EP3143105A1 - Procédé d'injection de biomethane dans un réseau de gaz naturel - Google Patents

Procédé d'injection de biomethane dans un réseau de gaz naturel

Info

Publication number
EP3143105A1
EP3143105A1 EP15725844.3A EP15725844A EP3143105A1 EP 3143105 A1 EP3143105 A1 EP 3143105A1 EP 15725844 A EP15725844 A EP 15725844A EP 3143105 A1 EP3143105 A1 EP 3143105A1
Authority
EP
European Patent Office
Prior art keywords
network
biomethane
value
nitrogen
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP15725844.3A
Other languages
German (de)
English (en)
Inventor
Guénaël PRINCE
Golo Zick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP3143105A1 publication Critical patent/EP3143105A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/141Injection, e.g. in a reactor or a fuel stream during fuel production of additive or catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/14Injection, e.g. in a reactor or a fuel stream during fuel production
    • C10L2290/143Injection, e.g. in a reactor or a fuel stream during fuel production of fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/542Adsorption of impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/547Filtration for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a biomethane injection process in a type B natural gas network and its corresponding installation.
  • Biogas contains mainly methane (CH 4) carbon dioxide (C0 2), but also water, nitrogen, hydrogen sulfide, oxygen, and other organic compounds.
  • Biogas can, after a light treatment, be upgraded near the production site to provide heat, electricity or a mixture of both (cogeneration); the high content of carbon dioxide reduces its calorific value, increases the compression and transport costs and limits the economic interest of its valuation to this use of proximity.
  • Biomethane thus completes the natural gas resources with a renewable part produced in the heart of the territories. It is usable for exactly the same uses.
  • the injection of biomethane produced is in full swing.
  • two types of natural gas networks exist: the type H network (high calorific value) and the type B network (low calorific value).
  • the biogas purification plants produce a biomethane containing 2.5 mol% of C0 2 in CH4 mainly, with thus a higher heating value and a Wobbe index too high to be injected into the type B networks.
  • a solution of the present invention is a method of injecting biomethane into a network having a higher heating value of X value between XI and X2, comprising the injection of nitrogen into the biomethane network before the injection of biomethane into the network having a higher heating value of X value so as to lower the heating value of the biomethane network to a value between XI and X2, with the nitrogen from the retentate of at least one membrane stage.
  • a particular solution of the invention is a method for injecting biomethane into a type B natural gas network, comprising the injection of nitrogen into the biomethane network before the injection of biomethane into the natural gas network. in order to lower the higher heating value of the biomethane network to a value of between 9.5 and 10.5 kWh / Nm 3 , with the nitrogen resulting from the retentate of at least one membrane.
  • the method according to the invention may have one or more of the following characteristics:
  • the membrane stage is supplied with air coming from a network internal to the process or from an air compressor; and controlling the amount of nitrogen injected into the biomethane network via a control valve located on the feed of the membrane stage or by adjusting the production capacity of the air compressor.
  • a control valve located on the feed of the membrane stage or by adjusting the production capacity of the air compressor.
  • the set point of the nitrogen flow rate to be injected is calculated knowing the methane content in the natural gas, as well as its flow rate, these two parameters making it possible to deduce the PCS from the gas when the CH4 is the only fuel present.
  • internal network is preferably meant air used for the operation of instruments used in the process such as valves; we can also speak of "air instrument”;
  • the gaseous flow passing through the membrane stage is dry air so that the nitrogen, retentate of the membrane stage, mixed with the biomethane meets the specifications of the network having a heating value greater than X value; and deoiled at a pressure greater than or equal to the pressure of the biomethane network, generally between 5 and 15 bar.
  • the air is dewatered so as to have a dew point in water of less than -5 ° C at the maximum pressure of the injection network; the purity of the nitrogen injected into the biomethane network is checked by means of an analysis of the oxygen concentration in the nitrogen retentate, or by a measurement of the pressure of the retentate.
  • control loop whose actuator is a control valve installed on the retentate of the membrane, with the control valve making it possible to adjust the operating pressure of the membrane.
  • An oxygen analyzer located on the nitrogen retentate controls the purity and is the measure of the control loop. The purity of oxygen can also be deduced by measuring the pressure of the retentate. The measurement of the regulation loop is then constituted by a pressure sensor.
  • the membrane from which the nitrogen-enriched retentate is derived also produces a stream enriched with oxygen.
  • the stream enriched with oxygen is injected into a digester producing biogas or upstream of activated carbon filters of a biogas purification unit.
  • digester is meant an anaerobic production of biogas. This oxygen enriched flow injection facilitates the desulphurization of the biogas inside the digesters, or when the enriched oxygen flow is injected into a biogas purification unit it facilitates the abatement of the H2S by activated carbons. .
  • the present invention also relates to a biomethane injection system in a network having a higher heating value of value X, comprising:
  • a particular installation according to the invention is a biomethane injection plant in a type B natural gas network, comprising:
  • the installation according to the invention may have one or more of the following characteristics:
  • said installation comprises an oxygen concentration analyzer located on the retentate of the membrane upstream of the first injection point; a pressure sensor located on the retentate of the membrane upstream of the first injection means, and a control valve located on the retentate of the membrane downstream of the analyzer and upstream of the first injection means.
  • said installation comprises a regulating valve on the feed rate of the membrane.
  • the compressed air production system successively comprises in the air flow direction an air inlet, an air compressor, a compressed gas cooling system, a condensate separator, an activated carbon filter. to remove the residual oil particles, a particulate filter to remove the activated carbon particles, a dryer and a compressed air storage tank.
  • Figure 1 shows an installation according to the invention when the air used to produce the nitrogen is taken on an instrument air network.
  • FIG. 2 represents an installation according to the invention when the air used to produce the nitrogen is produced by a dedicated compressor.
  • the air flow 1 feeds a membrane stage consisting of one or more membranes in parallel 2 and allowing the production of nitrogen under pressure.
  • a retentate 3 enriched in nitrogen is recovered from the membrane.
  • the retentate passes into an analyzer 4 measuring the oxygen concentration and the purity of the nitrogen injected into the biomethane network 6 is controlled via a control valve 5.
  • the nitrogen flow rate product is controlled by adjusting the air flow entering the membrane stage, either through a control valve 16 (FIG. 1) or by adjusting the production capacity of the air compressor 17 (FIG. 2); a flow meter and a CH 4 analyzer on the biomethane make it possible to check that the PCS complies with the injection specification.
  • Figure 3 details what can be the air production system: the air can be compressed at a pressure greater than 5 bar in an air compressor 7, and then cooled 8. The air flow thus compressed and cooled is introduced into a condensate separator 9, before passing successively into an adsorber 10 comprising activated carbon so as to remove the residual oil particles and in a particle filter 11 so as to remove the active carbon particles. A stream of purified compressed air is then recovered which can be stored before feeding the membrane 2.
  • Tables 1 and 2 below illustrate the need for nitrogen injection to comply with biomethane injection specification from the point of view of PCS and Wobbe index in gas networks B:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Procédé d'injection de biométhane dans un réseau présentant un pouvoir calorifique supérieur de valeur X comprise entre XI et X2, comprenant l'injection d'azote dans le réseau de biométhane avant l'injection du biométhane dans le réseau présentant un pouvoir calorifique supérieur de valeur X de manière à abaisser le pouvoir calorifique du réseau de biométhane à une valeur comprise entre XI et X2, avec l'azote issu du rétentat d'au moins un étage membranaire.

Description

Procédé d'injection de biométhane dans un réseau de gaz naturel
La présente invention concerne un procédé d'injection de biométhane dans un réseau de gaz naturel de type B et son installation correspondante.
Le biogaz contient majoritairement du méthane (CH4) du dioxyde de carbone (C02), mais également de l'eau, de l'azote, de l'hydrogène sulfuré, de l'oxygène, ainsi que des composés organiques autres.
Il est indispensable de développer différentes valorisations du biogaz pour répondre aux problématiques engendrées par le réchauffement climatique, tant global qu'à l'échelle régionale ainsi que pour accroître l'indépendance énergétique des territoires qui le produisent. Le biogaz peut, après un traitement léger, être valorisé à proximité du site de production pour fournir de la chaleur, de l'électricité ou un mélange des deux (la cogénération) ; la teneur importante en dioxyde de carbone réduit son pouvoir calorifique, augmente les coûts de compression et de transport et limite l'intérêt économique de sa valorisation à cette utilisation de proximité.
Une purification plus poussée du biogaz permet de l'utiliser plus largement.
En particulier, une purification plus poussée du biogaz permet d'obtenir un biogaz épuré aux spécifications du gaz naturel ; ce biogaz très purifié est appelé « biométhane ». Le biométhane complète ainsi les ressources de gaz naturel avec une partie renouvelable produite au c ur des territoires. Il est utilisable pour exactement les mêmes usages.
L'injection de biométhane produit est en plein essor. Or, en France par exemple, deux types de réseaux de gaz naturel existent : le réseau de type H (haut pouvoir calorifique) et le réseau de type B (bas pouvoir calorifique). Les unités d'épuration de biogaz produisent un biométhane contenant 2,5% molaire de C02 dans du CH4 principalement, avec de ce fait un pouvoir calorifique supérieur et un indice de Wobbe trop élevés pour être injecté dans les réseaux de type B.
Dès lors, un problème qui se pose est de fournir un procédé amélioré d'injection de biométhane dans le réseau de gaz naturel. Une solution de la présente invention est un procédé d'injection de biométhane dans un réseau présentant un pouvoir calorifique supérieur de valeur X comprise entre XI et X2, comprenant l'injection d'azote dans le réseau de biométhane avant l'injection du biométhane dans le réseau présentant un pouvoir calorifique supérieur de valeur X de manière à abaisser le pouvoir calorifique du réseau de biométhane à une valeur comprise entre XI et X2, avec l'azote issu du rétentat d'au moins un étage membranaire.
Une solution particulière de l'invention est un procédé d'injection de biométhane dans un réseau de gaz naturel de type B, comprenant l'injection d'azote dans le réseau de biométhane avant l'injection du biométhane dans le réseau de gaz naturel de manière à abaisser le pouvoir calorifique supérieur du réseau de biométhane à une valeur comprise entre 9,5 et 10,5 kWh/Nm3, avec l'azote issu du rétentat d'au moins une membrane.
Selon le cas, le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- l'étage membranaire est alimenté par de l'air issu d'un réseau interne au procédé ou issu d'un compresseur d'air ; et l'on contrôle la quantité d'azote injectée dans le réseau de biométhane via une vanne de régulation située sur l'alimentation de l'étage membranaire ou via l'ajustement de la capacité de production du compresseur d'air. Dans le cas où une vanne de régulation est utilisée, la consigne du débit d'azote à injecter est calculée connaissant la teneur en méthane dans le gaz naturel, ainsi que son débit, ces deux paramètres permettant de déduire le PCS du gaz lorsque le CH4 est le seul combustible présent. Par « réseau interne » on entend de préférence de l'air utilisé pour le fonctionnement d'instruments mis en uvre dans le procédé tel que les vannes ; on peut parler également « d'air instrument » ;
- le flux gazeux passant à travers l'étage membranaire est de l'air asséché de manière à ce que l'azote, rétentat de l'étage membranaire, mélangé au biométhane respecte les spécifications du réseau présentant un pouvoir calorifique supérieur de valeur X ; et déshuilé à une pression supérieure ou égale à la pression du réseau de biométhane, en général comprise entre 5 et 15 bar. En général, l'air est asséché de manière à présenter un point de rosée en eau inférieur à - 5°C à la pression maximale du réseau d'injection ; - l'on contrôle la pureté de l'azote injecté dans le réseau de biométhane via une analyse de la concentration en oxygène dans le rétentat d'azote, ou par une mesure de la pression du rétentat. Pour cela, on utilise de préférence une boucle de régulation dont l'actionneur est une vanne de régulation installée sur le rétentat de la membrane, avec la vanne de régulation permettant d'ajuster la pression opératoire de la membrane. Un analyseur d'oxygène situé sur le rétentat d'azote permet de contrôler la pureté et constitue la mesure de la boucle de régulation. La pureté en oxygène peut aussi être déduite par la mesure de la pression du rétentat. La mesure de la boucle de régulation est alors constituée par un capteur de pression.
- la membrane dont est issu le rétentat enrichi en azote produit également un flux enrichi en oxygène.
- le flux enrichi en oxygène est injecté dans un digesteur produisant du biogaz ou en amont de filtres à charbons actifs d'une unité d'épuration de biogaz. Par « digesteur» on entend une production anaérobie de biogaz. Cette injection de flux enrichi en oxygène facilite la désulfuration du biogaz à l'intérieur même des digesteurs, ou lorsque le flux enrichi en oxygène est injecté dans une unité d'épuration de biogaz il facilite l'abattement de l'H2S par les charbons actifs.
La présente invention a également pour objet une installation d'injection de biométhane dans un réseau présentant un pouvoir calorifique supérieur de valeur X, comprenant :
- une unité de production de biométhane ;
- un réseau de biométhane ;
- un réseau présentant un pouvoir calorifique supérieur de valeur X ;
- une membrane sélective à l'azote, permettant la production d'un rétentat enrichi en azote à partir d'un flux d'air ;
- un système de production d'air à une pression supérieure ou égale à la pression du réseau de biométhane ;
- un premier moyen d'injection du rétentat de la membrane dans le réseau de biométhane ;
- un deuxième moyen d'injection du biométhane issu du réseau de biométhane dans le réseau présentant un pouvoir calorifique supérieur de valeur X, avec le deuxième moyen d'injection en aval du premier moyen d'injection suivant le sens de circulation du biométhane dans le réseau de biométhane.
Une installation particulière selon l'invention est une installation d'injection de biométhane dans un réseau de gaz naturel de type B, comprenant :
- une unité de production de biométhane ;
- un réseau de biométhane ;
- un réseau de gaz naturel de type B ;
- une membrane sélective à l'azote, permettant la production d'un rétentat enrichi en azote à partir d'un flux d'air ;
- un système de production d'air à une pression supérieure ou égale à la pression du réseau de biométhane ;
-un premier moyen d'injection du rétentat de la membrane dans le réseau de biométhane ;
- un deuxième moyen d'injection du biométhane issu du réseau de biométhane dans le réseau de gaz naturel de type B,
avec le deuxième moyen d'injection en aval du premier moyen d'injection suivant le sens de circulation du biométhane dans le réseau de biométhane.
Selon le cas, l'installation selon l'invention peut présenter une ou plusieurs des caractéristiques ci-dessous :
- ladite installation comprend un analyseur de concentration en oxygène situé sur le rétentat de la membrane en amont du premier point d'injection ; un capteur de pression situé sur le rétentat de la membrane en amont du premier moyen d'injection, et une vanne de régulation située sur le rétentat de la membrane en aval de l'analyseur et en amont du premier moyen d'injection.
- ladite installation comprend une vanne de régulation sur le débit d'alimentation de la membrane.
- le système de production d'air comprimé comprend successivement dans le sens de circulation de l'air une arrivée d'air, un compresseur d'air, un système de refroidissement du gaz comprimé, un séparateur de condensais, un filtre à charbon actif permettant d'enlever les particules d'huile résiduelles, un filtre à particules permettant d'enlever les particules de charbon actif, un sécheur et un réservoir de stockage d'air comprimé.
L'invention va être décrite plus en détail à l'aide des figures 1, 2 et 3.
La figure 1 représente une installation selon l'invention lorsque l'air utilisé pour produire l'azote est pris sur un réseau d'air instrument.
La figure 2 représente une installation selon l'invention lorsque l'air utilisé pour produire l'azote est produit par un compresseur dédié.
Dans les 2 cas de figure le flux d'air 1 alimente un étage de membrane constitué d'une ou plusieurs membranes en parallèle 2 et permettant la production de l'azote sous pression. On récupère de la membrane un rétentat 3 enrichi en azote. Selon la quantité d'oxygène tolérée dans le réseau de biométhane, un azote plus ou moins pur est produit. Afin de contrôler cette pureté de l'azote, le rétentat passe dans un analyseur 4 mesurant la concentration en oxygène et la pureté de l'azote injecté dans le réseau de biométhane 6 est contrôlée via une vanne de régulation 5. Le débit d'azote produit est contrôlé 15 en ajustant le débit d'air entrant dans l'étage de membranes, soit par une vanne de régulation 16 (figure 1), soit par ajustement de la capacité de production du compresseur d'air 17 (figure 2); un débitmètre ainsi qu'un analyseur de CH4 sur le biométhane permettent de contrôler que le PCS est conforme à la spécification d'injection.
La figure 3 détaille ce que peut être le système de production d'air : l'air peut être comprimé à une pression supérieure à 5 bar dans un compresseur d'air 7, puis refroidi 8. Le flux d'air ainsi comprimé et refroidi est introduit dans un séparateur de condensats 9, avant de passer successivement dans un adsorbeur 10 comprenant du charbon actif de manière à éliminer les particules d'huile résiduelles et dans un filtre à particules 11 de manière à éliminer les particules de charbon actif. On récupère ensuite un flux d'air comprimé et purifié qui peut être stocké 12 avant d'alimenter la membrane 2. Les tableaux 1 et 2 ci-dessous illustrent la nécessité d'injection d'azote pour se conformer à spécification d'injection de biométhane du point de vue du PCS et de l'indice de Wobbe dans I réseaux de gaz B :
Tableau 1
Tableau 2

Claims

Revendications
1. Procédé d'injection de biométhane issu d'un réseau de biométhane dans un réseau présentant un pouvoir calorifique supérieur de valeur X comprise entre XI et X2, comprenant l'injection d'azote dans le réseau de biométhane avant l'injection du biométhane dans le réseau présentant un pouvoir calorifique supérieur de valeur X de manière à abaisser le pouvoir calorifique du réseau de biométhane à une valeur comprise entre XI et X2, avec l'azote issu du rétentat d'au moins un étage membranaire.
2. Procédé d'injection de biométhane selon la revendication 1, caractérisé en ce que le réseau présentant un pouvoir calorifique supérieur de valeur X est un réseau de gaz naturel de type B et Xl= 9,5 kWh/Nm3 et X2 = 10,5 kWh/Nm3.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que :
- l'étage membranaire est alimenté par de l'air issu d'un réseau interne au procédé ou issu d'un compresseur d'air ; et
- l'on contrôle la quantité d'azote injectée dans le réseau de biométhane via une vanne de régulation située sur l'alimentation de l'étage membranaire ou via l'ajustement de la capacité de production du compresseur d'air.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le flux gazeux passant à travers l'étage membranaire est de l'air :
- asséché de manière à ce que l'azote, rétentat de l'étage membranaire, mélangé au biométhane respecte les spécifications du réseau présentant un pouvoir calorifique supérieur de valeur X ; et
- déshuilé à une pression supérieure ou égale à la pression du réseau de biométhane.
5. Procédé selon l'une des revendications 3 ou 4, caractérisé en ce que l'on contrôle la pureté de l'azote injecté dans le réseau de biométhane via une analyse de la concentration en oxygène dans le rétentat d'azote, ou par une mesure de la pression du rétentat.
6. Procédé selon la revendication 3, caractérisé en ce que la membrane dont est issu le rétentat enrichi en azote produit également un flux enrichi en oxygène.
7. Procédé selon la revendication 6, caractérisé en ce que le flux enrichi en oxygène est injecté dans un digesteur produisant du biogaz ou en amont de filtres à charbons actifs d'une unité d'épuration de biogaz.
8. Installation d'injection de biométhane dans un réseau présentant un pouvoir calorifique supérieur de valeur X, comprenant :
- une unité de production de biométhane permettant d'alimenter le réseau de biométhane ;
- un réseau de biométhane ;
- un réseau présentant un pouvoir calorifique supérieur de valeur X ;
- une membrane sélective à l'azote, permettant la production d'un rétentat enrichi en azote à partir d'un flux d'air ;
- un système de production d'air à une pression supérieure ou égale à la pression du réseau de biométhane permettant d'alimenter la membrane sélective à l'azote ;
- un premier moyen d'injection du rétentat de la membrane dans le réseau de biométhane ;
- un deuxième moyen d'injection du biométhane issu du réseau de biométhane dans le réseau présentant un pouvoir calorifique supérieur de valeur X,
avec le deuxième moyen d'injection en aval du premier moyen d'injection suivant le sens de circulation du biométhane dans le réseau de biométhane.
9. Installation selon la revendication 8, caractérisée en ce que le réseau présentant un pouvoir calorifique supérieur de valeur X est un réseau de gaz naturel de type B.
10. Installation selon l'une des revendications 8 ou 9, caractérisée en ce que ladite installation comprend :
- un analyseur de concentration en oxygène situé sur le rétentat de la membrane en amont du premier point d'injection,
- un capteur de pression situé sur le rétentat de la membrane en amont du premier moyen d'injection, et
- une vanne de régulation située sur le rétentat de la membrane en aval de l'analyseur et en amont du premier moyen d'injection.
11. Installation selon la revendication 10, caractérisée en ce que ladite installation comprend une vanne de régulation sur le débit d'alimentation de la membrane.
12. Installation selon l'une des revendications 8 à 11, caractérisée en ce que le système de production d'air comprimé comprend successivement dans le sens de circulation de l'air :
- une arrivée d'air,
- un compresseur d'air,
- un système de refroidissement du gaz comprimé,
- un séparateur de condensais,
- un filtre à charbon actif permettant d'enlever les particules d'huile résiduelles,
- un filtre à particules permettant d'enlever les particules de charbon actif,
- un sécheur,
- un réservoir de stockage d'air comprimé.
EP15725844.3A 2014-05-15 2015-05-11 Procédé d'injection de biomethane dans un réseau de gaz naturel Ceased EP3143105A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1454321A FR3020966B1 (fr) 2014-05-15 2014-05-15 Procede d'injection de biomethane dans un reseau de gaz naturel
PCT/FR2015/051230 WO2015173503A1 (fr) 2014-05-15 2015-05-11 Procédé d'injection de biomethane dans un réseau de gaz naturel

Publications (1)

Publication Number Publication Date
EP3143105A1 true EP3143105A1 (fr) 2017-03-22

Family

ID=51417418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15725844.3A Ceased EP3143105A1 (fr) 2014-05-15 2015-05-11 Procédé d'injection de biomethane dans un réseau de gaz naturel

Country Status (5)

Country Link
US (1) US20170088785A1 (fr)
EP (1) EP3143105A1 (fr)
CN (1) CN106536688A (fr)
FR (1) FR3020966B1 (fr)
WO (1) WO2015173503A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214702B2 (en) * 2016-12-02 2019-02-26 Mustang Sampling Llc Biogas blending and verification systems and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478852B1 (en) * 2000-02-18 2002-11-12 Cms Technology Holdings, Inc. Method of producing nitrogen enriched air

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898047A (en) * 1973-07-17 1975-08-05 Bendix Corp Oxygen generation system
FR2507917A1 (fr) * 1981-06-23 1982-12-24 Methaneco Doseur-melangeur de gaz, notamment pour installation de biogaz
DE4435702C2 (de) * 1994-10-06 1998-11-26 Druckluft Dannoehl Gmbh Verfahren und Vorrichtung zum Erzeugen von Stickstoff
US5727903A (en) * 1996-03-28 1998-03-17 Genesis Energy Systems, Inc. Process and apparatus for purification and compression of raw landfill gas for vehicle fuel
DE102007061137B4 (de) * 2007-12-19 2011-12-15 Agraferm Technologies Ag Vorrichtung und Verfahren zur Umwandlung von bei der Ethanolproduktion als Abfallprodukt anfallender Fermentationsbrühe in Biogas
CA2641270C (fr) * 2008-06-25 2013-08-27 Gemini Corporation Appareillage et procede de production de biogaz
US8007567B2 (en) * 2008-08-13 2011-08-30 A & B Process Systems Corporation Apparatus and method for biogas purification
DE102008058736B3 (de) * 2008-11-24 2010-08-05 Technische Universität Clausthal Verfahren zum Betreiben eines Gasnetzes
DE102010017818A1 (de) * 2010-02-17 2011-08-18 Meissner, Jan A. Verfahren und Anlage zur Herstellung von CBM (Compressed BioMethane) als treibhausgasfreier Kraftstoff
AT509318B8 (de) * 2010-05-03 2011-09-15 Rudolf Grossfurtner Gmbh Abtrennverfahren
WO2012036651A1 (fr) * 2010-09-13 2012-03-22 Membrane Technology And Research, Inc. Procédé de séparation de gaz à l'aide de membranes comprenant le balayage du perméat pour enlever du co2 à partir d'un échappement de combustion de combustibles gazeux
DE102011103430A1 (de) * 2011-06-07 2012-12-13 Solar Fuel Gmbh Verfahren zur Bereitstellung eines Gases mit sehr hohem Methangehalt und dazu ausgelegte Anlage
NL2008266C2 (nl) * 2012-02-09 2013-08-14 Aqana B V Anaeroob waterzuiveringssysteem en werkwijze voor het behandelen van een vloeistof.
US20130233388A1 (en) * 2012-03-06 2013-09-12 General Electric Company Modular compressed natural gas system
CN202860346U (zh) * 2012-09-14 2013-04-10 临安市诺顿机电有限公司 Pet吹瓶机气源净化装置
CN202844840U (zh) * 2012-09-19 2013-04-03 北京锐业制药有限公司 一种压缩空气系统
DE102012110596A1 (de) * 2012-11-06 2014-05-08 Holger Klos Verfahren und Vorrichtung zum Bereitstellen eines Gasgemischs
CL2013001529A1 (es) * 2013-05-30 2013-11-04 Univ Santiago Chile Procedimiento de digestion anaerobia de aguas residuales, que comprende inocular con lodo bien digerido a las aguas residuales con una concentracion elevada de nitrogeno, agregar zeolita-clinoptilolita, agregar volumenes crecientes de dichas aguas residuales, monitorear el funcionamiento del digestor, agregar nuevamente zeolita, y extraer el lodo en exceso producido desde la parte inferior del digestor.
US20160146516A1 (en) * 2014-11-23 2016-05-26 Mingsheng Liu Absorption Cooling Air Compressor System
US9745927B2 (en) * 2015-03-10 2017-08-29 Denso International America, Inc. Emissions reduction system for an internal combustion engine
US9903323B2 (en) * 2015-03-10 2018-02-27 Denso International America, Inc. Emissions reduction system for an internal combustion engine
JP6333786B2 (ja) * 2015-09-17 2018-05-30 ファナック株式会社 レーザ光路の清浄化機能を有するレーザ加工システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478852B1 (en) * 2000-02-18 2002-11-12 Cms Technology Holdings, Inc. Method of producing nitrogen enriched air

Also Published As

Publication number Publication date
FR3020966A1 (fr) 2015-11-20
US20170088785A1 (en) 2017-03-30
FR3020966B1 (fr) 2017-10-27
CN106536688A (zh) 2017-03-22
WO2015173503A1 (fr) 2015-11-19

Similar Documents

Publication Publication Date Title
EA201001114A1 (ru) Способ многоступенчатого разделения с использованием мембран
AU2014398249A1 (en) Low pressure biogas sample takeoff and conditioning system
EP3666368A1 (fr) Installation et procédé de traitement par perméation membranaire d'un courant gazeux avec ajustement de la concentration en méthane
CN111321020A (zh) 调节第三渗透物吸入压力的膜渗透处理气流的设备和方法
FR3007417A1 (fr) Procede de production de biomethane incluant le controle et l’ajustement du debit de biogaz alimentant l’etape d’epuration en fonction de la quantite de biogaz disponible en amont
FR2969175A1 (fr) Procede d'operation d'une installation de haut fourneau avec recyclage de gaz de gueulard
FR3035598B1 (fr) Procede et systeme d'injection directe de biomethane issu de biogaz au sein d'un reseau de distribution.
EP3613493A1 (fr) Traitement par perméation membranaire avec ajustement du nombre de membranes mises en oeuvre en fonction de la pression du flux gazeux d'alimentation
EP3610940A1 (fr) Traitement par perméation membranaire avec ajustement de la température du premier rétentat en fonction de la concentration en ch4 dans le troisième et/ou quatrième perméat
CN104909456A (zh) 垃圾渗滤液厌氧沼气净化提纯方法
WO2015173503A1 (fr) Procédé d'injection de biomethane dans un réseau de gaz naturel
CN108474614B (zh) 用于分离合成气的方法和设备
EP3666367A1 (fr) Installation et procédé de traitement par perméation membranaire d'un courant gazeux avec ajustement de la pression d'aspiration du second perméat
EP3610939A1 (fr) Traitement par permeation membranaire avec ajustement de la pression du flux gazeux d'alimentation en fonction de la concentration en ch4 dans le deuxième rétentat
FR3035337B1 (fr) Procede de purification d'un gaz comprenant du methane
EP3964558B1 (fr) Installation et procédé d'ajustement de la production de biométhane en fonction de l'unité de valorisation de biométhane
FR3070873B1 (fr) Procede de production de biomethane mettant en œuvre un systeme d'absorption et une pompe a chaleur
EP4149654A1 (fr) Installation et procede de production de biomethane avec perte de methane limitee et emission de co2 limitee
EP3756750A1 (fr) Installation pour le traitement d'un flux de méthane et de dioxyde de carbone au moyen d'un compresseur à palettes et d'une unité de séparation par membrane
US20130334463A1 (en) Capture and storage of emissions from a gasifier
MANYUCHI et al. Biogas Production from Saw dust using Acti-zyme as Digestion Catalyst and its Upgrading to Bio methane using Chemical Absorption
EP3964280B1 (fr) Dispositif de régulation d'une installation pour le traitement par perméation membranaire de biogaz
EP3970833A1 (fr) Commande d'une installation de traitement par perméation membranaire
WO2023002038A1 (fr) Dispositif et procédé de séparation d'un mélange gazeux comportant au moins du gaz naturel et du dihydrogène
FR3120803A1 (fr) Installation pour le traitement par perméation membranaire d’un flux de biogaz avec une unité de séparation membranaire à deux modules

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20180212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200220