are below the melting / softening temperature of the component with the lower melting / softening temperature.
Verfahren gemäß einem der vorhergehenden Punkte, wobei zur Verkürzung der Prozesszeiten die Druck- und Temperaturbehandlung Schnellsintertechnologien wie dem FAST-Verfahren (Field-Assisted-Sintering-Technology) verwendet werden. Method according to one of the preceding points, wherein to shorten the process times, the pressure and temperature treatment rapid sintering technologies such as the FAST method (Field Assisted Sintering Technology) are used.
Verfahren gemäß einem der vorhergehenden Punkte, wobei vor dem Ansprengen der Bauteile die zu fügenden Oberflächen gereinigt werden. Method according to one of the preceding points, wherein prior to wringing of the components, the surfaces to be joined are cleaned.
Verfahren gemäß einem der vorhergehenden Punkte, wobei vor dem Ansprengen der Bauteile die zu fügenden Oberflächen durch Plasmaätzen, chemisches Reinigen, Temperieren in Luft, im Vakuum- oder unter H2- Atmossphäre oder durch lonenstrahlätzen von störenden Substanzen befreit werden. Method according to one of the preceding points, wherein prior to wringing of the components, the surfaces to be joined by plasma etching, chemical cleaning, tempering in air, in vacuum or under H 2 - Atmossphäre or be removed by ion milling of interfering substances.
• Verfahren gemäß einem der vorhergehenden Punkte, wobei die Wärmeausdehnungskoeffizienten (WAK) der anzusprengenden Bauteile aufeinander abgestimmt werden. Method according to one of the preceding points, wherein the coefficients of thermal expansion (CTE) of the components to be blown are matched to one another.
• Verfahren gemäß einem der vorhergehenden Punkte, wobei die Wärmeausdehnungskoeffizienten (WAK) der anzusprengenden Bauteile möglichst ähnlich sind. Method according to one of the preceding points, wherein the coefficients of thermal expansion (CTE) of the components to be abutted are as similar as possible.
• Verfahren gemäß einem der vorhergehenden Punkte, wobei das eine Bauteil aus einem Material mit einem höheren WAK besteht, um dadurch in dem jeweils anderen Bauteil eine Druckspannung zu erzeugen. Method according to one of the preceding points, wherein the one component consists of a material with a higher CTE, thereby to generate a compressive stress in the respective other component.
Des Weiteren beschreibt die vorliegende Erfindung die Verwendung des erfindungsgemäßen oder des erfindungsgemäß hergestellten Verbundbauteils beispielsweise als Teil eines Displays, wie für ein mobiles Elektronikgerät oder als Ofen- oder Kaminfenster. Furthermore, the present invention describes the use of the composite component according to the invention or the composite component produced according to the invention, for example as part of a display, such as for a mobile electronic device or as a stove or chimney window.
Nachfolgend soll die Erfindung an Beispielen erläutert werden, ohne sie dadurch einzuschränken: In the following, the invention will be illustrated by examples, without thereby limiting it:
Beispiel 1: Example 1:
Zwei quadratische Spinellkacheln mit polierter (ra < 20 nm, vorzugsweise ra < 10 nm und besonders bevorzugt ra < 4 nm) Oberfläche werden mit chemischen Mitteln und Plasmareinigung vorbehandelt. In einer Reinraumumgebung werden die Oberflächen bei Raumtemperatur in Kontakt gebracht, ausgerichtet und in einer heißisostatischen Presse unter Anwendung von isostatischem Druck von > 500 bar, vorzugsweise > 1.000 bar und besonders bevorzugt > 1.500 bar getempert. Die notwendigen Temperaturen betragen > 1.200 °C, vorzugsweise > 1.350 °C und besonders bevorzugt > 1.500 °C. Nach der Temperaturbehandlung hat sich eine stoffschlüssige Verbindung durch Diffusionsvorgänge ausgebildet, die transparente Verbundbauteile mit RIT-Werten > 75 % ermöglicht. Two square spinel tiles with polished (r a <20 nm, preferably r a <10 nm and more preferably r a <4 nm) surface are pretreated by chemical means and plasma cleaning. In a clean room environment, the surfaces are contacted at room temperature, aligned and annealed in a hot isostatic press using isostatic pressure of> 500 bar, preferably> 1000 bar, and more preferably> 1500 bar. The necessary temperatures are> 1200 ° C, preferably> 1350 ° C and more preferably> 1500 ° C. After the temperature treatment has a cohesive connection formed by diffusion processes that allows transparent composite components with RIT values> 75%.
Beispiel 2: Example 2:
Ein Alkalialumosilikatglas, das in der oberflächennahen Schicht unter Druck vorgespannt sein kann, wird mit einer transparenten Spinellkeramik angesprengt. Die Abmessungen der quadratischen Proben liegen bei 10 mm x 10 mm. Das Glas hat eine Dicke von 1 mm, die Keramikdicke liegt bei 500 m. Die Ebenheit beträgt < 5 pm, die Rauigkeit liegt unter 1 nm. Angefaste Kanten beider Fügeflächen ermöglichen eine präzise Ausrichtung vor der Temperaturbehandlung. Die Fügeflächen sind vorgereinigt. Die Spinellkeramik ist mit einer dünnen Si02-Schicht versehen, die durch eine Behandlung mit chemischen Mitteln wie Salpetersäure und einer wässrigen NH4OH:H2C>2-Lösung bei erhöhten Temperaturen > 80 °C hydrophil gemacht wird. Nach Ausrichtung der Proben erfolgt die Temperaturbehandlung in einem Hochvakuumofen bei Temperaturen zwischen 200 und 400 °C. Nach der Temperaturbehandlung hat sich eine stoffschlüssige Verbindung ausgebildet, die transparente Verbundbauteile mit RIT- Werten > 75 % ermöglicht. An alkali aluminosilicate glass, which may be biased under pressure in the near-surface layer, is blasted with a transparent spinel ceramic. The dimensions of the square samples are 10 mm x 10 mm. The glass has a thickness of 1 mm, the ceramic thickness is 500 m. The flatness is <5 pm, the roughness is less than 1 nm. Chamfered edges of both joining surfaces allow a precise alignment before the temperature treatment. The joint surfaces are pre-cleaned. The spinel ceramic is provided with a thin Si0 2 layer which is rendered hydrophilic by treatment with chemical agents such as nitric acid and an aqueous NH 4 OH: H 2 C> 2 solution at elevated temperatures> 80 ° C. After alignment of the samples, the temperature treatment is carried out in a high vacuum oven at temperatures between 200 and 400 ° C. After the temperature treatment, a cohesive bond has formed which allows transparent composite components with RIT values> 75%.
Beispiel 3: Example 3:
Ein Alkalialumosilikatglas, das in der oberflächennahen Schicht unter Druck vorgespannt sein kann, wird mit einer transparenten Spinellkeramik angesprengt. Die Abmessungen der quadratischen Proben liegen bei 10 mm x 10 mm. Das Glas hat eine Dicke von 1 mm, die Keramikdicke liegt bei 200 pm. Die Ebenheit beträgt < 500 nm, die Rauigkeit liegt unter 1 nm. Angefaste Kanten beider Fügeflächen ermöglichen eine präzise Ausrichtung vor der Temperaturbehandlung. Die Fügeflächen sind plasmagereinigt, unbeschichtet und hydrophil. Nach Ausrichtung der Proben erfolgt die Temperaturbehandlung in einem Hochvakuumofen bei Temperaturen zwischen 200 und 400 °C. Nach der Temperaturbehandlung hat sich eine stoffschlüssige Verbindung ausgebildet, die transparente Verbundbauteile mit RIT-Werten > 75 % ermöglicht. An alkali aluminosilicate glass, which may be biased under pressure in the near-surface layer, is blasted with a transparent spinel ceramic. The dimensions of the square samples are 10 mm x 10 mm. The glass has a thickness of 1 mm, the ceramic thickness is 200 pm. The flatness is <500 nm, the roughness is less than 1 nm. Chamfered edges of both joining surfaces allow precise alignment before the temperature treatment. The joining surfaces are plasma cleaned, uncoated and hydrophilic. After alignment of the samples, the temperature treatment is carried out in a high vacuum oven at temperatures between 200 and 400 ° C. After the temperature treatment, a cohesive bond has formed which enables transparent composite components with RIT values> 75%.
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102014007369 | 2014-05-21 | ||
| PCT/EP2015/001030 WO2015176816A2 (en) | 2014-05-21 | 2015-05-21 | Wringing together of ceramics |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP3145896A2 true EP3145896A2 (en) | 2017-03-29 |
Family
ID=53434289
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP15730055.9A Ceased EP3145896A2 (en) | 2014-05-21 | 2015-05-21 | Wringing together of ceramics |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US10676400B2 (en) |
| EP (1) | EP3145896A2 (en) |
| KR (1) | KR20170021255A (en) |
| CN (1) | CN106715361A (en) |
| AR (1) | AR100555A1 (en) |
| DE (1) | DE102015006390A1 (en) |
| RU (1) | RU2016150139A (en) |
| WO (1) | WO2015176816A2 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102016009730A1 (en) * | 2016-07-28 | 2018-02-01 | Forschungszentrum Jülich GmbH | Process for reinforcing transparent ceramics and ceramics |
| IL267214B2 (en) * | 2016-12-14 | 2024-02-01 | Ceram Etec Gmbh | Transparent composite material |
| CN108285357B (en) * | 2017-12-15 | 2022-07-01 | 福建省德化青江商贸有限公司 | Ceramic glass cup processing technology |
| KR102069422B1 (en) * | 2017-12-19 | 2020-01-22 | 주식회사 티씨케이 | Bonding ceramics and manufacturing method thereof |
| KR102069423B1 (en) * | 2017-12-19 | 2020-01-22 | 주식회사 티씨케이 | Bonding ceramics and manufacturing method thereof |
| CN114573359A (en) * | 2022-02-17 | 2022-06-03 | 中国科学院上海硅酸盐研究所 | Rapid transparent ceramic electric field auxiliary direct diffusion connection method |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100139840A1 (en) * | 2006-09-27 | 2010-06-10 | Alexandre Allemand | Process for joining refractory ceramic parts by spark plasma sintering (sps) |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2002307578A1 (en) * | 2002-04-30 | 2003-12-02 | Agency For Science Technology And Research | A method of wafer/substrate bonding |
| US7670685B2 (en) * | 2005-10-13 | 2010-03-02 | The United States Of America As Represented By The Secretary Of The Navy | Low loss visible-IR transmitting glass-ceramic spinel composites and process |
| US20090294017A1 (en) * | 2008-05-30 | 2009-12-03 | Precision Photonics Corporation | Optical contacting enabled by thin film dielectric interface |
| US20090294050A1 (en) * | 2008-05-30 | 2009-12-03 | Precision Photonics Corporation | Optical contacting enhanced by hydroxide ions in a non-aqueous solution |
| DE102010032113B9 (en) | 2010-07-23 | 2017-06-22 | Schott Ag | Transparent or transparent colored lithium aluminum silicate glass-ceramic with adjustable thermal expansion and its use |
| US8652281B2 (en) * | 2011-01-31 | 2014-02-18 | The United States Of America, As Represented By The Secretary Of The Navy | Spinel ceramics via edge bonding |
| DE102011012835A1 (en) | 2011-02-22 | 2012-08-23 | Friedrich-Schiller-Universität Jena | Method for joining substrates |
| WO2013068418A1 (en) | 2011-11-07 | 2013-05-16 | Ceramtec-Etec Gmbh | Transparent ceramic material |
-
2015
- 2015-05-21 KR KR1020167035869A patent/KR20170021255A/en not_active Ceased
- 2015-05-21 DE DE102015006390.1A patent/DE102015006390A1/en active Pending
- 2015-05-21 EP EP15730055.9A patent/EP3145896A2/en not_active Ceased
- 2015-05-21 RU RU2016150139A patent/RU2016150139A/en not_active Application Discontinuation
- 2015-05-21 WO PCT/EP2015/001030 patent/WO2015176816A2/en active Application Filing
- 2015-05-21 US US15/319,158 patent/US10676400B2/en not_active Expired - Fee Related
- 2015-05-21 CN CN201580039026.XA patent/CN106715361A/en active Pending
- 2015-05-22 AR ARP150101596A patent/AR100555A1/en unknown
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100139840A1 (en) * | 2006-09-27 | 2010-06-10 | Alexandre Allemand | Process for joining refractory ceramic parts by spark plasma sintering (sps) |
Non-Patent Citations (1)
| Title |
|---|
| OLIVIER GUILLON ET AL: "Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments : FAST/SPS: Mechanisms, Materials, and Technology Developments", ADVANCED ENGINEERING MATERIALS., vol. 16, no. 7, 30 April 2014 (2014-04-30), DE, pages 830 - 849, XP055400122, ISSN: 1438-1656, DOI: 10.1002/adem.201300409 * |
Also Published As
| Publication number | Publication date |
|---|---|
| US10676400B2 (en) | 2020-06-09 |
| WO2015176816A2 (en) | 2015-11-26 |
| KR20170021255A (en) | 2017-02-27 |
| US20170226019A1 (en) | 2017-08-10 |
| CN106715361A (en) | 2017-05-24 |
| DE102015006390A1 (en) | 2015-11-26 |
| WO2015176816A3 (en) | 2016-01-14 |
| AR100555A1 (en) | 2016-10-12 |
| RU2016150139A (en) | 2018-06-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2015176816A2 (en) | Wringing together of ceramics | |
| DE112016003678B4 (en) | Glass plate with anti-pollution layer | |
| EP3571170B1 (en) | Coated glass-based articles with engineered stress profiles and methods of manufacture | |
| DE102007008540A1 (en) | Method for laser-supported bonding, bonded substrates and their use | |
| DE102019004779A1 (en) | GLASS LAMINATE, FRONT PANEL FOR A DISPLAY, DISPLAY DEVICE AND PRODUCTION METHOD OF THE GLASS LAMINATE | |
| DE112016005211T5 (en) | Plate with a print layer, display device using it, and glass with a functional layer for display device in a vehicle | |
| KR20200049876A (en) | Cover glass article | |
| US10580666B2 (en) | Carrier substrates for semiconductor processing | |
| DE10323304A1 (en) | Composite comprises thin substrate (e.g. glass) less than 0.3 mm thick releasably bound to carrier substrate through adhesive force, useful e.g. in display industry, in polymer electronics, photovoltaic industry, sensors and biotechnology | |
| CN105082671B (en) | The manufacturing method of complex and the manufacturing method of laminated body | |
| WO2015010923A1 (en) | Composite element and use thereof | |
| DE102013018465A1 (en) | Body made of a brittle material and a metallic material and a method for producing a material connection of a brittle material and a metallic material | |
| EP2678287A1 (en) | Method for joining substrates | |
| JP2016513065A5 (en) | ||
| EP3691893A1 (en) | Composite glass pane having chamfered through-hole | |
| DE102014108060A1 (en) | Glass element with a chemically tempered substrate and a compensation layer and method for its production | |
| DE102018207181A1 (en) | Method for marking glass sheets, preferably single-pane safety glass sheets | |
| BR112022004557A2 (en) | FORMULATIONS AND PROCESSES TO GENERATE REPELLENT SURFACES | |
| EP3519368A1 (en) | Glass-based articles with engineered stress profiles and methods of manufacture | |
| KR102264217B1 (en) | Manufacturing method for curved thin glass having functional layer and manufacturing method for curved laminated glass having functional layer | |
| DE10348946B4 (en) | Machining compound for a substrate | |
| DE102018132945B4 (en) | Plate-shaped object, process for its production and its use | |
| DE102015108639A1 (en) | Method and device for processing thin glasses | |
| TW201641203A (en) | Ceramic plating | |
| DE102017129877B4 (en) | Process for the production of a thin-film measuring arrangement and thin-film measuring arrangement |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20161221 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20180302 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
| 18R | Application refused |
Effective date: 20231028 |