EP3137821B1 - Vorrichtung und verfahren zum umwandeln thermischer energie - Google Patents

Vorrichtung und verfahren zum umwandeln thermischer energie Download PDF

Info

Publication number
EP3137821B1
EP3137821B1 EP15724506.9A EP15724506A EP3137821B1 EP 3137821 B1 EP3137821 B1 EP 3137821B1 EP 15724506 A EP15724506 A EP 15724506A EP 3137821 B1 EP3137821 B1 EP 3137821B1
Authority
EP
European Patent Office
Prior art keywords
working medium
impeller
rotational axis
rotor
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15724506.9A
Other languages
English (en)
French (fr)
Other versions
EP3137821A1 (de
Inventor
Bernhard Adler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecop Technologies GmbH
Original Assignee
Ecop Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecop Technologies GmbH filed Critical Ecop Technologies GmbH
Priority to PL15724506T priority Critical patent/PL3137821T3/pl
Publication of EP3137821A1 publication Critical patent/EP3137821A1/de
Application granted granted Critical
Publication of EP3137821B1 publication Critical patent/EP3137821B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B3/00Self-contained rotary compression machines, i.e. with compressor, condenser and evaporator rotating as a single unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • the invention relates to a method according to the preamble of claim 14.
  • EP 2567158 A1 discloses a device according to the preamble of claim 1 and a method according to the preamble of claim 12.
  • This document describes an apparatus for converting low temperature thermal energy into higher temperature thermal energy by means of mechanical energy and vice versa, with a rotatably mounted rotor in which Flow channel is provided for a closed loop process continuous working medium.
  • the flow channel has a compression channel, in which a working medium for pressure increase is feasible, and a relaxation channel, in which a working medium for pressure reduction can be guided on.
  • heat exchangers are provided, which extend adjacent and substantially parallel to the compression or expansion channel.
  • the EP 0119777 A2 discloses a compression heat pump consisting of an evaporator, a compressor and a condenser, wherein at least the evaporator or the condenser has rotating plates through which heat exchange takes place. In this case, a fluid is accelerated radially outwards by the centrifugal force along the plates.
  • a heat pump in which the working fluid in a piping system of a rotor a cycle with the steps a) compression of the working fluid, b) heat removal from the working fluid by means of a heat exchanger, c) relaxation of the working medium and d) heat supply to the working fluid passes through another heat exchanger ,
  • the pressure increase or pressure reduction of the working medium adjusts itself mainly by the centrifugal acceleration, wherein the working medium in a compression unit with respect to a rotation axis radially outwards and in a Relaxation unit flows radially inward.
  • the heat dissipation from the working fluid to a heat exchange medium of the heat exchanger takes place in an axial or parallel to the axis of rotation extending portion of the piping system, which is associated with a co-rotating, the heat exchange medium exhibiting heat exchanger.
  • a paddle wheel has been used, which is used in particular to maintain the flow of the working fluid in the rotating operation.
  • the impeller may be arranged on the one hand rotationally fixed, resulting in a relative movement to the medium leading the piping system due to the rotationally fixed arrangement.
  • the impeller is associated with a motor for generating a relative movement to the piping system.
  • the impeller may be connected to a generator in order to convert the shaft power generated by the relative movement of the impeller into electrical energy.
  • paddle wheels for maintaining a fluid flow are known, wherein such paddle wheels can be designed as a compressor, expansion turbines or guide wheels.
  • axial and, on the other hand, radial designs are known as boundary forms for the flow-through type of paddle wheels.
  • axial or axial flow component In mixed forms such as diagonally flowed paddle wheels largely the same considerations apply to the radial or axial flow component.
  • so-called axial fans (or generally axial compressor) or axial turbines so-called axial fans (or generally axial compressor) or axial turbines, a conventional dimensioning can be applied substantially.
  • the axial design has the disadvantage that in comparison to the radial design lower pressure increases can be effected, whereby the axial paddle wheels usually have to be constructed in multiple stages.
  • the object of the present invention is therefore to provide a rotary device for converting thermal energy, as stated above, in which the disadvantages of the prior art are eliminated or at least significantly alleviated. Accordingly, the invention is in particular the goal of maintaining the flow of the working medium about the axis of rotation with the lowest possible energy losses.
  • the impeller between between the heat pump operating state, the flow of the working medium supplying supply channels and at least one in Heat pump operating state, the flow of the working medium laxative discharge channel of the rotor arranged, wherein the supply channels substantially parallel to the axis of rotation, extending to immediately in front of an inlet opening of the impeller outlet sections, so that individual flows of the working medium from the supply ducts substantially parallel to the axis of rotation in the paddle wheel feasible are.
  • the invention is based on the surprising finding that the efficiency of the paddle wheel can be significantly improved by the fact that the working medium before entering the paddle wheel in individual flows parallel to the axis of rotation, ie in the axial direction, out.
  • the extension of the exit sections of the supply ducts to immediately before the impeller means that the flows of the working medium in the supply ducts are not brought together but are supplied to the impeller separately from one another.
  • the outlet sections of the feed channels are preferably arranged at regular angular intervals and at the same radial distance around the axis of rotation. Accordingly, a plurality of axial flows of the working medium are introduced into the impeller. Thereafter, the working fluid flows into the at least one discharge channel of the rotor.
  • the working medium from the paddle wheel is guided directly, ie without the interposition of a stationary housing in the rotor.
  • the rotor therefore forms a rotating housing for the paddle wheel, which preferably completely surrounds the paddle wheel.
  • the working medium is thus guided by the paddle wheel located in the interior of the rotor, wherein the working medium is not performed in a stationary housing unlike the prior art.
  • the flow energy of the working medium when passing through the cyclic process can be substantially maintained.
  • dynamic seals of the working medium to the environment are not required.
  • a stationary housing was provided.
  • a rotor is provided in the apparatus according to the invention, so that the components surrounding the impeller rotate during operation.
  • the working medium is led out in the axial direction from the feed ducts conveying the working medium.
  • This advantageously has the consequence that the Coriolis acceleration becomes almost zero and no or no substantial twist sets.
  • the passage into the paddle wheel is easier to calculate and advantageously also not dependent on the rotational speeds of the paddle wheel and the surrounding housing of the rotor and not on the relative flow rate.
  • the impeller is connected to at least three discharge channels. Preferably, no more than twelve discharge channels are connected to the paddle wheel.
  • the described embodiment relates only to the number of directly radially away from the impeller leading away discharge channels. However, it is quite possible that a radial discharge channel in the region remote from the axis, preferably after a deflection in the axial direction, is divided into a plurality of heat exchanger channels.
  • the supply ducts have substantially extending in the radial direction supply line sections, which between the outlet sections and are arranged with respect to the axis of rotation of internal heat exchangers.
  • the lead portions are preferably longer than the exit portions of the lead channels.
  • the at least one discharge channel is connected to the compression channels, which are connected to outer heat exchangers with respect to the axis of rotation.
  • the impeller is arranged in the radial direction closer to the axis of rotation than the inner heat exchanger, wherein the impeller is preferably arranged concentrically around the axis of rotation of the rotor. Accordingly, the axes of rotation of the rotor and the impeller are preferably arranged in alignment. As a result, a particularly efficient mode of operation can be achieved.
  • the supply ducts have arcuately curved walls at the exit sections, which deflect the working medium substantially 90 ° from the supply sections cause the exit sections. Due to the arcuate walls of the expansion channels at the outlet end, the working medium can be continuously deflected into an axial flow, wherein the currents of the working medium are not or only slightly disturbed by the deflection.
  • the outlet sections of the supply ducts between essentially in the radial and axial direction to the axis of rotation extending separating elements, in particular substantially planar partitions, are formed.
  • the arrangement of partitions can be achieved in a particularly simple manner that the axial flows of the working medium in the outlet sections of the supply channels are unmixed and substantially free of twist with respect to the rotating rotor, which is the housing for the paddle wheel, guided in the paddle wheel.
  • the separating elements are adjustable in front of the paddle wheel.
  • a defined entrance swirl can be generated, which can be adjusted via the separating elements.
  • this defined entry twist can be calculated or simulated in the design of the device.
  • the device according to the invention is usually designed for a specific operating point.
  • the entry angle of the separating elements can be dimensioned such that the flow when viewed in the relative rotating impeller system has a steady transition, ie an inflow without substantial change in direction, in the blade region of the impeller.
  • the inflow angles of the flow usually change, whereby a discontinuous inflow would occur in the blade region of the blade wheel.
  • This effect reduces the efficiency of the impeller when operating outside the design point.
  • the separating elements for operation outside the design point can be adjusted such that the working medium, based on the relative rotating impeller system, flows in a steady manner upon entry into the blade region of the impeller. As a result, the efficiency can be increased.
  • the paddle wheel can also generate by this measure, a higher pressure and a higher maximum flow, whereby the application area is extended.
  • the impeller has a plurality of, in particular arcuately curved blades.
  • the working medium is accelerated in the circumferential direction with respect to the axis of rotation, before the working medium via outlet openings between the outer edges of the blades of the blade wheel in the compression channels is performed.
  • the impeller on the side facing the axis of rotation on a free radial blades on blades.
  • the flows of the working medium which are guided separately in the supply ducts, are brought together.
  • the working medium in the radial section can be homogenized before the working medium flowing radially outward from the radial section is accelerated by the rotating blades and then discharged into the discharge channels.
  • the blade wheel In order to supply the working medium flowing in the axial direction to the blades, it is favorable if the blade wheel has an arcuately curved deflecting wall at the radial portion, with which the working medium can be deflected by substantially 90 ° in the radial direction.
  • the at least one discharge channel has an inlet section arranged obliquely to the radial direction, which is connected to a discharge section extending essentially in the radial direction.
  • the inlet section of the drainage channel preferably extends in the direction in which a steady transition of the flow, i. in which there is an inflow without significant change in direction results. This is achieved in the design by vector addition.
  • the working medium is introduced in the tangential direction, relative to a substantially circular in cross-section envelope or outer surface of the impeller, in the inlet sections, which are connected to the substantially extending in the radial direction discharge sections.
  • the inlet sections and the compression sections are preferably connected to each other via arcuately curved transition sections.
  • the impeller has a particular rotatable parallel to the axis of rotation of the rotor Schaufelradwelle, which is connected to a motor or to a generator. Accordingly, the paddle wheel can be connected on the one hand to a motor in order to generate a relative movement between the rotor and the paddle wheel. In this embodiment, the paddle wheel is set in a heat pump operating condition for maintaining the circulation of the working fluid. On the other hand, the impeller may be connected to a generator in order to convert the shaft power present at the Schaufelradwelle by the relative movement of the impeller into electrical energy.
  • a flow in the nature of a natural circulation is obtained due to the different temperature levels at the heat exchangers.
  • the energy of the flow is then converted into shaft power in the impeller acting as a turbine, which is subsequently converted into electrical power by means of a generator.
  • part of this energy is spent on a motor which drives the rotor.
  • the terms "inlet” and “exit” refer to the function of the paddle wheel to maintain the flow of the working fluid about the axis of rotation, ie, when the paddle wheel is used as a fan in a heat pump operating condition.
  • the flow direction of the working medium is reversed, so that, for example, the outlet portions of the supply lines to the inlet portions of the discharges.
  • the axes of rotation of the paddle wheel and the rotor coincide.
  • a separate motor / generator for the Schaufelradwelle is provided, so that the impeller regardless of the Compressing and relaxation channels having rotor can be driven; in this case, the rotor is connected to a second motor.
  • the same motor for driving the impeller and the rotor or the same generator for the utilization of the rotational energy of the impeller and the rotor can be used.
  • the motor is set up to rotate the impeller in the same direction of rotation as the rotor with the expansion and compression channels for the working medium.
  • the acceleration field of the main rotor can be utilized.
  • the apparatus of the invention utilizes centrifugal acceleration as it flows through the compression and expansion passages of the rotor to produce various pressure or temperature levels of the working fluid.
  • it is favorable if at least one with respect to the axis of rotation inner heat exchanger and at least one with respect to the axis of rotation outer heat exchanger for heat exchange between the working medium and a heat exchange medium are provided.
  • the heat exchangers are arranged co-rotating in the rotor.
  • the device can be operated on the one hand as a heat pump, in which the rotor is rotated by a drive and the circulation flow is generated by a fan.
  • the reverse flow direction corresponds to operation as a heat-power machine for generating electric current, wherein different temperature levels are used to generate a flow, which is converted in the acting as a turbine paddle wheel into mechanical energy, which is finally converted into electrical energy in a generator.
  • the rotor is driven by a motor which is supplied, for example, by the recovered electrical energy from the turbine.
  • the heat exchangers are arranged substantially parallel to the axis of rotation of the rotor.
  • the heat exchangers are in this case connected between the compression and expansion channels.
  • the inner heat exchanger is provided for a lower temperature heat exchange and the outer heat exchanger for higher temperature heat exchange.
  • the inner heat exchanger on the one hand and the outer heat exchanger on the other hand arranged at regular angular intervals with respect to the axis of rotation.
  • as many inner and outer heat exchangers as compression and expansion channels are provided. Accordingly, the inner and outer heat exchangers are connected in pairs via one compression and one expansion channel.
  • the number of supply and discharge channels for the impeller corresponds to the number of inner and outer heat exchangers.
  • the number of internal heat exchangers corresponds to a multiple of the external heat exchangers or vice versa.
  • the heat exchange can be made particularly efficient if the at least one inner heat exchanger and the at least one outer heat exchanger are substantially parallel to the axis of rotation, wherein the compression and expansion channels between the inner heat exchanger and the run outside heat exchanger.
  • a plurality of inner heat exchangers and a plurality of outer heat exchangers are provided, which are each arranged at equal radial distances from the axis of rotation.
  • the impeller has a plurality of successively flowed through by the working medium Schaufelradkyn.
  • the supply ducts have outlet sections extending substantially parallel to the axis of rotation and extending to just in front of the inlet opening of the first blade wheel stage, as viewed in the flow direction.
  • the successive Schaufelradkyn are each connected to one another via a deflection, with which the working medium is deflected between the Schaufelradmen.
  • the deflection preferably has outlet sections which extend essentially parallel to the axis of rotation and which extend as far as directly in front of the inlet opening of the impeller stage following in the flow direction.
  • the problem underlying the invention is also achieved by a method of the type mentioned, in which individual flows of the working medium in the heat pump operating state to be performed directly in front of the impeller and introduced into the impeller substantially parallel to the axis of rotation. Accordingly, the flows of the working medium are guided individually or separately from each other and in the axial direction in the impeller.
  • the impeller is rotated in the same direction of rotation and at a higher absolute speed as the rotor with the expansion and compression channels.
  • a higher absolute speed of the impeller is provided which causes a correspondingly higher centrifugal acceleration and thus a more efficient compression of the working medium.
  • the centrifugal compression effect is proportionally increased, thereby increasing the efficiency.
  • Fig. 1 shows a device 20 for the conversion of heat energy by means of mechanical energy and vice versa, which is used in the embodiment shown as a heat pump.
  • the device 20 comprises a rotor 21 which is rotatable about a rotation axis 22 by means of a motor (not shown).
  • the rotor 21 has a compressor unit 23 and a relaxation unit 24, which have flow channels for a working medium.
  • the working medium for example a noble gas
  • the compressor unit 23 in a substantially radially extending compression channels 25, in which the working fluid with respect to the axis of rotation 22 in the radial direction flows outward the centrifugal acceleration compresses the working medium in the compression channels 25.
  • the working medium for pressure reduction in expansion channels 26 of the expansion unit 24 is guided substantially radially inwards.
  • the compressor unit 23 and the expansion unit 24 are interconnected by axially, ie in the direction of the axis of rotation 22, extending flow channels in which a heat exchange between the working medium and a heat exchange medium, for example water, takes place.
  • outer heat exchangers 1 'and inner heat exchangers 1 "are provided with respect to the rotation axis, which are substantially parallel to the axis of rotation 22.
  • the centrifugal acceleration acting on the working medium is exploited to produce different pressure levels or temperature levels.
  • High-temperature heat is removed from the compressed working medium, and heat is supplied to the relaxed working medium at a comparatively low temperature.
  • the flow channels are flowed through by the working medium in the reverse direction. Accordingly, the heat exchange changes, wherein at the outer heat exchanger 1 'heat supplied to the working fluid and the inner heat exchanger 1 "heat is removed from the working fluid.
  • Fig. 1 Furthermore, in each case a plurality, twelve in the embodiment shown, inner heat exchanger 1 'and a plurality, in the embodiment shown twelve, outer heat exchanger 1' are provided, which are arranged at regular angular intervals with respect to the axis of rotation.
  • the inner heat exchangers 1 'and the outer heat exchangers 1' are each substantially parallel to the axis of rotation 22, wherein the compression and expansion channels 23 run between the inner heat exchangers 1 'and the outer heat exchangers 1'.
  • Fig. 2 Parts of the device 20 are shown in longitudinal section, with only one of the inner heat exchanger 1 '' and one of the outer heat exchanger 1 'are located.
  • a paddle wheel 30 can be seen, with which in the embodiment shown, the flow of the working medium is maintained about the axis of rotation 22.
  • the impeller 30 is connected, on the one hand, to supply ducts 31, which take over the working medium from the inner heat exchangers 1 ".Furthermore, the impeller 30 is connected to discharge ducts 32, with which the working medium is guided into the compression ducts 25 of the compressor unit 23.
  • the compression ducts 25 are connected to the outer heat exchanger 1 '.
  • the paddle wheel 30 is closer to the axis of rotation 22 in the radial direction than the inner
  • the axis of rotation of the paddle wheel 30 is arranged in alignment with the axis of rotation 22 of the rotor 21 in order to reduce the stresses due to the centrifugal acceleration on the bearing of the shaft of the paddle wheel 30.
  • the supply channels 31 extend substantially radially in the direction of the feed line sections 35 which are arranged between the discharge sections 34 opening into the impeller 30 and the inner heat exchangers 1 "
  • the discharge channels 32 are connected to the compression channels 25 which supply the working medium lead the outer heat exchangers 1 '.
  • the supply channels 31 at the outlet portions 34 arcuately curved walls 36, which cause a deflection of the working medium by substantially 90 ° from the radial feed line portions 35 in the axial outlet sections 34.
  • the outlet sections 34 of the feed channels 31 are delimited by dividing elements 37 which extend substantially in the radial and axial direction relative to the axis of rotation 22 and which are formed in the embodiment shown by substantially planar partitions.
  • the separating elements 37 have a radial extension and are arranged in a star shape. In the embodiment shown, the outlet sections 34 are therefore arranged regularly and at constant radial distances about the axis of rotation 22 of the rotor 21.
  • Fig. 4 is further seen that the paddle wheel 30th a plurality of arcuately curved blades 38, with which the working fluid is accelerated when flowing through the impeller 30 in the direction of rotation 39 of the impeller 30.
  • the paddle wheel 30 has, on the side facing the axis of rotation 22, a radial section 40 which is free of blades 38, in which the flows of the working medium from the supply channels 31 are brought together and homogenized.
  • an arcuately curved deflection wall 41 is provided (see. Fig. 3 ), with which the working medium is deflected by substantially 90 ° from the axial flow on entry into the impeller 30 in a radial flow in front of the blades 38.
  • the paddle wheel 30 a Schaufelradwelle 44, which is connected to a motor (not shown).
  • the motor is configured to rotate the paddle wheel 30 in the direction of rotation 45 of the rotor 21.
  • the axis of rotation of the paddle wheel 44 and the axis of rotation 22 of the rotor 21 coincide.
  • a generator is connected to the paddle wheel 30, which then works as a turbine.
  • the turbine converts a resulting differential pressure into shaft power during a flow with a corresponding mass flow.
  • the apparatus 20 has dynamic sealing gaps 46 which are intended to minimize backflow due to increased pressure at the exit of the impeller 30 from the inlet.
  • the sealing gaps 46 engage counter blades 47 of the paddle wheel 30 in order to produce several small column as possible.
  • Fig. 7 1 shows an alternative embodiment in which the individual impeller 30 has a plurality of impeller stages 30 ', 30 ", which can be flowed through one behind the other in the embodiment shown, and the impeller stages 30', 30" are connected to one another via a deflection 30 ", with which the working medium of a flow radially outward following the first paddle wheel 30 'is first deflected into a flow radially inward and then into a flow in the direction of the rotation axis 22 to immediately before the second paddle wheel 30'.
  • Each paddle wheel stage 30 ', 30'' is according to the single-stage embodiment according to Fig. 1 to 6 built up.
  • the paddlewheel stages 30 ', 30 are disposed on the same paddlewheel shaft 44, which is connected to a motor or to a generator.
  • the paddlewheel stages 30 ', 30 may alternatively be supported on separate paddlewheel shafts, with each paddlewheel stage 30', 30" connected to a motor or generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung gemäß dem Oberbegriff von Anspruch 1.
  • Weiters betrifft die Erfindung ein Verfahren gemäß dem Oberbegriff von Anspruch 14.
  • EP 2567158 A1 offenbart eine Vorrichtung gemäß dem Oberanspruch von Anspruch 1 und ein Verfahren gemäß dem Oberanspruch von Anspruch 12. Dieses Dokument beschreibt eine Vorrichtung zum Umwandeln thermischer Energie niedriger Temperatur in thermische Energie höherer Temperatur mittels mechanischer Energie und umgekehrt, mit einem drehbar gelagerten Rotor, in dem ein Strömungskanal für ein einen geschlossenen Kreisprozess durchlaufendes Arbeitsmedium vorgesehen ist. Der Strömungskanal weist einen Verdichtungskanal, in dem ein Arbeitsmedium zur Druckerhöhung führbar ist, und einen Entspannungskanal, in dem ein Arbeitsmedium zur Druckverringerung führbar ist, auf. Für den Austausch von Wärme zwischen dem Arbeitsmedium und einem Wärmetauschermedium sind Wärmetauscher vorgesehen, wobei diese benachbart und im Wesentlichen parallel zu dem Verdichtungs- bzw. Entspannungskanal verlaufen.
  • Die EP 0119777 A2 offenbart eine Kompressionswärmepumpe, bestehend aus einem Verdampfer, einem Kompressor und einem Kondensator, wobei zumindest der Verdampfer oder der Kondensator rotierende Platten aufweist, über welche ein Wärmeaustausch stattfindet. Dabei wird ein Fluid durch die Zentrifugalkraft entlang der Platten radial nach außen beschleunigt.
  • In der WO 2009/015402 A1 ist eine Wärmepumpe beschrieben, bei der das Arbeitsmedium in einem Rohrleitungssystem eines Rotors einen Kreisprozess mit den Arbeitsschritten a) Verdichtung des Arbeitsmediums, b) Wärmeabfuhr vom Arbeitsmedium mittels eines Wärmetauschers, c) Entspannung des Arbeitsmediums und d) Wärmezufuhr zum Arbeitsmedium mittels eines weiteren Wärmetauschers durchläuft. Die Druckerhöhung bzw. Druckverringerung des Arbeitsmediums stellt sich vorwiegend durch die Zentrifugalbeschleunigung ein, wobei das Arbeitsmedium in einer Verdichtungseinheit bezüglich einer Drehachse radial nach außen und in einer Entspannungseinheit radial nach innen strömt. Die Wärmeabfuhr vom Arbeitsmedium an ein Wärmeaustauschmedium des Wärmetauschers erfolgt in einem axialen bzw. parallel zur Drehachse verlaufenden Abschnitt des Rohrleitungssystems, dem ein mitrotierender, das Wärmeaustauschmedium aufweisender Wärmetauscher zugeordnet ist.
  • Darüber hinaus wurde bei diesem Stand der Technik bereits ein Schaufelrad eingesetzt, welches insbesondere dazu verwendet wird, um die Strömung des Arbeitsmediums im Rotationsbetrieb aufrechtzuerhalten. Das Schaufelrad kann einerseits drehfest angeordnet sein, wobei sich aufgrund der drehfesten Anordnung eine Relativbewegung zu dem das Arbeitsmedium führenden Rohrleitungssystem ergibt. Andererseits wurde bereits vorgeschlagen, dass dem Schaufelrad ein Motor zur Erzeugung einer Relativbewegung zu dem Rohrleitungssystem zugeordnet ist. Weiters kann das Schaufelrad bei dieser Vorrichtung mit einem Generator verbunden sein, um die erzeugte Wellenleistung durch die Relativbewegung des Schaufelrades in elektrische Energie umzuwandeln.
  • Im Stand der Technik sind verschiedenste Schaufelräder zur Aufrechterhaltung einer Fluidströmung bekannt, wobei solche Schaufelräder als Verdichter, Entspannungsturbinen oder Leiträder ausgeführt sein können. Im Stand der Technik sind als Grenzformen für die Durchströmungsart von Schaufelrädern einerseits axiale und andererseits radiale Ausführungen bekannt. Bei Mischformen wie diagonal durchströmten Schaufelrädern gelten weitgehend dieselben Überlegungen für die radiale bzw. axiale Strömungskomponente. Bei Verwendung von axial durchströmten Schaufelrädern, sogenannten Axialventilatoren (bzw. allgemein Axialverdichter) oder Axialturbinen, kann im Wesentlichen eine herkömmliche Dimensionierung angewendet werden. Die axiale Bauform hat jedoch den Nachteil, dass im Vergleich zur radialen Bauform geringere Druckerhöhungen bewirkt werden können, wodurch die axialen Schaufelräder meist mehrstufig aufgebaut werden müssen. Bei einer mehrstufigen Ausführung werden zwischen den Schaufelrädern sogenannte Leiträder angebracht, um die Strömung umzulenken. Dadurch wird ein Drall mit der Rotation der umgebenden rotierenden Axialschaufeln erzeugt, der Drall im Wesentlichen vollständig aus der Strömung genommen oder ein Drall gegen die Drehrichtung erzeugt. Hinsichtlich des Einbaus von radialen Schaufelrädern, welche gegenüber axialen Schaufelrädern den Vorteil höherer Drücke pro Stufe haben und daher oft einstufig ausgeführt werden können, wurde bisher auf eine Variante zurückgegriffen, wie sie auch bei mehrstufigen Radialverdichtern bzw. Zentripetalturbinen verwendet wird, bei welchen die Schaufelräder in einem stillstehenden Gehäuse angeordnet sind.
  • Bei umfangreichen Versuchen hat sich jedoch gezeigt, dass die vom Stand der Technik bekannte Anordnung der Schaufelräder bei gattungsgemäßen Vorrichtungen, bei welchen die Zu- und Ableitungen des Schaufelrads in dem Rotorgehäuse rotierend angeordnet sind, keine zufriedenstellende Ergebnisse liefert. Es wurde beobachtet, dass beispielsweise der Wirkungsgrad eines Radialventilators von 80% bei nicht rotierendem Gehäuse auf 25% bei rotierendem Gehäuse absinkt.
  • Demnach besteht ein großer Bedarf für Verbesserungen an den Schaufelrädern, um die komplexen Randbedingungen während des mehrere Arbeitsschritte aufweisenden Prozesses innerhalb des Rotors besser berücksichtigen zu können.
  • Die Aufgabe der vorliegenden Erfindung besteht also darin, eine rotierende Vorrichtung zum Umwandeln thermischer Energie, wie eingangs angegeben, zu schaffen, bei welcher die Nachteile des Standes der Technik eliminiert bzw. zumindest deutlich gelindert werden. Demnach setzt sich die Erfindung insbesondere zum Ziel, die Strömung des Arbeitsmediums um die Drehachse mit möglichst geringen Energieverlusten aufrechtzuerhalten.
  • Diese Aufgabe wird durch eine Vorrichtung mit den Merkmalen von Anspruch 1 und ein Verfahren mit den Merkmalen von Anspruch 14 gelöst.
  • Erfindungsgemäß ist das Schaufelrad zwischen im Wärmepumpenbetriebszustand die Strömung des Arbeitsmediums zuführenden Zuleitungskanälen und zumindest einem im Wärmepumpenbetriebszustand die Strömung des Arbeitsmediums abführenden Ableitungskanal des Rotors angeordnet, wobei die Zuleitungskanäle im Wesentlichen parallel zur Drehachse verlaufende, bis unmittelbar vor eine Eintrittsöffnung des Schaufelrads erstreckte Austrittsabschnitte auf, so dass einzelne Strömungen des Arbeitsmediums aus den Zuleitungskanälen im Wesentlichen parallel zur Drehachse in das Schaufelrad führbar sind.
  • Demnach beruht die Erfindung auf der überraschenden Erkenntnis, dass der Wirkungsgrad des Schaufelrads dadurch wesentlich verbessert werden kann, dass das Arbeitsmedium vor dem Eintritt in das Schaufelrad in einzelnen Strömungen parallel zur Drehachse, d.h. in axialer Richtung, geführt wird. Für die Zwecke dieser Offenbarung bedeutet die Erstreckung der Austrittsabschnitte der Zuleitungskanäle bis unmittelbar vor das Schaufelrad, dass die Strömungen des Arbeitsmediums in den Zuleitungskanälen nicht zusammengeführt, sondern getrennt voneinander dem Schaufelrad zugeführt werden. Bevorzugt sind die Austrittsabschnitte der Zuleitungskanäle in regelmäßigen Winkelabständen und in demselben radialen Abstand um die Drehachse angeordnet. Demnach werden mehrere axiale Strömungen des Arbeitsmediums in das Schaufelrad eingeleitet. Danach strömt das Arbeitsmedium in den zumindest einen Ableitungskanal des Rotors. Demnach wird das Arbeitsmedium aus dem Schaufelrad direkt, d.h. ohne Zwischenschaltung eines stillstehenden Gehäuses, in den Rotor geführt. Der Rotor bildet daher ein rotierendes Gehäuse für das Schaufelrad, welches das Schaufelrad vorzugsweise vollständig umschließt. Das Arbeitsmedium wird also durch das im Inneren des Rotors befindliche Schaufelrad geführt, wobei das Arbeitsmedium anders als beim Stand der Technik nicht in einem stillstehenden Gehäuse geführt wird. Dadurch kann die Strömungsenergie des Arbeitsmediums beim Durchlaufen des Kreisprozesses im Wesentlichen beibehalten werden. Vorteilhaft ist zudem, dass dynamische Dichtungen des Arbeitsmediums zur Umgebung nicht erforderlich sind. Bei der herkömmlichen Auslegung von Schaufelrädern war ein stillstehendes Gehäuse vorgesehen. Demgegenüber ist bei der erfindungsgemäßen Vorrichtung ein Rotor vorgesehen, so dass die das Schaufelrad umgebenden Komponenten im Betrieb rotieren. Um die unterschiedliche Einbausituation zu berücksichtigen, wäre es naheliegend gewesen, allein die relativen Drehzahlen zwischen dem Schaufelrad und dem Rotor zu betrachten, d.h. die Differenzdrehzahl zwischen der absoluten Rotordrehzahl und der absoluten Schaufelraddrehzahl. Es hat sich jedoch gezeigt, dass diese Betrachtung grundlegend fehlschlägt. Bei der im Stand der Technik üblichen radialen Zuströmung des Arbeitsmediums von den rotierenden Zuleitungskanälen in das Schaufelrad entsteht beim radialen Austritt aus dem Zuleitungskanal, insbesondere durch die Coriolisbeschleunigung, ein Drall, der bei einer Strömung, vom relativen, rotierenden System aus betrachtet, radial nach innen entgegen der Drehrichtung ausgebildet ist. Dieser Drall verändert die Charakteristik der Einströmung, insbesondere die Geschwindigkeitsdreiecke, maßgeblich, wodurch eine Dimensionierung nach herkömmlichen Methoden erfolglos sein musste. Erfindungsgemäß wird das Arbeitsmedium jedoch in axialer Richtung aus den das Arbeitsmedium befördernden Zuleitungskanälen herausgeführt. Dies hat vorteilhafterweise zur Folge, dass die Coriolisbeschleunigung annähernd null wird und sich kein bzw. kein wesentlicher Drall einstellt. Dadurch ist der Übertritt ins Schaufelrad einfacher berechenbar und vorteilhafterweise auch nicht von den Drehzahlen des Schaufelrades sowie des umgebenden Gehäuses des Rotors als auch nicht von der relativen Strömungsgeschwindigkeit abhängig.
  • Um einen stabilen Betrieb zu ermöglichen, ist es von Vorteil, wenn eine möglichst geringe Anzahl von radialen Ableitungskanälen an das Schaufelrad angeschlossen wird. Je geringer die Anzahl der angeschlossenen radialen Ableitungskanäle ist, desto stabiler ist der Betrieb, da die Wahrscheinlichkeit eines Strömungsabrisses eines Ableitungskanales mit sinkender Anzahl an Ableitungskanälen immer geringer wird. In einer bevorzugten Ausführung ist daher genau ein Ableitungskanal pro Schaufelrad vorgesehen. Bei dieser Ausführung wird daher für jeden Ableitungskanal, der radial nach außen geführt wird, genau ein Schaufelrad vorgesehen, wobei mehrere Schaufelräder (und eine entsprechende Anzahl von Ableitungskanälen) vorgesehen sein können. Aus Gründen der Wirtschaftlichkeit ist bei einer alternativen bevorzugten Ausführung vorgesehen, dass das Schaufelrad mit mindestens drei Ableitungskanälen verbunden ist. Bevorzugt sind nicht mehr als zwölf Ableitungskanäle an das Schaufelrad angeschlossen. Die beschriebene Ausführung bezieht sich lediglich auf die Anzahl der direkt radial vom Schaufelrad wegführenden Ableitungskanäle. Es ist jedoch durchaus möglich, dass ein radialer Ableitungskanal im achsfernen Bereich, vorzugsweise nach einer Umlenkung in die axiale Richtung, in mehrere Wärmetauscherkanäle aufgeteilt wird.
  • Um beim Durchströmen der Verdichtungs- und Entspannungskanäle Druckunterschiede mit hohen Wirkungsgraden zu erzielen, jedoch die Ausbildung von Drallströmungen vor dem Eintritt in das Schaufelrad zuverlässig zu verhindern, ist es günstig, wenn die Zuleitungskanäle im Wesentlichen in radialer Richtung verlaufende Zuleitungsabschnitte aufweisen, welche zwischen den Austrittsabschnitten und in Bezug auf die Drehachse inneren Wärmetauschern angeordnet sind. Die Zuleitungsabschnitte sind vorzugsweise länger als die Austrittsabschnitte der Zuleitungskanäle.
  • Um einen Wärmeaustausch zwischen dem Arbeitsmedium und einem Wärmeaustauschmedium bei höherer Temperatur zu bewerkstelligen, ist es günstig, wenn der zumindest eine Ableitungskanal mit den Verdichtungskanälen verbunden ist, welche mit in Bezug auf die Drehachse äußeren Wärmetauschern verbunden sind.
  • Um den Kreisprozess im Betrieb mit möglichst geringem Energieaufwand aufrechtzuerhalten, ist es günstig, wenn das Schaufelrad in radialer Richtung näher an der Drehachse als der innere Wärmetauscher angeordnet ist, wobei das Schaufelrad bevorzugt konzentrisch um die Drehachse des Rotors angeordnet ist. Demnach sind die Drehachsen des Rotors und des Schaufelrads bevorzugt fluchtend angeordnet. Dadurch kann eine besonders effiziente Betriebsweise erzielt werden.
  • Um die radialen Strömungen des Arbeitsmediums in den Zuleitungskanälen vor dem Eintritt in das Schaufelrad in axiale Strömungen umzuwandeln, ist es von Vorteil, wenn die Zuleitungskanäle an den Austrittsabschnitten bogenförmig gekrümmte Wandungen aufweisen, welche eine Umlenkung des Arbeitsmediums um im Wesentlichen 90° von den Zuleitungsabschnitten in die Austrittsabschnitte bewirken. Durch die bogenförmigen Wandungen der Entspannungskanäle am Austrittsende kann das Arbeitsmedium kontinuierlich in eine axiale Strömung umgelenkt werden, wobei die Strömungen des Arbeitsmediums durch die Umlenkung nicht bzw. nur unwesentlich gestört werden.
  • Um die Strömungen des Arbeitsmediums einzeln, d.h. im Wesentlichen unvermischt bzw. getrennt voneinander, in das Schaufelrad einzuleiten, ist es vorteilhaft, wenn die Austrittsabschnitte der Zuleitungskanäle zwischen im Wesentlichen in radialer und axialer Richtung zur Drehachse erstreckten Trennelementen, insbesondere im Wesentlichen ebenen Trennwänden, gebildet sind. Durch die Anordnung von Trennwänden kann auf besonders einfache Weise erreicht werden, dass die axialen Strömungen des Arbeitsmediums in den Austrittsabschnitten der Zuleitungskanäle unvermischt und im Wesentlichen drallfrei in Bezug auf den rotierenden Rotor, der das Gehäuse für das Schaufelrad darstellt, in das Schaufelrad geführt werden.
  • Für eine bessere Regelbarkeit, insbesondere im Teillastbereich, ist es günstig, wenn die Trennelemente vor dem Schaufelrad verstellbar sind. Vorteilhafterweise kann so ein definierter Eintrittsdrall erzeugt werden, welcher über die Trennelemente eingestellt werden kann. Im Unterschied zu dem beim Stand der Technik am Eintritt in das Schaufelrad auftretenden Drall aufgrund der Coriolisbeschleunigung lässt sich dieser definierte Eintrittsdrall bei der Auslegung der Vorrichtung berechnen bzw. simulieren. Die erfindungsgemäße Vorrichtung wird üblicherweise für einen bestimmten Betriebspunkt ausgelegt. Hierbei kann insbesondere der Eintrittswinkel der Trennelemente derart dimensioniert werden, dass die Strömung bei Betrachtung im relativen, rotierenden Schaufelrad-System einen stetigen Übergang, d.h. ein Einströmen ohne wesentliche Richtungsänderung, in den Schaufelbereich des Schaufelrades aufweist. Bei einer Drehzahlveränderung des Schaufelrades und/oder bei variierenden relativen Strömungsgeschwindigkeiten, also bei einem Betrieb außerhalb des Auslegungspunktes, ändern sich üblicherweise die Einströmwinkel der Strömung, wodurch eine unstetige Einströmung in den Schaufelbereich des Schaufelrades entstehen würde. Dieser Effekt reduziert den Wirkungsgrad des Schaufelrades bei Betrieb außerhalb des Auslegungspunktes. Um diesen Nachteil zu beheben, können die Trennelemente für einen Betrieb außerhalb des Auslegungspunktes derart verstellt werden, dass das Arbeitsmedium, bezogen auf das relative, rotierende Schaufelrad-System, beim Eintritt in den Schaufelbereich des Schaufelrades in stetiger Weise strömt. Dadurch kann der Wirkungsgrad erhöht werden. Das Schaufelrad kann durch diese Maßnahme zudem einen höheren Druck und einen höheren maximalen Volumenstrom erzeugen, wodurch der Einsatzbereich erweitert wird.
  • Zur Aufrechterhaltung der Strömung des Arbeitsmediums beim Durchlaufen des Kreisprozesses ist es günstig, wenn das Schaufelrad eine Mehrzahl von insbesondere bogenförmig gekrümmten Schaufeln aufweist. Durch die Schaufeln wird das Arbeitsmedium in Umfangrichtung in Bezug auf die Drehachse beschleunigt, bevor das Arbeitsmedium über Austrittsöffnungen zwischen den äußeren Kanten der Schaufeln des Schaufelrads in die Verdichtungskanäle geführt wird.
  • Gemäß einer bevorzugten Ausführung weist das Schaufelrad auf der der Drehachse zugewandten Seite einen von Schaufeln freien Radialabschnitt auf. In dem ringförmigen Radialabschnitt des Schaufelrads werden die in den Zuleitungskanälen getrennt geführten Strömungen des Arbeitsmediums zusammengeführt. Dadurch kann das Arbeitsmedium in dem Radialabschnitt homogenisiert werden, bevor das vom Radialabschnitt radial nach außen strömende Arbeitsmedium durch die rotierenden Schaufeln beschleunigt und danach in die Ableitungskanäle abgeführt wird.
  • Um das in axialer Richtung einströmende Arbeitsmedium den Schaufeln zuzuführen, ist es günstig, wenn das Schaufelrad an dem Radialabschnitt eine bogenförmig gekrümmte Umlenkwand aufweist, mit welcher das Arbeitsmedium um im Wesentlichen 90° in radialer Richtung umlenkbar ist.
  • Um die Strömungsenergie des Arbeitsmediums im Wesentlichen beizubehalten, ist es vorteilhaft, wenn der zumindest eine Ableitungskanal einen schräg zur radialen Richtung angeordneten Eintrittsabschnitt aufweist, welcher mit einem im Wesentlichen in radialer Richtung verlaufenden Ableitungsabschnitt verbunden ist. Der Eintrittsabschnitt des Ableitungskanals erstreckt sich bevorzugt in jene Richtung, in der sich ein stetiger Übergang der Strömung, d.h. in der ein Einströmen ohne wesentliche Richtungsänderung vorhanden ist, ergibt. Dies wird bei der Auslegung durch Vektorenaddition erzielt. Demnach wird das Arbeitsmedium in tangentialer Richtung, bezogen auf eine im Querschnitt im Wesentlichen kreisförmige Umhüllende bzw. Außenfläche des Schaufelrads, in die Eintrittsabschnitte eingebracht, welche mit den im Wesentlichen in radialer Richtung verlaufenden Ableitungsabschnitten verbunden sind. Die Eintrittsabschnitte und die Verdichtungsabschnitte sind bevorzugt über bogenförmig gekrümmte Übergangsabschnitte miteinander verbunden.
  • Um das Schaufelrad anzutreiben und so das Arbeitsmedium beim Durchgang zu beschleunigen bzw. um die Rotationsenergie des Schaufelrads zu nutzen, ist es von Vorteil, wenn das Schaufelrad eine insbesondere parallel zur Drehachse des Rotors rotierbare Schaufelradwelle aufweist, welche mit einem Motor oder mit einem Generator verbunden ist. Demnach kann das Schaufelrad einerseits mit einem Motor verbunden sein, um eine Relativbewegung zwischen dem Rotor und dem Schaufelrad zu erzeugen. Bei dieser Ausführung ist das Schaufelrad in einem Wärmepumpenbetriebszustand zur Aufrechterhaltung der Kreisführung des Arbeitsmediums eingerichtet. Andererseits kann das Schaufelrad mit einem Generator verbunden sein, um die an der Schaufelradwelle vorliegende Wellenleistung durch die Relativbewegung des Schaufelrades in elektrische Energie umzuwandeln. Bei einer solchen Verwendung der Vorrichtung wird aufgrund der unterschiedlichen Temperaturniveaus an den Wärmetauschern eine Strömung in der Art eines Naturumlaufes erhalten. Die Energie der Strömung wird dann in dem als Turbine wirkenden Schaufelrad in Wellenleistung umgewandelt, welche in weiterer Folge mittels eines Generators in elektrischen Strom umgewandelt wird. Vorzugsweise wird ein Teil dieser Energie für einen Motor aufgewendet, welcher den Rotor antreibt. In der vorliegenden Offenbarung beziehen sich die Begriffe "Eintritt" und "Austritt" auf die Funktion des Schaufelrades zur Aufrechterhaltung der Strömung des Arbeitsmediums um die Drehachse, d.h. wenn das Schaufelrad in einem Wärmepumpenbetriebszustand als Ventilator verwendet wird. Bei der Funktion des Schaufelrades als Turbine zur Erzeugung elektrischer Energie ist die Strömungsrichtung des Arbeitsmediums vertauscht, so dass beispielsweise die Austrittsabschnitte der Zuleitungen zu den Eintrittsabschnitten der Ableitungen werden.
  • In einer bevorzugten Ausführung fallen die Drehachsen des Schaufelrads und des Rotors zusammen. Wenn die Schaufelradwelle fluchtend auf der Welle des Rotors angeordnet wird, können vorteilhafterweise keine asymmetrischen Kräfte aufgrund der Zentrifugalbeschleunigung auf die Lagerung des Schaufelrads entstehen. Bevorzugt ist ein eigener Motor/Generator für die Schaufelradwelle vorgesehen, so dass das Schaufelrad unabhängig von dem die Verdichtungs- und Entspannungskanäle aufweisenden Rotor antreibbar ist; in diesem Fall ist der Rotor mit einem zweiten Motor verbunden. Alternativ kann auch derselbe Motor für den Antrieb des Schaufelrads und des Rotors bzw. derselbe Generator für die Nutzung der Rotationsenergie des Schaufelrads und des Rotors verwendet werden.
  • Es hat sich überraschend als vorteilhaft herausgestellt, wenn der Motor zur Rotation des Schaufelrads in derselben Drehrichtung wie der Rotor mit den Entspannungs- und Verdichtungskanälen für das Arbeitsmedium eingerichtet ist. Vorteilhafterweise kann bei einer Rotation des Schaufelrads in die gleiche Richtung wie der Hauptrotor das Beschleunigungsfeld des Hauptrotors ausgenutzt werden. Dadurch kann die Effizienz des Schaufelrades sogar gegenüber einer Anordnung mit nicht rotierendem Gehäuse erhöht werden, da der Verdichtungsanteil im Schaufelrad selbst aufgrund der Zentrifugalbeschleunigung erhöht wird und diese Verdichtung einen deutlich höheren Wirkungsgrad aufweist als die Druckerhöhung aufgrund von Geschwindigkeitsänderungen, welche beispielsweise beim Übertritt von dem Schaufelrad zu dem Ableitungskanal erfolgen.
  • Die erfindungsgemäße Vorrichtung nützt die Zentrifugalbeschleunigung beim Durchströmen der Verdichtungs- und Entspannungskanäle des Rotors, um verschiedene Druck- bzw. Temperaturniveaus des Arbeitsmediums zu erzeugen. Zur Umwandlung von thermischen Energie des Arbeitsmediums mittels kinetischer Energie und umgekehrt ist es günstig, wenn zumindest ein in Bezug auf die Drehachse innerer Wärmetauscher und zumindest ein in Bezug auf die Drehachse äußerer Wärmetauscher für einen Wärmeaustausch zwischen dem Arbeitsmedium und einem Wärmeaustauschmedium vorgesehen sind. Die Wärmetauscher sind in dem Rotor mitrotierend angeordnet. Je nach Strömungsrichtung des Arbeitsmediums kann die Vorrichtung einerseits als Wärmepumpe, bei welcher der Rotor mit einem Antrieb in Drehbewegung versetzt wird und die Kreislaufströmung durch einen Ventilator erzeugt wird, betrieben werden. Die umgekehrte Strömungsrichtung entspricht einem Betrieb als Wärme-Kraft-Maschine zur Erzeugung von elektrischem Strom, wobei unterschiedliche Temperaturniveaus zur Erzeugung einer Strömung genutzt werden, welche in dem als Turbine wirkenden Schaufelrad in mechanische Energie umgewandelt wird, die schließlich in einem Generator in elektrische Energie umgewandelt wird. In diesem Betriebszustand wird der Rotor mit einem Motor angetrieben, welcher z.B. durch die gewonnene elektrische Energie aus der Turbine versorgt wird.
  • Bevorzugt sind die Wärmetauscher im Wesentlichen parallel zur Drehachse des Rotors angeordnet. Die Wärmetauscher sind hierbei zwischen die Verdichtungs- und Entspannungskanäle geschaltet. Der innere Wärmetauscher ist für einen Wärmeaustausch bei niedrigerer Temperatur und der äußere Wärmetauscher für einen Wärmeaustausch bei höherer Temperatur vorgesehen.
  • Zur Erhöhung der Leistung der Vorrichtung ist es günstig, wenn jeweils mehrere innere Wärmetauscher und äußere Wärmetauscher vorgesehen sind. Bevorzugt sind die inneren Wärmetauscher einerseits und die äußeren Wärmetauscher andererseits in regelmäßigen Winkelabständen bezüglich der Drehachse angeordnet. Bevorzugt sind ebenso viele innere bzw. äußere Wärmetauscher wie Verdichtungs- und Entspannungskanäle vorgesehen. Demnach sind die inneren und die äußeren Wärmetauscher paarweise über jeweils einen Verdichtungs- und einen Entspannungskanal miteinander verbunden. Darüber hinaus ist bevorzugt vorgesehen, dass die Anzahl der Zuleitungs- und Ableitungskanäle für das Schaufelrad der Anzahl der inneren bzw. äußeren Wärmetauscher entspricht.
  • Gemäß einer weiteren bevorzugten Ausführung entspricht die Anzahl der inneren Wärmetauscher einem Vielfachen der äußeren Wärmetauscher oder umgekehrt.
  • Der Wärmeaustausch kann besonders effizient gestaltet werden, wenn der zumindest eine innere Wärmetauscher und der zumindest eine äußere Wärmetauscher im Wesentlichen parallel zur Drehachse erstreckt sind, wobei die Verdichtungs- und Entspannungskanäle zwischen dem inneren Wärmetauscher und dem äußeren Wärmetauscher verlaufen. Bevorzugt sind mehrere innere Wärmetauscher und mehrere äußere Wärmetauscher vorgesehen, welche jeweils in gleichen radialen Abständen zur Drehachse angeordnet sind. Bei dieser Ausführung ist zudem bevorzugt vorgesehen, dass eine der Zahl der inneren bzw. äußeren Wärmetauscher entsprechende Anzahl von Verdichtungs- bzw. Entspannungskanälen vorgesehen ist.
  • Besonders bevorzugt ist eine Ausführung, bei welcher das Schaufelrad mehrere hintereinander von dem Arbeitsmedium durchströmbare Schaufelradstufen aufweist. Die Zuleitungskanäle weisen bei dieser Ausführung im Wesentlichen parallel zur Drehachse verlaufende Austrittsabschnitte auf, welche bis unmittelbar vor die Eintrittsöffnung der in Strömungsrichtung gesehen ersten Schaufelradstufe erstreckt sind. Die aufeinanderfolgenden Schaufelradstufen sind jeweils über eine Umlenkung miteinander verbunden, mit welcher das Arbeitsmedium zwischen den Schaufelradstufen umgelenkt wird. Bevorzugt weist die Umlenkung im Wesentlichen parallel zur Drehachse verlaufende Austrittsabschnitte auf, welche bis unmittelbar vor die Eintrittsöffnung der in Strömungsrichtung gesehen folgenden Schaufelradstufe erstreckt sind. Dadurch wird das Arbeitsmedium stets bis vor die nächste Schaufelradstufe geführt und in Richtung der Drehachse eingeleitet. Die in Strömungsrichtung gesehen letzte Schaufelradstufe ist mit dem zumindest einen Ableitungskanal verbunden.
  • Bei dem Kreisprozess wird für einen steigenden Massenstrom eine nicht stetig steigende Druckdifferenz an dem Schaufelrad beobachtet. Demnach wird speziell bei niedrigen Massenströmen und hohen Drehzahlen des Rotors mit steigendem Massenstrom eine fallende Druckdifferenz am Schaufelrad hervorgerufen, bevor diese wieder ansteigt. Aus diesem Grund ist es günstig, wenn ein Schaufelrad verwendet wird, das einen möglichst steilen Verlauf aufweist, d.h. dass bei einer bestimmten Drehzahl des Schaufelrades sowie einer Hauptrotordrehzahl ab dem Erreichen des maximalen Drucks ein möglichst steil abfallender Verlauf bevorzugt wird. Ein derartiger Verlauf wird insbesondere mit mehrstufigen Schaufelrädern erzielt. Da die Prozesskennlinie (d.h. der benötigte Druck über dem Massenstrom) und die Schaufelkennlinie (d.h. der erzeugte Druck über dem Massenstrom) in der Regel zwei Schnittpunkte aufweisen, jedoch nur einer davon ein stabiler Betriebspunkt ist, wäre eine vertikale Kennlinie für die Druckerzeugung ideal. Dies könnte beispielsweise durch Verdrängermaschinen (wie z.B. Kolbenmaschinen) realisiert werden. Eine mehrstufige Druckerhöhung mit Schaufelrädern erzielt jedoch in vorteilhafter Weise einen ähnlichen Effekt, indem ab einem bestimmten Punkt ein sehr steiler Verlauf erzielt wird.
  • Die der Erfindung zugrundeliegende Aufgabe wird zudem durch ein Verfahren der eingangs angeführten Art gelöst, bei welchem einzelne Strömungen des Arbeitsmediums in dem Wärmepumpenbetriebszustand bis unmittelbar vor das Schaufelrad geführt und im Wesentlichen parallel zur Drehachse in das Schaufelrad eingeleitet werden. Demnach werden die Strömungen des Arbeitsmediums einzeln bzw. getrennt voneinander und in axialer Richtung in das Schaufelrad geführt.
  • Die Vorteile und technischen Effekte dieses Verfahrens ergeben sich aus den vorstehenden Erläuterungen, auf welche hiermit verwiesen werden kann.
  • Überraschenderweise hat es sich als vorteilhaft erwiesen, wenn das Schaufelrad in derselben Drehrichtung und mit einer höheren absoluten Drehzahl wie der Rotor mit den Entspannungs- und Verdichtungskanälen rotiert wird. Durch die Rotation des Schaufelrads in Drehrichtung des Rotors wird eine höhere absolute Drehzahl des Schaufelrads vorgesehen, welche eine entsprechend höhere Zentrifugalbeschleunigung und damit eine effizientere Verdichtung des Arbeitsmediums bewirkt. Bei gleicher Drehrichtung von Schaufelrad und Rotor wird der zentrifugale Verdichtungseffekt anteilsmäßig erhöht und dadurch die Effizienz gesteigt.
  • Die Erfindung wird nachstehend anhand von in der Zeichnung dargestellten bevorzugten Ausführungsbeispielen, auf die sie jedoch
    nicht beschränkt sein soll, noch weiter erläutert. Im Einzelnen
    zeigen in der Zeichnung:
    • Fig. 1 schematisch eine schaubildliche Ansicht einer erfindungsgemäßen Vorrichtung zum Umwandeln thermischer Energie, bei der ein Arbeitsmedium in einem Rotor einen geschlossenen Kreisprozess durchläuft, wobei der Kreisprozess mittels eines rotierenden Schaufelrads geschlossen wird;
    • Fig. 2 einen Längsschnitt durch die Vorrichtung der Fig. 1, wobei der besseren Übersicht halber nur die für die Funktion des Schaufelrads relevanten Bauteile gezeigt sind;
    • Fig. 2a ein Temperatur/Entropie - Diagramm des in der erfindungsgemäßen Vorrichtung durchgeführten Kreisprozesses;
    • Fig. 3 einen Längsschnitt der Vorrichtung gemäß Fig. 1, 2 im Bereich des Schaufelrads;
    • Fig. 4 einen Querschnitt der Vorrichtung gemäß der Linie IV-IV in Fig. 2 im Bereich des Schaufelrads, wobei die Austrittsabschnitte der Zuleitungskanäle einerseits und die Eintrittsabschnitte der Ableitungskanäle andererseits ersichtlich sind;
    • Fig. 5 eine schematische schaubildliche Ansicht von Teilen des Rotors im Bereich der Zuleitungskanäle, welche vor dem Eintritt in das Schaufelrad in axialer Richtung verlaufende Austrittsabschnitte aufweisen;
    • Fig. 6 schematisch eine schaubildliche Ansicht des Schaufelrads der in Fig. 1 bis 5 dargestellten Vorrichtung; und
    • Fig. 7 einen Längsschnitt der Vorrichtung gemäß Fig. 3 im Bereich des Schaufelrads, welches bei dieser Ausführung mehrere hintereinander durchströmbare Schaufelradstufen aufweist.
  • Fig. 1 zeigt eine Vorrichtung 20 zur Umwandlung von Wärmeenergie mittels mechanischer Energie und umgekehrt, welche in der gezeigten Ausführung als Wärmepumpe verwendet wird. Die Vorrichtung 20 umfasst einen Rotor 21, der mittels eines (nicht dargestellten) Motors um eine Drehachse 22 rotierbar ist. Der Rotor 21 weist eine Verdichtereinheit 23 und eine Entspannungseinheit 24 auf, welche Strömungskanäle für ein Arbeitsmedium aufweisen. Beim Durchströmen des Rotors 21 durchläuft das Arbeitsmedium, beispielsweise ein Edelgas, einen geschlossenen Kreisprozess, welcher die Arbeitsschritte a) Verdichtung des Arbeitsmediums, b) Wärmeaustausch zwischen dem Arbeitsmedium und einem Wärmeaustauschmedium in einem äußeren Wärmetauscher 1', c) Entspannung des Arbeitsmediums und d) Wärmeaustausch zwischen dem Arbeitsmedium und einem Wärmeaustauschmedium in einem inneren Wärmetauscher 1" aufweist. Zu diesem Zweck weist die Verdichtereinheit 23 im Wesentlichen in radialer Richtung verlaufende Verdichtungskanäle 25 auf, in welchen das Arbeitsmedium mit Bezug auf die Drehachse 22 in radialer Richtung nach außen strömt. Aufgrund der Zentrifugalbeschleunigung wird das Arbeitsmedium in den Verdichtungskanälen 25 verdichtet. Entsprechend wird das Arbeitsmedium zur Druckverringerung in Entspannungskanälen 26 der Entspannungseinheit 24 im Wesentlichen radial nach innen geführt.
  • Die Verdichtereinheit 23 und die Entspannungseinheit 24 sind durch axial, d.h. in Richtung der Drehachse 22, verlaufende Strömungskanäle miteinander verbunden, in denen ein Wärmeaustausch zwischen dem Arbeitsmedium und einem Wärmeaustauschmedium, beispielsweise Wasser, erfolgt. Zu diesem Zweck sind in Bezug auf die Drehachse äußere Wärmetauscher 1' und innere Wärmetauscher 1'' vorgesehen, welche im Wesentlichen parallel zur Drehachse 22 erstreckt sind. Wenn die Vorrichtung 20 als Wärmepumpe betrieben wird, gibt das in den Verdichtungskanälen 25 verdichtete Arbeitsmedium in den äußeren Wärmetauschern 1' Wärme an ein Wärmeaustauschmedium einer ersten, vergleichsweise hohen Temperatur ab, wobei das in den Entspannungskanälen 26 entspannte Arbeitsmedium Wärme vom Wärmeaustauschmedium einer zweiten, vergleichsweise niedrigen Temperatur aufnimmt.
  • Demnach wird die auf das Arbeitsmedium wirkende Zentrifugalbeschleunigung dazu ausgenützt, um verschiedene Druckniveaus bzw. Temperaturniveaus zu erzeugen. Dem verdichteten Arbeitsmedium wird Wärme hoher Temperatur entzogen, und dem entspannten Arbeitsmedium wird Wärme vergleichsweise niedriger Temperatur zugeführt. In einem Betrieb der Vorrichtung 20 als Motor werden die Strömungskanäle vom Arbeitsmedium in umgekehrter Richtung durchströmt. Entsprechend ändert sich der Wärmeaustausch, wobei am äußeren Wärmetauscher 1' Wärme dem Arbeitsmedium zugeführt und am inneren Wärmetauscher 1" Wärme dem Arbeitsmedium entzogen wird.
  • Wie aus Fig. 1 weiters ersichtlich, sind jeweils mehrere, in der gezeigten Ausführung zwölf, innere Wärmetauscher 1' und mehrere, in der gezeigten Ausführung zwölf, äußere Wärmetauscher 1' vorgesehen, welche in regelmäßigen Winkelabständen bezüglich der Drehachse angeordnet sind. Die inneren Wärmetauscher 1' und die äußeren Wärmetauscher 1' sind jeweils im Wesentlichen parallel zur Drehachse 22 erstreckt, wobei die Verdichtungs- 23 und Entspannungskanäle 25 zwischen den inneren Wärmetauschern 1' und den äußeren Wärmetauschern 1' verlaufen.
  • In Fig. 2 sind Teile der Vorrichtung 20 im Längsschnitt dargestellt, wobei lediglich einer der inneren Wärmetauscher 1'' und einer der äußeren Wärmetauscher 1' eingezeichnet sind. Darüber hinaus ist in Fig. 2 ein Schaufelrad 30 ersichtlich, mit welchem in der gezeigten Ausführung die Strömung des Arbeitsmediums um die Drehachse 22 aufrechterhalten wird. Das Schaufelrad 30 ist einerseits mit Zuleitungskanälen 31 verbunden, welche das Arbeitsmedium von den inneren Wärmetauschern 1" übernehmen. Darüber hinaus ist das Schaufelrad 30 mit Ableitungskanälen 32 verbunden, mit welchen das Arbeitsmedium in die Verdichtungskanäle 25 der Verdichtereinheit 23 geführt wird. Die Verdichtungskanäle 25 sind mit den äußeren Wärmetauscher 1' verbunden.
  • Wie aus Fig. 2 weiters ersichtlich, ist das Schaufelrad 30 in radialer Richtung näher an der Drehachse 22 als der innere Wärmetauscher 1" angeordnet. In der gezeigten Ausführung ist die Drehachse des Schaufelrades 30 fluchtend auf der Drehachse 22 des Rotors 21 angeordnet, um die Belastungen aufgrund der Zentrifugalbeschleunigung auf die Lagerung der Welle des Schaufelrades 30 zu reduzieren.
  • Fig. 2a zeigt ein Temperatur (T) - Entropie (S) - Diagramm, wobei die einzelnen Zustände des Arbeitsmediums mit Z1 bis Z7 bezeichnet sind. In Fig. 2 sind entsprechend die Positionen innerhalb der Vorrichtung 20 markiert, an welchen das Arbeitsmedium die Zustände Z1 bis Z7 im Wesentlichen erreicht. Demnach werden bei einem Betrieb als Wärmepumpe die folgenden Prozessschritte durchlaufen (bei einem Betrieb als Wärme-Kraft-Maschine würde der Kreisprozess in umgekehrter Richtung durchgeführt):
    • 1 nach 2: im Wesentlichen isentrope Verdichtung aufgrund der Hauptrotation vom Radius Z1 des achsnahen Wärmetauschers 1'' bis zum Radius Z2 des achsfernen Wärmetauschers 1';
    • 2 nach 3: im Wesentlichen isobare Wärmeabfuhr vom Arbeitsmedium an das Wärmeaustauschmedium in dem äußeren Wärmetauscher 1' bei vergleichsweise hoher Temperatur und bei konstantem Radius der Strömung;
    • 3 nach 4: im Wesentlichen isentrope Entspannung aufgrund der Hauptrotation vom Radius des äußeren Wärmetauschers 1' bis zum Radius des inneren Wärmetauschers 1";
    • 4 nach 5: im Wesentlichen isobare Wärmeabfuhr bei vergleichsweise niedriger Temperatur bei konstantem Radius in dem inneren Wärmetauscher 1";
    • 5 nach 6: im Wesentlichen isentrope Entspannung aufgrund der Hauptrotation vom Radius des inneren Wärmetauschers bis zum Eintrittsradius des Schaufelrades;
    • 6 nach 7: Verdichtung innerhalb des Schaufelrades, wobei die Verluste eine Entropieerhöhung bewirken; und
    • 7 nach 1: im Wesentlichen isentrope Verdichtung aufgrund der Hauptrotation vom Austritt des Schaufelrades bis zum Radius gemäß Zustand Z1.
  • Wie aus Fig. 3 ersichtlich, weisen die Zuleitungskanäle 31 im Wesentlichen parallel zur Drehachse 22 verlaufende, bis direkt vor eine Eintrittsöffnung 33 des Schaufelrads 30 erstreckte Austrittsabschnitte 34 auf, so dass die Strömungen des Arbeitsmediums in den Zuleitungskanälen 31 getrennt voneinander und im Wesentlichen parallel zur Drehachse 22 in das Schaufelrad 30 geführt werden.
  • Wie aus Fig. 3 weiters ersichtlich, weisen die Zuleitungskanäle 31 im Wesentlichen in radialer Richtung verlaufende Zuleitungsabschnitte 35 auf, welche zwischen den in das Schaufelrad 30 mündenden Austrittsabschnitten 34 und den inneren Wärmetauschern 1" angeordnet sind. Die Ableitungskanäle 32 sind mit den Verdichtungskanälen 25 verbunden, welche das Arbeitsmedium zu den äußeren Wärmetauschern 1' führen.
  • Wie insbesondere aus Fig. 3 ersichtlich, weisen die Zuleitungskanäle 31 an den Austrittsabschnitten 34 bogenförmig gekrümmte Wandungen 36 auf, welche eine Umlenkung des Arbeitsmediums um im Wesentlichen 90° von den radialen Zuleitungsabschnitten 35 in die axialen Austrittsabschnitte 34 bewirken.
  • Wie insbesondere aus Fig. 4 ersichtlich, sind die Austrittsabschnitte 34 der Zuleitungskanäle 31 durch im Wesentlichen in radialer und axialer Richtung zur Drehachse 22 erstreckte Trennelemente 37 begrenzt, welche in der gezeigten Ausführung durch im Wesentlichen ebene Trennwänden gebildet sind. Die Trennelemente 37 haben eine radiale Erstreckung und sind sternförmig angeordnet. In der gezeigten Ausführung sind die Austrittsabschnitte 34 daher regelmäßig und in konstanten radialen Abständen um die Drehachse 22 des Rotors 21 angeordnet.
  • Aus Fig. 4 ist weiters ersichtlich, dass das Schaufelrad 30 eine Vielzahl von bogenförmig gekrümmten Schaufeln 38 aufweist, mit welchen das Arbeitsmedium beim Durchströmen des Schaufelrads 30 in Drehrichtung 39 des Schaufelrads 30 beschleunigt wird. Das Schaufelrad 30 weist auf der der Drehachse 22 zugewandten Seite einen von Schaufeln 38 freien Radialabschnitt 40 auf, in welchem die Strömungen des Arbeitsmediums aus den Zuleitungskanälen 31 zusammengeführt und homogenisiert werden. An dem Radialabschnitt 40 ist eine bogenförmig gekrümmte Umlenkwand 41 vorgesehen (vgl. Fig. 3), mit welcher das Arbeitsmedium um im Wesentlichen 90° von der axialen Strömung beim Eintritt in das Schaufelrad 30 in eine radiale Strömung vor den Schaufeln 38 umgelenkt wird.
  • Wie aus Fig. 4 ersichtlich, weisen die Ableitungskanäle 32 in Bezug auf eine Umhüllende des Schaufelrads 30, d.h. in Bezug auf die im Querschnitt kreisförmige Außenfläche des Schaufelrads 30, zur radialen Richtung geneigt verlaufende Eintrittsabschnitte 42 auf, welche mit im Wesentlichen in radialer Richtung verlaufenden Ableitungsabschnitten 43 verbunden sind.
  • Wie aus Fig. 4, 6 schematisch ersichtlich, weist das Schaufelrad 30 eine Schaufelradwelle 44 auf, welche mit einem Motor (nicht gezeigt) verbunden ist. Der Motor ist dazu eingerichtet, das Schaufelrad 30 in die Drehrichtung 45 des Rotors 21 zu rotieren. In der gezeigten Ausführung fallen die Drehachse des Schaufelrads 44 und die Drehachse 22 des Rotors 21 zusammen. Bei dem Betrieb als Wärmekraftmaschine ist an das Schaufelrad 30, welches dann als Turbine arbeitet, ein Generator angeschlossen. Die Turbine wandelt bei einer Durchströmung mit einem entsprechenden Massenstrom einen entstandenen Differenzdruck in Wellenleistung um.
  • Wie aus Fig. 5 ersichtlich, weist die Vorrichtung 20 dynamische Dichtspalte 46 auf, welche Rückströmungen aufgrund eines erhöhten Drucks am Ausgang des Schaufelrades 30 gegenüber dem Eingang minimieren sollen. In die Dichtspalten 46 greifen Gegenlamellen 47 des Schaufelrades 30 ein, um mehrere möglichst kleine Spalte zu erzeugen.
  • Fig. 7 zeigt eine alternative Ausführung, bei welcher das einzelne Schaufelrad 30 mehrere, in der gezeigten Ausführung zwei, hintereinander durchströmbare Schaufelradstufen 30', 30" aufweist. Die Schaufelradstufen 30' 30" sind über eine Umlenkung 30"' miteinander verbunden, mit welcher das Arbeitsmedium von einer Strömung radial nach außen im Anschluss an die erste Schaufelradstufe 30" zunächst in eine Strömung radial nach innen und danach in eine Strömung in Richtung der Drehachse 22 bis unmittelbar vor die zweite Schaufelradstufe 30' umgelenkt wird. Jede Schaufelradstufe 30', 30'' ist entsprechend der einstufigen Ausführung gemäß Fig. 1 bis 6 aufgebaut. In der gezeigten Ausführung sind die Schaufelradstufen 30', 30'' auf derselben Schaufelradwelle 44 angeordnet, welche mit einem Motor oder mit einem Generator verbunden ist. Die Schaufelradstufen 30', 30'' können alternativ auf getrennten Schaufelradwellen gelagert sein, wobei jede Schaufelradstufe 30', 30'' mit einem Motor bzw. Generator verbunden ist.

Claims (15)

  1. Vorrichtung (20) zum Umwandeln thermischer Energie niedriger Temperatur in thermische Energie höherer Temperatur mittels mechanischer Energie und umgekehrt mit einem drehbar um eine Drehachse (22) gelagerten Rotor (21) für ein einen geschlossenen Kreisprozess durchlaufendes Arbeitsmedium, wobei der Rotor (21) eine Verdichtereinheit (23) mit mehreren Verdichtungskanälen (25), in welchen Strömungen des Arbeitsmediums zur Druckerhöhung in Bezug auf die Drehachse (22) im Wesentlichen radial nach außen führbar sind, und eine Entspannungseinheit (24) mit mehreren Entspannungskanälen (26), in welchen Strömungen des Arbeitsmediums zur Druckverringerung in Bezug auf die Drehachse (22) im Wesentlichen radial nach innen führbar sind, aufweist, wobei der Rotor (21) weiters Wärmetauscher (1', 1") für einen Wärmeaustausch zwischen dem Arbeitsmedium und einem Wärmeaustauschmedium aufweist, und mit einem relativ zu dem Rotor (21) drehbaren Schaufelrad (30), welches in einem Wärmepumpenbetriebszustand zur Aufrechterhaltung der Strömungen des Arbeitsmediums um die Drehachse (22) des Rotors (21) und/oder in einem Generatorbetriebszustand zur Nutzung der Strömungsenergie des Arbeitsmediums vorgesehen ist, wobei das Schaufelrad (30) zwischen im Wärmepumpenbetriebszustand die Strömung des Arbeitsmediums zuführenden Zuleitungskanälen (31) und zumindest einem im Wärmepumpenbetriebszustand die Strömung des Arbeitsmediums abführenden Ableitungskanal (32) des Rotors (21) angeordnet ist, dadurch gekennzeichnet, dass die Zuleitungskanäle (31) im Wesentlichen parallel zur Drehachse (22) verlaufende, bis unmittelbar vor eine Eintrittsöffnung (33) des Schaufelrads (30) erstreckte Austrittsabschnitte (34) aufweisen, so dass einzelne Strömungen des Arbeitsmediums aus den Zuleitungskanälen (31) im Wesentlichen parallel zur Drehachse (22) in das Schaufelrad (30) führbar sind.
  2. Vorrichtung (20) nach Anspruch 1, dadurch gekennzeichnet, dass die Zuleitungskanäle (31) im Wesentlichen in radialer Richtung verlaufende Zuleitungsabschnitte (35) aufweisen, welche zwischen den Austrittsabschnitten (34) und in Bezug auf die Drehachse (22) inneren Wärmetauschern (1'') angeordnet sind.
  3. Vorrichtung (20) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der zumindest eine Ableitungskanal (32) mit den Verdichtungskanälen (25) verbunden ist, welche mit in Bezug auf die Drehachse (22) äußeren Wärmetauschern (1') verbunden sind.
  4. Vorrichtung (20) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das Schaufelrad (30) in radialer Richtung näher an der Drehachse (22) als der innere Wärmetauscher (1'') angeordnet ist, wobei das Schaufelrad (30) bevorzugt konzentrisch um die Drehachse (22) des Rotors (11) angeordnet ist.
  5. Vorrichtung (20) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Zuleitungskanäle (31) an den Austrittsabschnitten (34) bogenförmig gekrümmte Wandungen (36) aufweisen, welche eine Umlenkung des Arbeitsmediums um im Wesentlichen 90° von den Zuleitungsabschnitten (35) in die Austrittsabschnitte (34) bewirken.
  6. Vorrichtung (20) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Austrittsabschnitte (34) der Zuleitungskanäle (31) zwischen im Wesentlichen in radialer und axialer Richtung zur Drehachse erstreckten Trennelementen (37), insbesondere im Wesentlichen ebenen Trennwänden, gebildet sind.
  7. Vorrichtung (20) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Schaufelrad (30) eine Mehrzahl von insbesondere bogenförmig gekrümmten Schaufeln (38) aufweist.
  8. Vorrichtung (20) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Schaufelrad (30) auf der der Drehachse (22) zugewandten Seite einen von Schaufeln (38) freien Radialabschnitt (40) aufweist, wobei bevorzugt das Schaufelrad (30) an dem Radialabschnitt (40) eine bogenförmig gekrümmte Umlenkwand (41) aufweist, mit welcher das Arbeitsmedium um im Wesentlichen 90° in radialer Richtung umlenkbar ist.
  9. Vorrichtung (20) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der zumindest eine Ableitungskanal (32) einen schräg zur radialen Richtung angeordneten Eintrittsabschnitt (42) aufweist, welcher mit einem im Wesentlichen in radialer Richtung verlaufenden Ableitungsabschnitt (43) verbunden ist.
  10. Vorrichtung (20) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Schaufelrad (30) eine insbesondere parallel zur Drehachse (22) des Rotors (21) rotierbare Schaufelradwelle (44) aufweist, welche mit einem Motor oder mit einem Generator verbunden ist.
  11. Vorrichtung (20) nach Anspruch 8, dadurch gekennzeichnet, dass der Motor zur Rotation des Schaufelrads (30) in derselben Drehrichtung (39, 45) wie der Rotor (21) mit den Entspannungs- (25) und Verdichtungskanälen (26) für das Arbeitsmedium eingerichtet ist.
  12. Vorrichtung (20) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass zumindest ein in Bezug auf die Drehachse innerer Wärmetauscher (1'') und zumindest ein in Bezug auf die Drehachse (22) äußerer Wärmetauscher (1') vorgesehen sind, wobei bevorzugt jeweils mehrere innere Wärmetauscher (1'') und äußere Wärmetauscher (1') vorgesehen sind, wobei die Anzahl der inneren Wärmetauscher (1'') bevorzugt einem Vielfachen der äußeren Wärmetauscher (1') oder umgekehrt entspricht, wobei der zumindest eine innere Wärmetauscher (1'') und der zumindest eine äußere Wärmetauscher (1') vorzugsweise im Wesentlichen parallel zur Drehachse (22) erstreckt sind, wobei die Verdichtungs- (25) und/oder Entspannungskanäle (26) zwischen dem inneren Wärmetauscher (1'') und dem äußeren Wärmetauscher (1') verlaufen.
  13. Vorrichtung (20) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Schaufelrad (30) mehrere hintereinander von dem Arbeitsmedium durchströmbare Schaufelradstufen (30', 30") aufweist.
  14. Verfahren zum Umwandeln thermischer Energie niedriger Temperatur in thermische Energie höherer Temperatur mittels mechanischer Energie und umgekehrt, wobei ein Arbeitsmedium in einem um eine Drehachse (22) rotierenden Rotor (21) einen geschlossenen Kreisprozess durchläuft, wobei mehrere Strömungen des Arbeitsmediums zur Druckerhöhung in Bezug auf die Drehachse (22) im Wesentlichen radial nach außen geführt werden, wobei die Strömungen des Arbeitsmediums zur Druckverringerung in Bezug auf die Drehachse im Wesentlichen radial nach innen geführt werden, wobei ein Wärmeaustausch zwischen dem Arbeitsmedium und einem Wärmeaustauschmedium vorgenommen wird, wobei das Arbeitsmedium in einem Wärmepumpenbetriebszustand zur Aufrechterhaltung der Strömungen des Arbeitsmediums um die Drehachse des Rotors und/oder in einem Generatorbetriebszustand zur Nutzung der Strömungsenergie des Arbeitsmediums durch ein Schaufelrad (30) geführt wird, dadurch gekennzeichnet, dass einzelne Strömungen des Arbeitsmediums in dem Wärmepumpenbetriebszustand bis unmittelbar vor das Schaufelrad (30) geführt und im Wesentlichen parallel zur Drehachse (22) in das Schaufelrad (30) eingeleitet werden.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass das Schaufelrad (30) in derselben Drehrichtung (39, 45) und mit einer höheren absoluten Drehzahl wie der Rotor (21) mit den Entspannungs- (25) und Verdichtungskanälen (26) rotiert wird.
EP15724506.9A 2014-04-23 2015-04-22 Vorrichtung und verfahren zum umwandeln thermischer energie Active EP3137821B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15724506T PL3137821T3 (pl) 2014-04-23 2015-04-22 Sposób i urządzenie do przemieniania energii termicznej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50296/2014A AT515217B1 (de) 2014-04-23 2014-04-23 Vorrichtung und Verfahren zum Umwandeln thermischer Energie
PCT/AT2015/050098 WO2015161330A1 (de) 2014-04-23 2015-04-22 Vorrichtung und verfahren zum umwandeln thermischer energie

Publications (2)

Publication Number Publication Date
EP3137821A1 EP3137821A1 (de) 2017-03-08
EP3137821B1 true EP3137821B1 (de) 2018-05-23

Family

ID=53267187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15724506.9A Active EP3137821B1 (de) 2014-04-23 2015-04-22 Vorrichtung und verfahren zum umwandeln thermischer energie

Country Status (10)

Country Link
US (1) US10247450B2 (de)
EP (1) EP3137821B1 (de)
JP (1) JP6496010B2 (de)
CN (1) CN106415154B (de)
AT (1) AT515217B1 (de)
DK (1) DK3137821T3 (de)
ES (1) ES2684621T3 (de)
HU (1) HUE038862T2 (de)
PL (1) PL3137821T3 (de)
WO (1) WO2015161330A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107065952A (zh) * 2017-04-19 2017-08-18 中国神华能源股份有限公司 减压装置及具有其的减压系统
JP6935312B2 (ja) * 2017-11-29 2021-09-15 三菱重工コンプレッサ株式会社 多段遠心圧縮機
CN109630466B (zh) * 2018-12-12 2024-01-23 扬州大学 一种用于低扬程泵站出水流道纠偏消涡方法及其应用
DE102019009076A1 (de) * 2019-12-28 2021-07-01 Ingo Tjards Kraftwerk zur Erzeugung elektrischer Energie
DE102020108377A1 (de) 2020-03-26 2021-09-30 Envola GmbH Wärmetauscheranordnung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2757521A (en) * 1954-04-30 1956-08-07 Radiation Ltd Gas cycle heat pump
NL7108157A (de) 1971-06-14 1972-12-18
GB1466580A (en) * 1973-05-17 1977-03-09 Eskeli M Heat exchange apparatus
US4094170A (en) * 1974-04-16 1978-06-13 Kantor Frederick W Rotary thermodynamic apparatus
NL7607040A (nl) * 1976-06-28 1977-12-30 Ultra Centrifuge Nederland Nv Installatie voorzien van een holle rotor.
JPS5424346A (en) * 1977-07-25 1979-02-23 Ultra Centrifuge Nederland Nv Hollow rotor equipped facility
FR2406718A1 (fr) * 1977-10-20 1979-05-18 Bailly Du Bois Bernard Procede de conversion thermodynamique de l'energie et dispositif pour sa mise en oeuvre
US4420944A (en) * 1982-09-16 1983-12-20 Centrifugal Piston Expander, Inc. Air cooling system
GB8308137D0 (en) 1983-03-24 1983-05-05 Ici Plc Compression-type heat pumps
US4726198A (en) * 1987-03-27 1988-02-23 Ouwenga John N Centrifugal heat exchanger
NO300186B1 (no) * 1995-07-13 1997-04-21 Haga Engineering As Varmepumpe med lukket kjölemediumkretslöp for transport av varme fra en luftström til en annen
FR2749070B3 (fr) 1996-05-24 1998-07-17 Chaouat Louis Pompe a chaleur sans cfc (chlorofluorocarbone) pour congelateurs domestiques et industriels
SE511741C2 (sv) * 1997-01-14 1999-11-15 Nowacki Jan Erik Motor, kylmaskin eller värmepump
WO2006017888A1 (en) * 2004-08-16 2006-02-23 Water Un Limited Apparatus and method for cooling of air
AT505532B1 (de) 2007-07-31 2010-08-15 Adler Bernhard Verfahren zum umwandeln thermischer energie niedriger temperatur in thermische energie höherer temperatur mittels mechanischer energie und umgekehrt
AR072693A1 (es) 2008-07-04 2010-09-15 Heleos Technology Gmbh Proceso y aparato para transferir calor de un primer medio a un segundo medio
AT509231B1 (de) 2010-05-07 2011-07-15 Bernhard Adler Vorrichtung und verfahren zum umwandeln thermischer energie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AT515217A4 (de) 2015-07-15
EP3137821A1 (de) 2017-03-08
JP2017514098A (ja) 2017-06-01
CN106415154A (zh) 2017-02-15
US20170045270A1 (en) 2017-02-16
PL3137821T3 (pl) 2019-01-31
JP6496010B2 (ja) 2019-04-03
WO2015161330A1 (de) 2015-10-29
HUE038862T2 (hu) 2018-12-28
AT515217B1 (de) 2015-07-15
ES2684621T3 (es) 2018-10-03
US10247450B2 (en) 2019-04-02
CN106415154B (zh) 2019-04-30
DK3137821T3 (en) 2018-08-27

Similar Documents

Publication Publication Date Title
EP3137821B1 (de) Vorrichtung und verfahren zum umwandeln thermischer energie
EP2569542B1 (de) Mehrstufiger getriebeverdichter
DE2043480A1 (de) Axialstromungsmaschine fur elastische Stromungsmittel
DE102011103996A1 (de) Aerodynamisch totzonenfreie, windkraftbetriebene Anlage mit integriertem Dreifachrotor
WO2017215686A1 (de) Elektromaschine mit einer hohlen rotorwelle
DE112015005131B4 (de) Kühlstruktur für Turbine, und Gasturbine
EP3164578B1 (de) Abströmbereich einer turbine eines abgasturboladers
EP1489262A1 (de) Verbesserte turbine
EP3423703A1 (de) Wasserturbine, insbesondere axialturbine, und wasserkraftwerk mit selbiger
EP0097924A2 (de) Turbinenpumpe
EP1715224A1 (de) Dichtung für eine Strömungsmaschine
EP3577745B1 (de) Kühlung einer elektrischen maschine
EP3034784A1 (de) Kühlmöglichkeit für strömungsmaschinen
BE1030268B1 (de) Salpetersäureanlage zur Herstellung von Salpetersäure
DE102017124689A1 (de) Axialverdichter, umfassend nebeneinander angeordnete Rotoren, die sich in entgegengesetzte Richtungen drehen
DE102012108184A1 (de) Niederdruckdampfturbine mit schwenkbarer Düse
DE102011005105B4 (de) Austrittssammelgehäuse für einen Radialverdichter
EP3480425A1 (de) Strömungsmaschine
DE1810501A1 (de) Verfahren und Einrichtung zum Verdichten eines leichten Gases
DE102016203731A1 (de) Dampfturbine
WO2023152293A1 (de) Salpetersäureanlage zur herstellung von salpetersäure
DE102012016991A1 (de) Energieeffizientes Entspannungsaggregat
EP4031752A1 (de) Konzentrische einleitung des waste-gate-massenstroms in einen strömungsoptimierten axialdiffusor
WO2010040346A2 (de) Rotorblatt einer windkraftanlage
DE102007025671B4 (de) Entspannungsvorrichtung und Verfahren zur Energieumwandlung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ADLER, BERNHARD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1001836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004383

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180821

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ECOP TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180523

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2684621

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181003

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015004383

Country of ref document: DE

Representative=s name: LORENZ SEIDLER GOSSEL RECHTSANWAELTE PATENTANW, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015004383

Country of ref document: DE

Owner name: ECOP TECHNOLOGIES GMBH, AT

Free format text: FORMER OWNER: ECOP TECHNOLOGIES GMBH, LINZ, AT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E038862

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 28728

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015004383

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190422

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230315

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230418

Year of fee payment: 9

Ref country code: IT

Payment date: 20230428

Year of fee payment: 9

Ref country code: IE

Payment date: 20230425

Year of fee payment: 9

Ref country code: FR

Payment date: 20230417

Year of fee payment: 9

Ref country code: ES

Payment date: 20230517

Year of fee payment: 9

Ref country code: DK

Payment date: 20230419

Year of fee payment: 9

Ref country code: DE

Payment date: 20230418

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230411

Year of fee payment: 9

Ref country code: CH

Payment date: 20230502

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230418

Year of fee payment: 9

Ref country code: SK

Payment date: 20230418

Year of fee payment: 9

Ref country code: PL

Payment date: 20230407

Year of fee payment: 9

Ref country code: HU

Payment date: 20230419

Year of fee payment: 9

Ref country code: FI

Payment date: 20230417

Year of fee payment: 9

Ref country code: AT

Payment date: 20230412

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230417

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230413

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240422

Year of fee payment: 10