EP3129700B1 - Cuve etanche et thermiquement isolante logee dans un ouvrage flottant - Google Patents
Cuve etanche et thermiquement isolante logee dans un ouvrage flottant Download PDFInfo
- Publication number
- EP3129700B1 EP3129700B1 EP15715321.4A EP15715321A EP3129700B1 EP 3129700 B1 EP3129700 B1 EP 3129700B1 EP 15715321 A EP15715321 A EP 15715321A EP 3129700 B1 EP3129700 B1 EP 3129700B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- primary
- wall
- tank
- dome
- space
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 claims description 121
- 230000004888 barrier function Effects 0.000 claims description 92
- 239000007788 liquid Substances 0.000 claims description 64
- 239000000700 radioactive tracer Substances 0.000 claims description 61
- 239000012528 membrane Substances 0.000 claims description 59
- 238000007789 sealing Methods 0.000 claims description 56
- 238000007667 floating Methods 0.000 claims description 44
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 24
- 238000009826 distribution Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 238000003860 storage Methods 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 239000001307 helium Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 239000007791 liquid phase Substances 0.000 claims description 3
- 239000012808 vapor phase Substances 0.000 claims description 3
- 238000009833 condensation Methods 0.000 claims description 2
- 230000005494 condensation Effects 0.000 claims description 2
- 239000012263 liquid product Substances 0.000 claims description 2
- 238000013022 venting Methods 0.000 claims 26
- 239000003949 liquefied natural gas Substances 0.000 description 18
- 239000012071 phase Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011491 glass wool Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/025—Bulk storage in barges or on ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/12—Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
- F17C13/126—Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures for large storage containers for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/002—Storage in barges or on ships
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
- B63B25/12—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
- B63B25/16—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/002—Details of vessels or of the filling or discharging of vessels for vessels under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/004—Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/02—Special adaptations of indicating, measuring, or monitoring equipment
- F17C13/025—Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/06—Closures, e.g. cap, breakable member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C5/00—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
- F17C5/02—Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with liquefied gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C7/00—Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
- F17C7/02—Discharging liquefied gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0147—Shape complex
- F17C2201/0157—Polygonal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/052—Size large (>1000 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0345—Fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0375—Thermal insulations by gas
- F17C2203/0379—Inert
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0626—Multiple walls
- F17C2203/0631—Three or more walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0311—Closure means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0332—Safety valves or pressure relief valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0352—Pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/23—Manufacturing of particular parts or at special locations
- F17C2209/234—Manufacturing of particular parts or at special locations of closing end pieces, e.g. caps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0341—Heat exchange with the fluid by cooling using another fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/043—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0447—Composition; Humidity
- F17C2250/0452—Concentration of a product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0473—Time or time periods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0486—Indicating or measuring characterised by the location
- F17C2250/0491—Parameters measured at or inside the vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0626—Pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0642—Composition; Humidity
- F17C2250/0647—Concentration of a product
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/038—Detecting leaked fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
- F17C2270/0107—Wall panels
Definitions
- the invention relates to the field of sealed and thermally insulating vessels for storing a liquefied gas at low temperature, and more particularly to devices and methods for detecting leaks in a secondary sealing membrane of such a vessel.
- the upper wall of the tank has structures called vapor dome and liquid dome which are in the form of two turrets or chimneys protruding from an outer surface of the upper supporting wall and intended to pass cargo handling equipment for handling a liquid phase and a vapor phase of the liquefied gas contained in the tank.
- leak detection methods based on the observation of abnormally hot or abnormally cold zones can be defeated, in particular because of the influence of external climatic conditions and because the temperature fields in and in the vicinity of these turrets are too complex.
- An idea underlying the invention is to provide devices and methods for detecting leaks in a sealed and thermally insulating tank in and around these protruding structures.
- such a floating structure may include one or more of the following features.
- the primary or secondary exhaust device further comprises a primary or secondary control line which communicates directly with the primary or secondary space of the turret and which passes through the outer tight wall of the turret to control the primary or secondary pressure relief valve as a function of the pressure in the primary or secondary space, and wherein the gas reservoir is in direct communication with the primary or secondary control line.
- the gas tank can be connected directly to the primary or secondary exhaust pipe.
- the primary or secondary exhaust device further comprises a primary or secondary control line which communicates directly with the primary or secondary space of the turret and which passes through the outer tight wall of the turret to control the primary or secondary overpressure valve as a function of the pressure in the primary or secondary space, and wherein the gas detector is in direct communication with the primary or secondary control line.
- the gas detector can be connected directly to the primary or secondary exhaust pipe.
- the turret is a steam dome of the tank, the sheath engaged through the opening of the upper bearing wall being a collecting pipe connected to a main steam collector of the floating structure.
- the steam dome can be designed in different ways.
- the separation wall of the turret forms a primary sampling pipe extending parallel to the collecting duct in the space defined between the external waterproof wall and the internal tight wall of the turret and having an inner end. opening into the primary insulating barrier of the upper tank wall and an outer end opening directly into the primary exhaust device, the primary space of the turret having the inner space of the primary bleed pipe.
- the turret is a liquid dome of the vessel further comprising a top wall disposed on an upper end of the outer wall of the liquid dome and having an opening aligned with a central zone of the opening of the upper carrier wall, the sheath formed by the inner sealed wall of the liquid dome being a primary sealing membrane having an upper edge sealingly attached to an edge of the apex wall all around the aperture of the apex wall.
- the partition wall comprises a secondary sealing membrane extending all around the sheath between the outer sealing wall and the sheath and having an inner end sealingly connected to the secondary sealing membrane of the upper vessel wall all around the sheath and an outer end sealingly connected to the apex wall all around the opening of the top wall of the liquid dome.
- the tank comprises the aforementioned provisions on both the liquid dome and the steam dome to be able to detect leaks in these two areas of the tank.
- the wall of the liquid dome comprises a multilayer structure fixed on an inner surface of the outer wall, the multilayer structure being formed of the primary sealing membrane of the liquid dome, the secondary sealing membrane of the dome liquid, a secondary insulating barrier of the liquid dome disposed between the secondary sealing membrane and the outer sealing wall and a primary insulating barrier disposed between the secondary sealing membrane and the primary sealing membrane of the liquid dome.
- the floating structure further comprises a connecting plate disposed between the outer end of the secondary sealing membrane of the liquid dome and the top wall, the connecting plate comprising a main branch extending parallel to the external sealing wall between the external sealing wall and the sheath formed by the internal sealed wall of the liquid dome, the main branch having an upper end attached to the top plate and a lower end extending by a bent flange to the interior of the liquid dome with respect to the main panel, the outer end of the secondary sealing membrane being sealingly attached to the rim, wherein the secondary insulating barrier of the liquid dome has a trim fibrous material disposed between the main branch of the connecting plate and the outer watertight wall, and wherein the secondary exhaust duct opens into the fibrous liner.
- the pressure drop induced by the fibrous lining in the zone of the secondary space where the tracer gas is injected or removed is relatively low, which facilitates the circulation of the tracer gas, especially around the liquid dome.
- the primary exhaust pipe passes through the main branch of the connecting plate and opens into the primary insulating barrier between the main branch of the connecting plate and the primary sealing membrane of the liquid dome.
- the floating structure further comprises a nitrogen distribution system including a nitrogen gas reservoir and a distribution network, the distribution network comprising a primary distribution pipe extending from an upper deck of the a structure floating through the primary space of the liquid dome and through the primary isolation barrier of a transverse wall of the vessel to a bottom zone of the vessel, and a secondary distribution pipe extending from the upper bridge of the structure floating through the secondary space of the liquid dome and through the secondary insulation barrier of the transverse wall of the tank to the bottom zone of the tank.
- a nitrogen distribution system including a nitrogen gas reservoir and a distribution network
- the distribution network comprising a primary distribution pipe extending from an upper deck of the a structure floating through the primary space of the liquid dome and through the primary isolation barrier of a transverse wall of the vessel to a bottom zone of the vessel, and a secondary distribution pipe extending from the upper bridge of the structure floating through the secondary space of the liquid dome and through the secondary insulation barrier of the transverse wall of the tank to the bottom zone of the tank.
- the nitrogen distribution system further comprises pressure regulating means for regulating the pressure prevailing in the primary insulation barrier and the secondary insulation barrier of the walls of the tank by means of the primary distribution pipes and secondary.
- these pressure regulating means are used to generate a pressure difference between the zone where the tracer gas is injected and the zone where the tracer gas is sought so as to show more quickly the leaks or faults. sealing.
- Such a tank can be used to store all kinds of liquefied gases at atmospheric pressure, for example butane, propane, ethane, ethylene, methane and others.
- the liquefied gas contained in the tank is liquefied natural gas (LNG), namely a gas with a high methane content, stored at a temperature of about -162 ° C.
- LNG liquefied natural gas
- the tracer gas is selected from argon, helium and mixtures thereof.
- the tracer gas reservoir and / or the gas detector are removably attached to the primary or secondary exhaust device. Thanks to these characteristics, it is possible to dismantle the tracer gas reservoir and / or the gas detector from the access of the exhaust system to which it is attached, for example a pipe or a flange, so as to release this access of the exhaust device for another use outside the phases where the leak detection is implemented.
- the tracer gas is injected into the secondary space through the secondary exhaust device and detected in the primary space through the primary exhaust device, the method further comprising: maintaining a higher total pressure in the secondary space than in the primary space by injecting nitrogen gas into the secondary space, without exceeding the opening pressure of the secondary pressure relief valve.
- Reverse operation is also possible, where the tracer gas is injected into the primary space through the primary exhaust and detected in the secondary space through the secondary exhaust.
- the pressure levels can be reversed in this case.
- the step of diagnosing a leak includes one of the measures selected from the group consisting of recording the presence of a leak, measuring a quantity or a concentration of the tracer gas to determine a flow rate of the leak, and measuring a time delay between the injection and the tracer gas detection to determine a position of the leak.
- Such a tank can be part of a land storage facility, for example to store LNG or be installed in a floating structure, coastal or deep water, including a LNG tank, a floating storage and regasification unit (FSRU) , a floating production and remote storage unit (FPSO) and others.
- FSRU floating storage and regasification unit
- FPSO floating production and remote storage unit
- the invention also provides a method of loading or unloading such a floating structure, in which liquefied gas is conveyed through isolated pipes to or from a floating or land storage facility to or from the waterproof and thermally insulating tank.
- the invention also provides a transfer system for liquefied gas at low temperature, the system comprising a floating structure above, insulated pipes arranged to connect the sealed tank and thermally insulating to a floating storage facility or terrestrial and a pump for driving a flow of cold liquid product through the insulated pipelines from or to the floating or land storage facility to or from the vessel vessel.
- Some aspects of the invention start from the idea of limiting the distance to be traveled by the tracer gas between the injection point and the detection point, so that the detection of leaks in the turret zone can be implemented. relatively quickly and with a relatively small amount of tracer gas relative to the volume of all the walls of the tank. Certain aspects of the invention start from the idea of proposing a test method that can be executed in sea with the tank in cold, so as to avoid immobilizing the floating work in dry dock.
- FIG. 1 schematically shows a longitudinal section of the hull 2 of a LNG tank in which is disposed a sealed and insulating tank 1 made according to the technology of the membrane tanks.
- the vessel 1 is disposed between two transverse partitions 3 generally called "cofferdam" which divide the inner space of the shell into a plurality of polyhedral compartments for each to accommodate a respective tank.
- a vessel may thus have one or more similar vessels, as sketched on the right of the figure 1 .
- the shell 2 is a double wall defining a ballast space shown at number 4 for the lower part of the tank.
- the tank 1 is built on the inner wall 5 of the shell 2 which serves as a load-bearing wall.
- the upper wall 6 of the tank 1 is similarly carried by an upper supporting wall 7 forming part of the shell 2.
- the vessel 1 has a generally polyhedral geometry and all the walls of the vessel consist of a multilayer structure known in the art of membrane tanks. It suffices to recall that this multilayer structure comprises successively a secondary insulating barrier 10, a secondary waterproof membrane 11, a primary insulating barrier 12 and a primary waterproof membrane 13 which directly contains the LNG stored in the tank 1.
- This multilayer structure can be realized according to various techniques, for example techniques marketed by the applicant company under the name Mark III®.
- the figure 1 shows that the upper supporting wall 7 is interrupted at two locations where the vessel wall forms a protruding structure in the form of turret or chimney.
- the first turret is a liquid dome 15 which serves as a point of penetration for various LNG handling equipment, namely in the example shown a filling line 16, an emergency pumping line 17, unloading lines connected to discharge pumps 18, a spray line 20 and a feed line connected to a spraying pump 19.
- the second turret is a steam dome 21 which serves as a point of entry for a vapor collection pipe 22. The operation of this equipment is known elsewhere.
- the liquid dome has a square section formed of four similar vertical walls in which there is each time the aforementioned multilayer structure, namely carrier wall 103, secondary insulating barrier 110, secondary waterproof membrane 111, primary insulating barrier 112 and primary waterproof membrane 113.
- the liquid dome is equipped with a primary exhaust device 25 to protect the primary waterproof membrane 113 against the overpressures and a secondary exhaust device 35 to protect the secondary waterproof membrane 111 against overpressures.
- the primary exhaust device 25 comprises an exhaust pipe I opening on one side inside the primary insulating barrier 112 of the liquid dome and on the other side in an exhaust mast towards the atmosphere 30 disposed outside on the deck of the ship.
- a pressure relief valve 27 is arranged on the pipe I, which is closed by default.
- the valve 27 opens under the control of a valve driver 26 when the total pressure in the primary insulating barrier 112 exceeds a predefined level, for example 30 mbar or 3kPa.
- the valve driver 26 is connected to the pressure of the primary insulating barrier 112 by a control line N.
- the gas phase present in the primary insulating barrier 112 escapes automatically to the exhaust mast 30 when its pressure exceeds the predefined level.
- the secondary exhaust device 35 has an exhaust pipe K opening on one side inside the secondary insulating barrier 110 of the liquid dome and on the other side in an exhaust line towards the atmosphere 40.
- a pressure relief valve 37 is arranged on the pipe K, which is closed by default.
- the valve 37 opens under the control of a valve driver 36 when the total pressure in the secondary insulating barrier 110 exceeds a predefined level, for example 30 mbar or 3kPa.
- the valve driver 36 is connected to the pressure of the secondary insulating barrier 110 by a control line M.
- the opening pressures of the valves 27 and 37 may be equal or different.
- a device for injecting and detecting a tracer gas is used in the liquid dome 15.
- This device comprises a tracer gas tank 41 which is connected to the control line M via a valve 42 so as to be able to transfer tracer gas to the secondary insulating barrier 110 when the valve 42 is open.
- the tracer gas is for example argon or helium or any other gas or gas mixture that is not likely to liquefy during operation.
- This device also comprises a gas detector 43 capable of detecting the tracer gas and connected to the exhaust pipe I, so as to detect the presence of the tracer gas in the gas phase present in the primary insulating barrier 112.
- the fundamental principle of the detection is as follows: since the secondary waterproof membrane 111 is supposed to isolate in gas-tight manner the secondary insulating barrier 110 of the primary insulating barrier 112, a positive detection of the tracer gas in the primary insulating barrier 112 while this gas has been injected into the secondary insulating barrier 110 necessarily betrays the existence of a leak.
- the tank 41 can be connected to the pipe K and / or the detector 43 can be connected to the pipe N without changing the operating principle.
- the figure 2 also shows nitrogen feed lines that enter the tank at the liquid dome to allow control of the total pressure in the secondary 110 and primary 112.
- These supply lines come from a tank of gaseous nitrogen symbolized at number 45. They include a secondary nitrogen line V opening into the secondary insulating barrier 110 at the bottom of the tank and a primary nitrogen line 44 which branches out into a plurality of nitrogen distribution lines A, B, C, D, E, F, G, H, J, L all opening in the primary insulating barrier 112 at the bottom of the tank.
- the figure 3 shows further details on the possible route of the gaseous dinitrogen supply lines in the vessel wall. It shows in particular that these lines open at the bottom of the tank at a considerable distance from the liquid dome and the steam dome. Gaseous dinitrogen supply lines can be used in particular to render inert the vessel walls and to adjust the total pressure therein by means of a pressure control system which is known elsewhere.
- the tracer gas transfer can be accelerated, which reduces the duration of the leak detection test.
- the pressure in the primary barrier is set to 10mbar (100kPa) relative and the pressure in the secondary barrier is set to 17mbar (170kPa) relative, a difference of 70kPa.
- This difference can be higher, for example up to 250kPa, to accelerate the implementation of the test.
- the complete duration of the test can thus be less than 4 hours per dome, and preferably of the order of 60 minutes.
- the leak test can be carried out with a relatively small volume of gas tracer, for example about 3 m 3 of argon.
- the figure 4 shows further details of implementation of the liquid dome 15 in one embodiment using the Mark III® technology.
- one pipe has been shown to illustrate the pipe K or M of the secondary exhaust device 35 and a single pipe has been shown to illustrate the pipe N or I of the primary exhaust device 25.
- these pipes have been represented in a single plan.
- these pipes are four in a real implementation and it is not necessary that they are in the same plane, which shows the figure 2 .
- the supporting structure comprises a vertical supporting wall 103 called surbau which rises above the deck 107 of the ship and a horizontal wall 46 at the top of the carrier wall 103.
- the horizontal wall 46 extends all around the liquid dome and It supports a tank cover 47.
- the cover 47 essentially consists of a metal cover wall 48 and a thermal insulation 49 which is inserted into the top of the liquid dome.
- the horizontal wall 46 carries an L-shaped metal plate 48 which is welded to the inner face of the wall 46 and extends downwards. Prefabricated panels are attached to the carrier wall 103 to form the primary heat-insulating barrier, the secondary sealing barrier and the secondary heat-insulating barrier.
- a flexible sealed composite ply 50 sealingly connects the waterproof ply of the prefabricated panel to the bent rim 51 of the plate 48.
- the bonding of the ply 50 to the flange 51 is carried out at using a suitable adhesive, for example polyurethane type.
- a glass wool pad 52 is inserted between the metal plate 48 and the carrier wall 103 to extend the secondary insulating barrier 110, which is essentially made of insulating foam panels.
- a layer of putty 53 for example epoxy resin, is crushed between the underside of the flange 51 and the last insulating foam panel to precisely fix and position the panel.
- a second layer of putty 54 for example also epoxy resin, is carried by the upper face of the flange 51 and is crushed between the flange 51 and a wooden beam 55 which is arranged horizontally along the plate 48. The beam 55 may be bolted to the plate 20.
- Other insulating foam blocks 56 are disposed between the top of the beam 55 and the horizontal wall 46 of the supporting structure to extend the primary insulation barrier.
- the end of the primary sealing barrier 113 is sealingly attached to the supporting structure by welding on a profiled section 57 with a U-section which is carried by the end of the horizontal wall 46.
- the glass wool packing 52 which runs all the way around the liquid dome constitutes a preferred passage zone for the tracer gas which has passed a leak, due to the low pressure drop.
- the glass wool packing 52 which runs all the way around the liquid dome constitutes a preferred passage zone for the tracer gas which has passed a leak, due to the low pressure drop.
- the vapor dome has a circular section in which there is found, at least functionally, the aforementioned multilayer structure, namely carrier wall 203, secondary insulating barrier 210, secondary waterproof membrane 211, primary insulating barrier 212 and primary waterproof membrane 213.
- the steam dome is equipped with a primary exhaust device 125 to protect the primary waterproof membrane 213 against the overpressures and a secondary exhaust device 135 to protect the secondary waterproof membrane 211 against overpressures.
- the primary exhaust device 125 comprises an exhaust pipe Q opening on one side inside the primary insulating barrier 212 of the steam dome and on the other side in the exhaust mast towards the atmosphere 30 of the figure 2 as symbolized by the arrow 130 of the figure 5 .
- a pressure relief valve 127 is arranged on line Q, which is closed by default.
- the valve 127 opens under the control of a valve driver 126 when the total pressure in the primary insulating barrier 212 exceeds a predefined level, for example 30 mbar or 3kPa.
- the valve driver 126 is connected to the pressure of the primary insulating barrier 212 by a control line R.
- the gas phase present in the primary insulating barrier 212 escapes automatically to the exhaust mast 30 when its pressure exceeds the predefined level.
- the secondary exhaust device 135 has an exhaust pipe S opening on one side inside the secondary insulating barrier 210 of the steam dome and on the other side in an exhaust line to the atmosphere 140.
- a relief valve 137 is arranged on the pipe S, which is closed by default.
- the valve 137 opens under the control of a valve driver 136 when the total pressure in the secondary insulating barrier 210 exceeds a predefined level, for example 30 mbar or 3kPa.
- the valve pilot 136 is connected to the pressure of the secondary insulating barrier 210 by a control line T.
- the opening pressures of the valves 127 and 137 may be equal or different.
- a device for injecting and detecting a tracer gas comprises a tracer gas reservoir 141 which is connected to the exhaust pipe S via a valve 142, so as to transfer tracer gas to the secondary insulating barrier 210 when the valve 142 is open.
- the tracer gas is for example Argon or Helium or any other gas or mixture of gases that is not likely to liquefy during operation.
- This device also comprises a gas detector 143 capable of detecting the tracer gas and connected to the exhaust pipe Q, so as to detect the presence of the tracer gas in the gas phase present in the primary insulating barrier 212.
- FIG 6 shows further details of implementation of steam dome 221 in one embodiment using Mark III® technology. Elements similar or identical to those of figure 1 carry the same reference number increased by 200.
- the upper bearing wall 207 has a circular opening 31 around which is welded a barrel 32 which extends outside the upper bearing wall 207.
- a metal vapor collecting pipe 222 is anchored inside the barrel 32 and is intended to extract the vapors produced by the evaporation of the fluid in the tank.
- the collecting duct 222 passes through the vessel wall in the center of the circular opening 31 as well as the sealed membranes 211 and 213 and the insulating barriers 210 and 212 to open into the vessel.
- This collecting duct 222 is connected in particular to a steam collector outside the tank which extracts this steam and transmits it for example to the propulsion device of the ship to power the propulsion of the ship or a liquefaction device to then reintroduce the fluid into the tank.
- the primary sealing barrier 213 is sealingly connected to the collecting duct 222.
- the secondary sealing barrier 211 is sealingly connected to the collecting duct 222 except in two passages 58 and 59 allowing the fluid present between the two sealing barriers to flow to the sampling lines 60 and 61.
- the absence of the secondary waterproof membrane at this location is symbolized by the broken lines in the passages 58 and 59. In this way, the space between the secondary watertight barrier 211 and the primary watertight barrier 213 forms a sealed primary space connected to the two exhaust pipes 60 and 61.
- the shaft 32 is sealingly connected to the upper supporting wall 7 and to the collecting pipe 222.
- the collecting pipe comprises an insulating layer 62 distributed uniformly over its outer surface which has a diameter smaller than the circular opening 31. In this way, the spacing between the insulating layer 62 and the circular aperture 31 allows the flow of gas between the secondary insulating barrier 210 and an intermediate space 64 between the mat 32 and the insulating layer 62, as indicated by arrow 99. The intermediate space and the secondary insulating barrier 210 thus form a secondary sealing space.
- the two sampling lines 60 and 61 extend parallel to the collecting duct 222 in the insulating layer 62 from the outside of the barrel 32 to the primary sealing space.
- the pipe 61 opens into the pipe Q of the figure 5 and allows a passage between the primary sealing space and the pressure relief valve not shown.
- the pipe 60 opens into the pipe R of the figure 5 and allows a passage between the primary space and the valve driver not shown.
- Two other pipes represented by the reference S, T are welded to the shaft 32 and open inside the shaft 32 in the secondary sealed space to also allow the management of fluids and the pressure measurement in the secondary sealed space.
- the structure of the tank wall is not rigorously a multilayer structure such as it exists in the walls of the tank, since the primary space is here limited to the section of passage of two sampling lines 60 and 61 which pass entirely within the secondary space.
- the structure remains that of a primary space and a secondary space supposed to be isolated from each other by a gas-tight separation, so that the leak detection tests described above retain all their meaning in this slightly different structure.
- the aforementioned leak detection methods can be implemented in the steam dome 221 of the figure 6 by injecting tracer gas through line S or T and detecting tracer gas through line Q or R.
- Arrows 63 of the figure 6 schematically illustrate the path of the tracer gas in the intermediate space 64 between the S or T pipe which injects the tracer gas and the secondary insulating barrier 210 of the tank top wall where it can penetrate.
- the technique described above for producing a leak detection device in a protruding part of the tank wall can be used in different types of tanks, for example to form the liquid dome or the steam dome of an LNG tank in a land installation or in a floating structure such as a LNG tank or other.
- a cutaway view of a LNG tanker 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
- the wall of the tank 71 comprises a primary sealed barrier intended to be in contact with the LNG contained in the tank, a secondary sealed barrier arranged between the primary waterproof barrier and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary watertight barrier and the secondary watertight barrier and between the secondary watertight barrier and the double hull 72.
- loading / unloading lines 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a marine or port terminal to transfer a cargo of LNG from or to the tank 71.
- the figure 7 represents an example of a marine terminal including a loading and unloading station 75, an underwater pipe 76 and an onshore installation 77.
- the loading and unloading station 75 is a off-shore fixed installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
- the movable arm 74 carries a bundle of insulated flexible pipes 79 that can be connected to the loading / unloading pipes 73.
- the movable arm 74 is adjustable. suitable for all models of LNG carriers.
- a connection pipe (not shown) extends inside the tower 78.
- the loading and unloading station 75 enables the loading and unloading of the LNG tank 70 from or to the shore facility 77.
- the underwater line 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the onshore installation 77 over a large distance, for example 5 km, which makes it possible to keep the tanker vessel 70 at great distance from the coast during the loading and unloading operations.
- pumps on board the ship 70 and / or pumps equipping the shore installation 77 and / or pumps equipping the loading and unloading station 75 are used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
- L'invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour stocker un gaz liquéfié à basse température, et plus particulièrement à des dispositifs et procédés pour détecter des fuites dans une membrane d'étanchéité secondaire d'une telle cuve.
- Dans une cuve de navire méthanier, la paroi supérieure de la cuve présente des structures appelées dôme vapeur et dôme liquide qui se présentent sous la forme de deux tourelles ou cheminées faisant saillie sur une surface extérieure de la paroi porteuse supérieure et destinées à faire passer des équipements de manutention de cargaison pour manutentionner une phase liquide et une phase vapeur du gaz liquéfié contenu dans la cuve.
- En raison de cette géométrie, des méthodes de détection de fuites basées sur l'observation de zones anormalement chaudes ou anormalement froides peuvent être mises en échec, notamment à cause de l'influence des conditions climatiques extérieures et parce que les champs de température dans et au voisinage de ces tourelles sont trop complexes.
- Il est connu du document
FR2517802A1 - Une idée à la base de l'invention est de fournir des dispositifs et procédés pour détecter des fuites dans une cuve étanche et thermiquement isolante dans et au voisinage de ces structures saillantes.
- Selon un mode de réalisation, l'invention fournit un ouvrage flottant comportant une coque incluant des parois porteuses définissant un espace polyédrique à l'intérieur de la coque, l'ouvrage flottant comportant une cuve étanche et thermiquement isolante logée dans l'espace polyédrique pour stocker un gaz liquéfié à basse température, dans laquelle une paroi porteuse supérieure de la coque présente une ouverture et porte une tourelle faisant saillie sur une surface extérieure de la paroi porteuse supérieure autour de l'ouverture, l'ouverture et la tourelle étant destinées à faire passer des équipements de manutention de cargaison pour manutentionner une phase liquide et/ou une phase vapeur du gaz liquéfié contenu dans la cuve,
dans laquelle la cuve comporte une pluralité de parois de cuve fixées sur les parois porteuses de la coque,
dans laquelle une paroi de cuve supérieure comporte une structure multicouche fixée sur une surface intérieure de la paroi porteuse supérieure, la structure multicouche étant formée d'une membrane d'étanchéité primaire destinée à être en contact avec le gaz liquéfié contenu dans la cuve, une membrane d'étanchéité secondaire disposée entre la membrane d'étanchéité primaire et la paroi porteuse supérieure, une barrière isolante secondaire disposée entre la membrane d'étanchéité secondaire et la paroi porteuse supérieure et une barrière isolante primaire disposée entre la membrane d'étanchéité secondaire et la membrane d'étanchéité primaire,
dans laquelle la tourelle comporte : - une paroi étanche interne formant une gaine engagée à travers l'ouverture de la paroi porteuse supérieure et liée de manière étanche avec la membrane d'étanchéité primaire de la paroi de cuve supérieure tout autour de la gaine,
- une paroi étanche externe disposée autour de la gaine à distance de la gaine parallèlement à la gaine, la paroi étanche externe étant liée de manière étanche à la paroi porteuse supérieure autour de l'ouverture,
- une paroi de séparation agencée entre la paroi étanche externe et la paroi étanche interne de la tourelle et divisant l'espace défini entre la paroi étanche externe et la paroi étanche interne de la tourelle en, d'une part, un espace secondaire communiquant à travers l'ouverture de la paroi porteuse supérieure avec la barrière isolante secondaire de la paroi de cuve supérieure disposée autour de l'ouverture et, d'autre part, un espace primaire communiquant à travers l'ouverture de la paroi porteuse supérieure avec la barrière isolante primaire de la paroi de cuve supérieure disposée autour de l'ouverture,
- un réservoir de gaz contenant un gaz traceur incondensable ou présentant une température de condensation inférieure à la basse température du gaz liquéfié contenu dans la cuve, le réservoir de gaz étant relié par l'intermédiaire d'une vanne de contrôle à l'un parmi le dispositif d'échappement primaire, notamment la conduite d'échappement primaire, et le dispositif d'échappement secondaire, notamment la conduite d'échappement secondaire, et
- un détecteur de gaz apte à détecter le gaz traceur, le détecteur de gaz étant en communication avec l'autre parmi le dispositif d'échappement primaire, notamment la conduite d'échappement primaire, et le dispositif d'échappement secondaire, notamment la conduite d'échappement secondaire.
- Grâce à ces caractéristiques, il est possible de détecter un défaut d'étanchéité entre l'espace primaire et l'espace secondaire de la tourelle et/ou entre la barrière isolante primaire et la barrière isolante secondaire de la paroi de cuve supérieure. De plus, l'utilisation des dispositifs d'échappement primaire et secondaire pour l'injection et la détection du gaz traceur rendent la mise en oeuvre de la détection de fuite particulièrement simple.
- Selon des modes de réalisation, un tel ouvrage flottant peut comporter une ou plusieurs des caractéristiques suivantes.
- Les dispositifs d'échappement peuvent être conçus de différentes manières. Selon un mode de réalisation, le dispositif d'échappement primaire ou secondaire comporte en outre une ligne de commande primaire ou secondaire qui communique directement avec l'espace primaire ou secondaire de la tourelle et qui traverse la paroi étanche externe de la tourelle pour commander la soupape de surpression primaire ou secondaire en fonction de la pression régnant dans l'espace primaire ou secondaire, et dans lequel le réservoir de gaz est en communication directe avec la ligne de commande primaire ou secondaire.
- Alternativement, le réservoir de gaz peut être relié directement à la conduite d'échappement primaire ou secondaire.
- Selon un mode de réalisation, le dispositif d'échappement primaire ou secondaire comporte en outre une ligne de commande primaire ou secondaire qui communique directement avec l'espace primaire ou secondaire de la tourelle et qui traverse la paroi étanche externe de la tourelle pour commander la soupape de surpression primaire ou secondaire en fonction de la pression régnant dans l'espace primaire ou secondaire, et dans lequel le détecteur de gaz est en communication directe avec la ligne de commande primaire ou secondaire.
- Alternativement, le détecteur de gaz peut être relié directement à la conduite d'échappement primaire ou secondaire.
- Selon un mode de réalisation, la tourelle est un dôme vapeur de la cuve, la gaine engagée à travers l'ouverture de la paroi porteuse supérieure étant une conduite collectrice reliée à un collecteur principal de vapeur de l'ouvrage flottant.
- Grâce à ces caractéristiques, il est possible de détecter un défaut d'étanchéité entre l'espace primaire et l'espace secondaire du dôme vapeur et/ou entre la barrière isolante primaire et la barrière isolante secondaire de la paroi de cuve supérieure au voisinage du dôme vapeur.
- Le dôme vapeur peut être conçu de différentes manières. De préférence dans ce cas, la paroi de séparation de la tourelle forme une conduite de prélèvement primaire s'étendant parallèlement à la conduite collectrice dans l'espace défini entre la paroi étanche externe et la paroi étanche interne de la tourelle et présentant une extrémité intérieure débouchant dans la barrière isolante primaire de la paroi de cuve supérieure et une extrémité extérieure débouchant directement dans le dispositif d'échappement primaire, l'espace primaire de la tourelle comportant l'espace intérieure de la conduite de prélèvement primaire.
- Selon un autre mode de réalisation, la tourelle est un dôme liquide de la cuve comportant en outre une paroi de sommet disposée sur une extrémité supérieure de paroi étanche externe du dôme liquide et présentant une ouverture alignée avec une zone centrale de l'ouverture de la paroi porteuse supérieure, la gaine formée par la paroi étanche interne du dôme liquide étant une membrane d'étanchéité primaire présentant un bord supérieur attaché de manière étanche sur un bord de la paroi de sommet tout autour de l'ouverture de la paroi de sommet.
- Grâce à ces caractéristiques, il est possible de détecter un défaut d'étanchéité entre l'espace primaire et l'espace secondaire du dôme liquide et/ou entre la barrière isolante primaire et la barrière isolante secondaire de la paroi de cuve supérieure au voisinage du dôme liquide.
- Le dôme liquide peut être conçu de différentes manières. De préférence dans ce cas, la paroi de séparation comporte une membrane d'étanchéité secondaire s'étendant tout autour de la gaine entre la paroi étanche externe et la gaine et présentant une extrémité intérieure raccordée de manière étanche à la membrane d'étanchéité secondaire de la paroi de cuve supérieure tout autour de la gaine et une extrémité extérieure raccordée de manière étanche à la paroi de sommet tout autour de l'ouverture de la paroi de sommet du dôme liquide.
- Selon un mode de réalisation, la cuve comporte les dispositions précitées à la fois sur le dôme liquide et le dôme vapeur pour pouvoir détecter des fuites dans ces deux zones de la cuve.
- Selon un mode de réalisation, la paroi du dôme liquide comporte une structure multicouche fixée sur une surface intérieure de la paroi étanche externe, la structure multicouche étant formée de la membrane d'étanchéité primaire du dôme liquide, la membrane d'étanchéité secondaire du dôme liquide, une barrière isolante secondaire du dôme liquide disposée entre la membrane d'étanchéité secondaire et la paroi étanche externe et une barrière isolante primaire disposée entre la membrane d'étanchéité secondaire et la membrane d'étanchéité primaire du dôme liquide.
- De préférence dans ce cas, l'ouvrage flottant comporte en outre une plaque de liaison disposée entre l'extrémité extérieure de la membrane d'étanchéité secondaire du dôme liquide et la paroi de sommet, la plaque de liaison comportant une branche principale s'étendant parallèlement à la paroi étanche externe entre la paroi étanche externe et la gaine formée par la paroi étanche interne du dôme liquide, la branche principale comportant une extrémité supérieure attachée à la plaque de sommet et une extrémité inférieure se prolongeant par un rebord coudé vers l'intérieur du dôme liquide par rapport à la banche principale, l'extrémité extérieure de la membrane d'étanchéité secondaire étant attachée de manière étanche sur le rebord,
dans lequel la barrière isolante secondaire du dôme liquide comporte une garniture fibreuse disposée entre la branche principale de la plaque de liaison et la paroi étanche externe, et
dans lequel la conduite d'échappement secondaire débouche dans la garniture fibreuse. - Grâce à ces caractéristiques, la perte de charge induite par la garniture fibreuse dans la zone de l'espace secondaire où le gaz traceur est injecté ou prélevé est relativement faible, ce qui facilite la circulation du gaz traceur, notamment autour du dôme liquide.
- Selon un mode de réalisation correspondant, la conduite d'échappement primaire traverse la branche principale de la plaque de liaison et débouche dans la barrière isolante primaire entre la branche principale de la plaque de liaison et la membrane d'étanchéité primaire du dôme liquide.
- De préférence, l'ouvrage flottant comporte en outre un système de distribution d'azote incluant un réservoir d'azote gazeux et un réseau de distribution, le réseau de distribution comportant une conduite de distribution primaire s'étendant depuis un pont supérieur de l'ouvrage flottant à travers l'espace primaire du dôme liquide et à travers la barrière d'isolation primaire d'une paroi transversale de la cuve jusqu'à une zone de fond de la cuve, et une conduite de distribution secondaire s'étendant depuis le pont supérieur de l'ouvrage flottant à travers l'espace secondaire du dôme liquide et à travers la barrière d'isolation secondaire de la paroi transversale de la cuve jusqu'à la zone de fond de la cuve.
- Avantageusement, le système de distribution d'azote comporte en outre des moyens de régulation de pression pour réguler la pression régnant dans la barrière d'isolation primaire et la barrière d'isolation secondaire des parois de la cuve au moyen des conduites de distribution primaire et secondaire.
- Grâce à de tels moyens de régulation de pression, il est possible d'éviter d'endommager les barrières d'étanchéité par l'effet de surpressions accidentelles.
- Selon un mode de réalisation, ces moyens de régulation de pression sont utilisés pour générer un écart de pression entre la zone où le gaz traceur est injecté et la zone où le gaz traceur est recherché de manière à mettre plus rapidement en évidence les fuites ou défauts d'étanchéité.
- Une telle cuve peut servir à stocker toutes sortes de gaz liquéfiés à pression atmosphérique, par exemple butane, propane, éthane, éthylène, méthane et autres. Selon un mode de réalisation, le gaz liquéfié contenu dans la cuve est du gaz naturel liquéfié (GNL), à savoir un gaz à forte teneur en méthane, stocké à une température d'environ -162°C.
- Différents corps chimiques peuvent être utilisés comme gaz traceur, notamment en fonction de la nature et de la température du gaz liquéfié stocké. Selon un mode de réalisation, convenant notamment pour une cuve de GNL, le gaz traceur est sélectionné parmi l'argon, l'hélium et leurs mélanges.
- Selon un mode de réalisation, le réservoir de gaz traceur et/ou le détecteur de gaz sont fixés de manière amovible au dispositif d'échappement primaire ou secondaire. Grâce à ces caractéristiques, il est possible de démonter le réservoir de gaz traceur et/ou le détecteur de gaz de l'accès du dispositif d'échappement sur lequel il est fixé, par exemple une conduite ou une bride, de manière à libérer cet accès du dispositif d'échappement pour un autre usage en dehors des phases où la détection de fuite est mise en oeuvre.
- L'invention fournit aussi un procédé d'exploitation d'un ouvrage flottant précité, comportant :
- injecter le gaz traceur à travers l'un des dispositifs d'échappement primaire et secondaire dans l'espace primaire ou secondaire de la tourelle sans dépasser la pression d'ouverture de la soupape de surpression primaire ou secondaire,
- détecter le gaz traceur à travers l'autre des dispositifs d'échappement primaire et secondaire dans l'espace primaire ou secondaire de la tourelle, et
- diagnostiquer une fuite dans la barrière d'étanchéité secondaire de la paroi supérieure de cuve et/ou dans la paroi de séparation de la tourelle en réponse à la détection du gaz traceur.
- Selon un mode de réalisation, le gaz traceur est injecté dans l'espace secondaire à travers le dispositif d'échappement secondaire et détecté dans l'espace primaire à travers le dispositif d'échappement primaire, le procédé comportant en outre :
maintenir une pression totale plus élevée dans l'espace secondaire que dans l'espace primaire par injection d'azote gazeux dans l'espace secondaire, sans dépasser la pression d'ouverture de la soupape de surpression secondaire. - Une exploitation inverse est aussi possible, où le gaz traceur est injecté dans l'espace primaire à travers le dispositif d'échappement primaire et détecté dans l'espace secondaire à travers le dispositif d'échappement secondaire. Les niveaux de pression peuvent être inversés dans ce cas.
- Selon un mode de réalisation, l'étape de diagnostiquer une fuite comporte l'une des mesures sélectionnée dans le groupe consistant à enregistrer la présence d'une fuite, mesurer une quantité ou une concentration du gaz traceur pour déterminer un débit de la fuite, et mesurer un retard temporel entre l'injection et la détection du gaz traceur pour déterminer une position de la fuite.
- Une telle cuve peut faire partie d'une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres.
- Selon un mode de réalisation, l'invention fournit aussi un procédé de chargement ou déchargement d'un tel ouvrage flottant, dans lequel on achemine du gaz liquéfié à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve étanche et thermiquement isolante.
- Selon un mode de réalisation, l'invention fournit aussi un système de transfert pour gaz liquéfié à basse température, le système comportant un ouvrage flottant précité, des canalisations isolées agencées de manière à relier la cuve étanche et thermiquement isolante à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
- Certains aspects de l'invention partent de l'idée de limiter la distance à parcourir par le gaz traceur entre le point d'injection et le point de détection, de sorte que la détection des fuites dans la zone de la tourelle puisse être mise en oeuvre relativement rapidement et avec une quantité relativement faible de gaz traceur par rapport au volume de l'ensemble des parois de la cuve. Certains aspects de l'invention partent de l'idée de proposer un procédé de test pouvant être exécuté en mer avec la cuve en froid, de manière à éviter d'immobiliser l'ouvrage flottant en cale sèche.
- L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l'invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
- La
figure 1 est un schéma fonctionnel d'une cuve de navire méthanier vue en coupe selon un axe longitudinal du navire. - La
figure 2 est un diagramme fonctionnel d'un dôme liquide de la cuve de lafigure 1 , vu de dessus. - La
figure 3 est une vue en perspective isométrique écorchée d'une paroi transversale délimitant un côté avant du dôme liquide de lafigure 2 . - La
figure 4 est une vue agrandie de la zone IV de lafigure 1 selon un mode de réalisation - La
figure 5 est un diagramme fonctionnel d'un dôme vapeur de la cuve de lafigure 1 , vu de dessus. - La
figure 6 est une vue agrandie de la zone VI de lafigure 1 selon un mode de réalisation - La
figure 7 est une représentation schématique écorchée d'une cuve de navire méthanier et d'un terminal de chargement/déchargement de cette cuve. - En référence à la
figure 1 , on a représenté schématiquement une coupe longitudinale de la coque 2 d'un navire méthanier dans laquelle est disposée une cuve étanche et isolante 1 réalisée selon la technologie des cuves à membrane. - La cuve 1 est disposée entre deux cloisons transversales 3 généralement appelées « cofferdam » qui divisent l'espace intérieur de la coque en une pluralité de compartiments polyédriques destinés à accueillir chacun une cuve respective. Un navire peut ainsi comporter une ou plusieurs cuves similaires, comme esquissé sur la droite de la
figure 1 . - La coque 2 est une double paroi délimitant un espace de ballast représenté au chiffre 4 pour la partie inférieure de la cuve. La cuve 1 est construite sur la paroi interne 5 de la coque 2 qui sert de paroi porteuse. La paroi supérieure 6 de la cuve 1 est similairement portée par une paroi porteuse supérieure 7 faisant partie de la coque 2.
- La cuve 1 présente une géométrie globalement polyédrique et toutes les parois de la cuve sont constituées d'une structure multicouche connue par ailleurs dans la technique des cuves à membrane. Il suffit de rappeler que cette structure multicouche comporte successivement une barrière isolante secondaire 10, une membrane étanche secondaire 11, une barrière isolante primaire 12 et une membrane étanche primaire 13 qui contient directement le GNL stocké dans la cuve 1. Cette structure multicouche peut être réalisée selon diverses techniques, par exemple des techniques commercialisées par la société déposante sous le nom Mark III®.
- La
figure 1 met en évidence que la paroi porteuse supérieure 7 est interrompue en deux emplacements où la paroi de cuve forme une structure saillante en forme de tourelle ou de cheminée. La première tourelle est un dôme liquide 15 qui sert de point de pénétration pour divers équipements de manutention du GNL, à savoir dans l'exemple représenté une ligne de remplissage 16, une ligne de pompage d'urgence 17, des lignes de déchargement liées à des pompes de déchargement 18, une ligne de pulvérisation 20 et une ligne d'alimentation liée à une pompe de pulvérisation 19. La deuxième tourelle est un dôme vapeur 21 qui sert de point de pénétration pour une conduite collectrice de vapeur 22. Le fonctionnement de ces équipements est connu par ailleurs. - En référence aux
figures 2 à 4 , on va maintenant décrire plus précisément des caractéristiques du dôme liquide 15. Les éléments analogues ou identiques à ceux de lafigure 1 portent le même chiffre de référence augmenté de 100. - Comme mieux visible sur la
figure 2 , le dôme liquide présente une section carré formée de quatre parois verticales similaires dans lesquelles on retrouve à chaque fois la structure multicouche précitée, à savoir paroi porteuse 103, barrière isolante secondaire 110, membrane étanche secondaire 111, barrière isolante primaire 112 et membrane étanche primaire 113. - Comme les membranes d'étanchéité 111 et 113 sont des éléments relativement fragiles qui ne sont pas conçus pour endurer des forces d'arrachement élevées, le dôme liquide est équipé d'un dispositif d'échappement primaire 25 pour protéger la membrane étanche primaire 113 contre les surpressions et d'un dispositif d'échappement secondaire 35 pour protéger la membrane étanche secondaire 111 contre les surpressions.
- Plus précisément, le dispositif d'échappement primaire 25 comporte une conduite d'échappement I débouchant d'un côté à l'intérieur de la barrière isolante primaire 112 du dôme liquide et de l'autre côté dans un mât d'échappement vers l'atmosphère 30 disposé à l'extérieur sur le pont du navire. Une soupape de surpression 27 est agencée sur la conduite I, qui est fermée par défaut. La soupape 27 s'ouvre sous la commande d'un pilote de soupape 26 lorsque la pression totale dans la barrière isolante primaire 112 dépasse un niveau prédéfini, par exemple 30 mbar soit 3kPa. Le pilote de soupape 26 est relié à la pression de la barrière isolante primaire 112 par une ligne de commande N. Ainsi, la phase gazeuse présente dans la barrière isolante primaire 112 s'échappe automatiquement vers le mât d'échappement 30 lorsque sa pression dépasse le niveau prédéfini.
- De la même manière, le dispositif d'échappement secondaire 35 comporte une conduite d'échappement K débouchant d'un côté à l'intérieur de la barrière isolante secondaire 110 du dôme liquide et de l'autre côté dans une ligne d'échappement vers l'atmosphère 40. Une soupape de surpression 37 est agencée sur la conduite K, qui est fermée par défaut. La soupape 37 s'ouvre sous la commande d'un pilote de soupape 36 lorsque la pression totale dans la barrière isolante secondaire 110 dépasse un niveau prédéfini, par exemple 30 mbar soit 3kPa. Le pilote de soupape 36 est relié à la pression de la barrière isolante secondaire 110 par une ligne de commande M. Ainsi, la phase gazeuse présente dans la barrière isolante secondaire 110 s'échappe automatiquement vers la ligne d'échappement 40 lorsque sa pression dépasse le niveau prédéfini. Les pressions d'ouverture des soupapes 27 et 37 peuvent être égales ou différentes.
- Afin de détecter des fuites ou des défauts d'étanchéité dans la membrane étanche secondaire 111 au niveau du dôme liquide 15, un dispositif d'injection et de détection d'un gaz traceur est mis en oeuvre dans le dôme liquide 15. Ce dispositif comporte un réservoir de gaz traceur 41 qui est relié à la ligne de commande M par l'intermédiaire d'une vanne 42, de manière à pouvoir transférer du gaz traceur vers la barrière isolante secondaire 110 lorsque la vanne 42 est ouverte. Le gaz traceur est par exemple de l'argon ou de l'hélium ou tout autre gaz ou mélange de gaz qui ne risque pas de se liquéfier lors de l'exploitation.
- Ce dispositif comporte également un détecteur de gaz 43 capable de détecter le gaz traceur et relié à la conduite d'échappement I, de manière à pouvoir détecter la présence du gaz traceur dans la phase gazeuse présente dans la barrière isolante primaire 112.
- Le principe fondamental de la détection est le suivant : étant donné que la membrane étanche secondaire 111 est censée isoler de manière étanche au gaz la barrière isolante secondaire 110 de la barrière isolante primaire 112, une détection positive du gaz traceur dans la barrière isolante primaire 112 alors que ce gaz n'a été injecté que dans la barrière isolante secondaire 110 trahit nécessairement l'existence d'une fuite.
- Alternativement, le réservoir 41 peut être branché sur la canalisation K et/ou le détecteur 43 peut être branché sur la canalisation N sans changer le principe de fonctionnement.
- La
figure 2 montre aussi des lignes d'alimentation en azote qui pénètrent dans la cuve au niveau du dôme liquide pour permettre de contrôler la pression totale dans les barrières isolantes secondaire 110 et primaire 112. Ces lignes d'alimentation proviennent d'un réservoir de diazote gazeux symbolisé au chiffre 45. Elles incluent une ligne d'azote secondaire V débouchant dans la barrière isolante secondaire 110 en bas de la cuve et une ligne d'azote primaire 44 qui se ramifie en une multitudes de lignes de distribution d'azote A, B, C, D, E, F, G, H, J, L débouchant toutes dans la barrière isolante primaire 112 en bas de la cuve. - La
figure 3 montre d'autres précisions sur le cheminement possible des lignes d'alimentation en diazote gazeux dans la paroi de cuve. Elle montre notamment que ces lignes débouchent en bas de la cuve à assez grande distance du dôme liquide et du dôme vapeur. Les lignes d'alimentation en diazote gazeux peuvent servir notamment à rendre inertes les parois de cuve et à régler la pression totale dans celles-ci, au moyen d'un système de régulation de pression qui est connu par ailleurs. - Ce système de régulation de pression peut être mis à profit pour améliorer le fonctionnement de la détection de fuite. Selon un mode de réalisation correspondant, la détection de fuite peut être mise en oeuvre de la manière suivante :
- Injecter le gaz traceur dans l'espace secondaire 110 du dôme liquide
- Régler la pression à un niveau légèrement plus élevé dans l'espace secondaire 110 que dans l'espace primaire 112, de préférence sans atteindre la pression d'ouverture de la soupape d'échappement secondaire 37 pour éviter d'endommager la membrane secondaire 111. Ces deux étapes peuvent aussi être réalisées simultanément ou dans un autre ordre.
- Détecter la présence du gaz traceur dans l'espace primaire 112.
- Grâce au léger écart de pression, le transfert du gaz traceur peut être accéléré ce qui permet de réduire la durée du test de détection de fuite. Par exemple, la pression dans la barrière primaire est réglée à 10mbar (100kPa) relatif et la pression dans la barrière secondaire est réglée à 17mbar (170kPa) relatif, soit un écart de 70kPa. Cet écart peut être plus élevé, par exemple jusqu'à 250kPa, pour accélérer la mise en oeuvre du test. La durée complète du test peut ainsi être inférieure à 4 heures par dôme, et de préférence de l'ordre de 60 minutes.
- Dans un mode non-représenté, les positions du détecteur de gaz 43 et du réservoir de gaz traceur 41 sont permutées et les écarts de pressions sont inversés.
- Le détecteur de gaz peut être un analyseur de gaz disponible dans le commerce, fonctionnant selon toute technologie adaptée, par exemple par spectrométrie de masse ou autre. Pour raffiner le diagnostic des fuites, il est préférable de mesurer au cours du temps la concentration de gaz traceur présente dans l'espace primaire 112. Ainsi, la durée et la quantité de gaz traceur permettent d'obtenir des informations sur :
- L'existence d'une fuite, si le gaz traceur est détecté en quantité non négiigeabie,
- le débit de la ou des fuites par intégration de la quantité de gaz traceur au cours du temps,
- la localisation sur le dôme liquide de la ou des fuites, par mesure de l'instant de première détection du gaz traceur par rapport au temps de trajet dans les barrières 'isolantes.
- Etant donné que la paroi de cuve dans le dôme liquide présente un volume relativement petit par rapport à l'ensemble de la cuve, par exemple environ 2 m3, le test d'étanchéité peut être mis en oeuvre avec un volume relativement petit de gaz traceur, par exemple environ 3 m3 d'argon.
- La
figure 4 montre d'autres détails de mise en oeuvre du dôme liquide 15 dans un mode de réalisation utilisant la technologie Mark III®. Par mesure de concision une seule conduite a été représentée pour illustrer la canalisation K ou M du dispositif d'échappement secondaire 35 et une seule conduite a été représentée pour illustrer la canalisation N ou I du dispositif d'échappement primaire 25. De plus ces conduites ont été représentées dans un même plan. Toutefois, ces canalisations sont bien au nombre de quatre dans une mise en oeuvre réelle et il n'est pas nécessaire qu'elles soient dans un même plan, ce que montre lafigure 2 . De plus, il est possible de prévoir un ou plusieurs points d'injection du gaz traceur additionnels pour améliorer la vitesse d'exécution du test, notamment pour un dôme liquide de grande taille. Ces points d'injection additionnels peuvent être répartis de manière régulière à la périphérie du dôme liquide 15. - Dans le dôme liquide 15 de la
figure 4 , la structure porteuse comporte une paroi porteuse verticale 103 appelée surbau qui s'élève au-dessus du pont 107 du navire et une paroi horizontale 46 au sommet de la paroi porteuse 103. La paroi horizontale 46 s'étend tout autour du dôme liquide et supporte un couvercle de cuve 47. Le couvercle 47 est constitué essentiellement d'une paroi métallique de couvercle 48 et d'une isolation thermique 49 qui s'insère dans le sommet du dôme liquide. - La paroi horizontale 46 porte une plaque métallique 48 profilée en forme de L qui est soudé sur la face intérieure de la paroi 46 et s'étend vers le bas. Des panneaux préfabriqués sont fixés à la paroi porteuse 103 pour former la barrière thermiquement isolante primaire, la barrière d'étanchéité secondaire et la barrière thermiquement isolante secondaire.
- Dans la zone d'arrêt de la membrane secondaire 111, une nappe composite étanche souple 50 relie de manière étanche la nappe étanche du panneau préfabriqué au rebord coudé 51 de la plaque 48. Le collage de la nappe 50 sur le rebord 51 est réalisé à l'aide d'une colle appropriée, par exemple de type polyuréthane.
- Une garniture de laine de verre 52 est insérée entre la plaque métallique 48 et la paroi porteuse 103 pour prolonger la barrière isolante secondaire 110, qui est essentiellement réalisée en panneaux de mousse isolante. Une couche de mastic 53, par exemple en résine époxy, est écrasée entre la face inférieure du rebord 51 et le dernier panneau de mousse isolante pour fixer et positionner précisément le panneau. Une deuxième couche de mastic 54, par exemple également en résine époxy, est portée par la face supérieure du rebord 51 et se trouve écrasée entre le rebord 51 et une poutre de bois 55 qui est disposée horizontalement le long de la plaque 48. La poutre 55 peut être boulonnée à la plaque 20. D'autres blocs de mousse isolante 56 sont disposés entre le haut de la poutre 55 et la paroi horizontale 46 de la structure porteuse pour prolonger la barrière d'isolation primaire.
- L'extrémité de la barrière d'étanchéité primaire 113 est fixée de manière étanche à la structure porteuse par soudage sur une pièce profilée 57 à section en U qui est portée par l'extrémité de la paroi horizontale 46.
- Dans ce mode de réalisation, la garniture de laine de verre 52 qui fait tout le tour du dôme liquide constitue une zone de passage privilégiée pour le gaz traceur ayant franchi une fuite, du fait de la faible perte de charge. Ainsi, il est possible de détecter des fuites à tout emplacement autour du dôme liquide même avec un seul ou un petit nombre de points de détection du gaz.
- Les méthodes décrites ci-dessus pour réaliser une détection de fuite dans un dôme liquide peuvent être mises en oeuvre de manière analogue dans un dôme vapeur, comme il sera décrit maintenant en référence aux
figures 5 et6 . - Comme mieux visible sur la
figure 5 , le dôme vapeur présente une section circulaire dans laquelle on retrouve, au moins fonctionnellement, la structure multicouche précitée, à savoir paroi porteuse 203, barrière isolante secondaire 210, membrane étanche secondaire 211, barrière isolante primaire 212 et membrane étanche primaire 213. - Comme les membranes d'étanchéité 211 et 213 sont des éléments relativement fragiles qui ne sont pas conçus pour endurer des forces d'arrachement élevées, le dôme vapeur est équipé d'un dispositif d'échappement primaire 125 pour protéger la membrane étanche primaire 213 contre les surpressions et d'un dispositif d'échappement secondaire 135 pour protéger la membrane étanche secondaire 211 contre les surpressions.
- Plus précisément, le dispositif d'échappement primaire 125 comporte une conduite d'échappement Q débouchant d'un côté à l'intérieur de la barrière isolante primaire 212 du dôme vapeur et de l'autre côté dans le mât d'échappement vers l'atmosphère 30 de la
figure 2 , comme symbolisé par la flèche 130 de lafigure 5 . Une soupape de surpression 127 est agencée sur la conduite Q, qui est fermée par défaut. La soupape 127 s'ouvre sous la commande d'un pilote de soupape 126 lorsque la pression totale dans la barrière isolante primaire 212 dépasse un niveau prédéfini, par exemple 30 mbar soit 3kPa. Le pilote de soupape 126 est relié à la pression de la barrière isolante primaire 212 par une ligne de commande R. Ainsi, la phase gazeuse présente dans la barrière isolante primaire 212 s'échappe automatiquement vers le mât d'échappement 30 lorsque sa pression dépasse le niveau prédéfini. - De la même manière, le dispositif d'échappement secondaire 135 comporte une conduite d'échappement S débouchant d'un côté à l'intérieur de la barrière isolante secondaire 210 du dôme vapeur et de l'autre côté dans une ligne d'échappement vers l'atmosphère 140. Une soupape de surpression 137 est agencée sur la conduite S, qui est fermée par défaut. La soupape 137 s'ouvre sous la commande d'un pilote de soupape 136 lorsque la pression totale dans la barrière isolante secondaire 210 dépasse un niveau prédéfini, par exemple 30 mbar soit 3kPa. Le pilote de soupape 136 est relié à la pression de la barrière isolante secondaire 210 par une ligne de commande T. Ainsi, la phase gazeuse présente dans la barrière isolante secondaire 210 s'échappe automatiquement vers la ligne d'échappement 140 lorsque sa pression dépasse le niveau prédéfini. Les pressions d'ouverture des soupapes 127 et 137 peuvent être égales ou différentes.
- Afin de détecter des fuites ou des défauts d'étanchéité dans la membrane étanche secondaire 211 au niveau du dôme vapeur 21, un dispositif d'injection et de détection d'un gaz traceur est mis en oeuvre. Ce dispositif comporte un réservoir de gaz traceur 141 qui est relié à la conduite d'échappement S par l'intermédiaire d'une vanne 142, de manière à pouvoir transférer du gaz traceur vers la barrière isolante secondaire 210 lorsque la vanne 142 est ouverte. Le gaz traceur est par exemple de l'Argon ou de l'Hélium ou tout autre gaz ou mélange de gaz qui ne risque pas de se liquéfier lors de l'exploitation.
- Ce dispositif comporte également un détecteur de gaz 143 capable de détecter le gaz traceur et relié à la conduite d'échappement Q, de manière à pouvoir détecter la présence du gaz traceur dans la phase gazeuse présente dans la barrière isolante primaire 212.
- Pour le reste, le fonctionnement de la détection des fuites dans le dôme vapeur est identique au cas du dôme liquide décrit plus haut.
- La
figure 6 montre d'autres détails de mise en oeuvre du dôme vapeur 221 dans un mode de réalisation utilisant la technologie Mark III®. Les éléments analogues ou identiques à ceux de lafigure 1 portent le même chiffre de référence augmenté de 200. - Par mesure de concision une seule conduite a été représentée pour illustrer la conduite S ou T du dispositif d'échappement secondaire 135. De plus, cette conduite a été représentée dans un même plan que les canalisations R et Q du dispositif d'échappement primaire 125. Toutefois, ces canalisations Q, R, S, T sont bien au nombre de quatre dans une mise en oeuvre réelle et il n'est pas nécessaire qu'elles soient dans un même plan, ce que montre la
figure 5 . De plus, il est possible de prévoir un ou plusieurs points d'injection du gaz traceur additionnels pour améliorer la vitesse d'exécution du test, notamment pour un dôme vapeur de grande taille. Ces points d'injection additionnels peuvent être répartis de manière régulière à la périphérie du dôme vapeur 221. - Dans le dôme vapeur 221 de la
figure 6 , la paroi porteuse supérieure 207 comporte une ouverture circulaire 31 autour de laquelle est soudé un fût 32 qui s'étend à l'extérieur de la paroi porteuse supérieure 207. Une conduite métallique collectrice de vapeurs 222 est ancrée à l'intérieur du fût 32 et est destinée à extraire les vapeurs produites par l'évaporation du fluide dans la cuve. A cet effet, la conduite collectrice 222 traverse la paroi de cuve au centre de l'ouverture circulaire 31 ainsi que les membranes étanches 211 et 213 et les barrières isolantes 210 et 212 pour déboucher à l'intérieur de la cuve. Cette conduite collectrice 222 est notamment reliée à un collecteur de vapeur à l'extérieur de la cuve qui extrait cette vapeur et de la transmet par exemple au dispositif de propulsion du navire pour alimenter la propulsion du navire ou à un dispositif de liquéfaction pour réintroduire ensuite le fluide dans la cuve. - La barrière d'étanchéité primaire 213 est reliée de manière étanche à la conduite collectrice 222. De même, la barrière d'étanchéité secondaire 211 est reliée de manière étanche à la conduite collectrice 222 sauf en deux passages 58 et 59 permettant au fluide présent entre les deux barrières d'étanchéité de circuler vers des conduites de prélèvement 60 et 61. L'absence de la membrane étanche secondaire à cet endroit est symbolisée par les traits interrompus dans les passages 58 et 59. De cette manière, l'espace entre la barrière étanche secondaire 211 et la barrière étanche primaire 213 forme un espace primaire étanche relié aux deux conduites d'échappement 60 et 61.
- Par ailleurs, le fût 32 est relié de manière étanche à la paroi porteuse supérieure 7 et à la conduite collectrice 222. La conduite collectrice comporte une couche isolante 62 répartie uniformément sur sa portée extérieure qui présente un diamètre inférieur à l'ouverture circulaire 31. De cette manière, l'espacement entre la couche isolante 62 et l'ouverture circulaire 31 permet la circulation de gaz entre la barrière isolante secondaire 210 et un espace intermédiaire 64 présent entre le fut 32 et la couche d'isolant 62, comme indiqué par la flèche 99. L'espace intermédiaire et la barrière isolante secondaire 210 forment ainsi un espace étanche secondaire.
- Les deux conduites de prélèvement 60 et 61 s'étendent parallèlement à la conduite collectrice 222 dans la couche isolante 62 depuis l'extérieur du fût 32 jusqu'à l'espace étanche primaire. La conduite 61 débouche dans la conduite Q de la
figure 5 et permet de réaliser un passage entre l'espace étanche primaire et la soupape de surpression non représentée. La conduite 60 débouche dans la conduite R de lafigure 5 et permet de réaliser un passage entre l'espace primaire et le pilote de soupape non représenté. Deux autres conduites représentées par la référence S, T sont soudées au fût 32 et débouchent à l'intérieur du fût 32 dans l'espace étanche secondaire pour permettre elles aussi la gestion des fluides et la mesure de pression dans l'espace étanche secondaire. - On notera que, dans le fût 32 du dôme vapeur 221, la structure de la paroi de cuve n'est pas rigoureusement une structure multicouche telle qu'elle existe dans les parois de la cuve, puisque l'espace primaire est ici limitée à la section de passage de deux conduites de prélèvement 60 et 61 qui passent entièrement à l'intérieur de l'espace secondaire. Toutefois, la structure reste celle d'un espace primaire et d'un espace secondaire supposés être isolés l'un de l'autre par une séparation étanche au gaz, de sorte' que les tests de détection des fuites décrits plus haut gardent tout leur sens dans cette structure légèrement différente.
- Les procédés de détection de fuite précités peuvent être mis en oeuvre dans le dôme vapeur 221 de la
figure 6 par injection du gaz traceur à travers la conduite S ou T et la détection du gaz traceur à travers la conduite Q ou R. Les flèches 63 de lafigure 6 illustrent schématiquement le trajet du gaz traceur dans l'espace intermédiaire 64 entre la conduite S ou T qui injecte le gaz traceur et la barrière isolante secondaire 210 de la paroi supérieure de cuve où il peut pénétrer. - D'autres détails d'implantation d'un dôme vapeur peuvent être trouvés dans la publication
FR-A-2984454 - La technique décrite ci-dessus pour réaliser un dispositif de détection de fuite dans une partie saillante de la paroi de cuve peut être utilisée dans différents types de réservoirs, par exemple pour constituer le dôme liquide ou le dôme vapeur d'un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre.
- En référence à la
figure 7 , une vue écorchée d'un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une barrière étanche primaire destinée à être en contact avec le GNL contenu dans la cuve, une barrière étanche secondaire agencée entre la barrière étanche primaire et la double coque 72 du navire, et deux barrières isolante agencées respectivement entre la barrière étanche primaire et la barrière étanche secondaire et entre la barrière étanche secondaire et la double coque 72. - De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71.
- La
figure 7 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement. - Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
- Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention, telle que définie par les revendications.
- L'usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n'exclut pas la présence d'autres éléments ou d'autres étapes que ceux énoncés dans une revendication. L'usage de l'article indéfini « un » ou « une » pour un élément ou une étape n'exclut pas, sauf mention contraire, la présence d'une pluralité de tels éléments ou étapes.
- Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.
un dispositif d'échappement secondaire comportant une soupape de surpression secondaire et une conduite d'échappement secondaire communiquant directement avec l'espace secondaire de la tourelle et traversant la paroi étanche externe de la tourelle pour permettre un échappement de gaz depuis l'espace secondaire en réponse à une ouverture de la soupape de surpression secondaire,
l'ouvrage flottant comportant en outre :
Claims (16)
- Ouvrage flottant comportant une coque incluant des parois porteuses (3, 5, 7) définissant un espace polyédrique à l'intérieur de la coque, l'ouvrage flottant comportant une cuve étanche et thermiquement isolante (1) logée dans l'espace polyédrique pour stocker un gaz liquéfié à basse température,
dans lequel une paroi porteuse supérieure (7, 107) de la coque présente une ouverture et porte une tourelle (15, 21, 221) faisant saillie sur une surface extérieure de la paroi porteuse supérieure autour de l'ouverture, l'ouverture et la tourelle étant destinées à faire passer des équipements de manutention de cargaison (16, 22, 222) pour manutentionner une phase liquide et/ou une phase vapeur du gaz liquéfié contenu dans la cuve,
dans lequel la cuve comporte une pluralité de parois de cuve fixées sur les parois porteuses de la coque,
dans lequel une paroi de cuve supérieure comporte une structure multicouche fixée sur une surface intérieure de la paroi porteuse supérieure, la structure multicouche étant formée d'une membrane d'étanchéité primaire (13, 113, 213) destinée à être en contact avec le gaz liquéfié contenu dans la cuve, une membrane d'étanchéité secondaire (11, 111, 211) disposée entre la membrane d'étanchéité primaire et la paroi porteuse supérieure, une barrière isolante secondaire (10, 110, 210) disposée entre la membrane d'étanchéité secondaire et la paroi porteuse supérieure et une barrière isolante primaire (12, 112, 212) disposée entre la membrane d'étanchéité secondaire et la membrane d'étanchéité primaire,
l'ouvrage flottant comportant en outre un dispositif d'échappement primaire (25, 125) comportant une conduite d'échappement primaire (I, Q),
un dispositif d'échappement secondaire (35, 135) comportant une conduite d'échappement secondaire (K, S),
un réservoir de gaz (41, 141) contenant un gaz traceur incondensable ou présentant une température de condensation inférieure à la basse température du gaz liquéfié contenu dans la cuve,
un détecteur de gaz un détecteur de gaz (43, 143) apte à détecter un gaz traceur,
caractérisé en ce que la tourelle comporte :une paroi étanche interne formant une gaine (113, 222) engagée à travers l'ouverture de la paroi porteuse supérieure (7, 107, 207) et liée de manière étanche avec la membrane d'étanchéité primaire (13, 213) de la paroi de cuve supérieure tout autour de la gaine,une paroi étanche externe (103, 32) disposée autour de la gaine à distance de la gaine parallèlement à la gaine, la paroi étanche externe étant liée de manière étanche à la paroi porteuse supérieure autour de l'ouverture,une paroi de séparation (111, 60, 61) agencée entre la paroi étanche externe (103, 32) et la paroi étanche interne (113, 222) de la tourelle et divisant l'espace défini entre la paroi étanche externe et la paroi étanche interne de la tourelle en, d'une part, un espace secondaire (110, 62, 64) communiquant à travers l'ouverture de la paroi porteuse supérieure avec la barrière isolante secondaire (10, 210) de la paroi de cuve supérieure disposée autour de l'ouverture et, d'autre part, un espace primaire (112, 60, 61) communiquant à travers l'ouverture de la paroi porteuse supérieure avec la barrière isolante primaire (12, 212) de la paroi de cuve supérieure disposée autour de l'ouverture,le dispositif d'échappement primaire (25, 125) comportant une soupape de surpression primaire (27, 127), la conduite d'échappement primaire (I, Q) communiquant directement avec l'espace primaire de la tourelle et traversant la paroi étanche externe de la tourelle pour permettre un échappement de gaz depuis l'espace primaire en réponse à une ouverture de la soupape de surpression primaire,
le dispositif d'échappement secondaire (35, 135) comportant une soupape de surpression secondaire (37, 137), la conduite d'échappement secondaire (K, S) communiquant directement avec l'espace secondaire de la tourelle et traversant la paroi étanche externe de la tourelle pour permettre un échappement de gaz depuis l'espace secondaire en réponse à une ouverture de la soupape de surpression secondaire,
le réservoir de gaz étant relié par l'intermédiaire d'une vanne de contrôle (42, 142) à l'un parmi le dispositif d'échappement primaire et le dispositif d'échappement secondaire et le détecteur de gaz étant en communication avec l'autre parmi le dispositif d'échappement primaire, notamment la conduite d'échappement primaire, et le dispositif d'échappement secondaire, notamment la conduite d'échappement secondaire. - Ouvrage flottant selon la revendication 1, dans lequel le dispositif d'échappement primaire ou secondaire comporte en outre une ligne de commande primaire ou secondaire (M, N, R, T) qui communique directement avec l'espace primaire ou secondaire de la tourelle et qui traverse la paroi étanche externe de la tourelle pour commander la soupape de surpression primaire ou secondaire en fonction de la pression régnant dans l'espace primaire ou secondaire, et dans lequel le réservoir de gaz (41, 141) est en communication directe avec la ligne de commande primaire ou secondaire.
- Ouvrage flottant selon la revendication 1 ou 2, dans lequel le dispositif d'échappement primaire ou secondaire comporte en outre une ligne de commande primaire ou secondaire (M, N, R, T) qui communique directement avec l'espace primaire ou secondaire de la tourelle et qui traverse la paroi étanche externe de la tourelle pour commander la soupape de surpression primaire ou secondaire en fonction de la pression régnant dans l'espace primaire ou secondaire, et dans lequel le détecteur de gaz (43, 143) est en communication directe avec la ligne de commande primaire ou secondaire.
- Ouvrage flottant selon l'une des revendications 1 à 3, dans lequel la tourelle est un dôme vapeur (221) de la cuve, la gaine engagée à travers l'ouverture de la paroi porteuse supérieure étant une conduite collectrice (22, 222) reliée à un collecteur principal de vapeur de l'ouvrage flottant,
et dans lequel la paroi de séparation de la tourelle forme une conduite de prélèvement primaire (60, 61) s'étendant parallèlement à la conduite collectrice dans l'espace défini entre la paroi étanche externe (32) et la paroi étanche interne (222) de la tourelle et présentant une extrémité intérieure (58, 59) débouchant dans la barrière isolante primaire de la paroi de cuve supérieure et une extrémité extérieure (Q, R) débouchant directement dans le dispositif d'échappement primaire (125), l'espace primaire de la tourelle comportant l'espace intérieure de la conduite de prélèvement primaire. - Ouvrage flottant selon l'une des revendications 1 à 3, dans lequel la tourelle est un dôme liquide (15) de la cuve comportant en outre une paroi de sommet (46) disposée sur une extrémité supérieure de paroi étanche externe (103) du dôme liquide et présentant une ouverture alignée avec une zone centrale de l'ouverture de la paroi porteuse supérieure, la gaine formée par la paroi étanche interne (113) du dôme liquide étant une membrane d'étanchéité primaire présentant un bord supérieur attaché de manière étanche sur un bord (57) de la paroi de sommet tout autour de l'ouverture de la paroi de sommet,
et dans lequel la paroi de séparation comporte une membrane d'étanchéité secondaire (111) s'étendant tout autour de la gaine entre la paroi étanche externe et la gaine (113) et présentant une extrémité intérieure raccordée de manière étanche à la membrane d'étanchéité secondaire (11) de la paroi de cuve supérieure tout autour de la gaine et une extrémité extérieure (50) raccordée de manière étanche à la paroi de sommet (46) tout autour de l'ouverture de la paroi de sommet du dôme liquide. - Ouvrage flottant selon la revendication 5, dans lequel la paroi du dôme liquide (15) comporte une structure multicouche fixée sur une surface intérieure de la paroi étanche externe, la structure multicouche étant formée de la membrane d'étanchéité primaire (113) du dôme liquide, la membrane d'étanchéité secondaire (111) du dôme liquide, une barrière isolante secondaire (110) du dôme liquide disposée entre la membrane d'étanchéité secondaire et la paroi étanche externe et une barrière isolante primaire (112) disposée entre la membrane d'étanchéité secondaire et la membrane d'étanchéité primaire du dôme liquide.
- Ouvrage flottant selon la revendication 6, comportant en outre une plaque de liaison (48) disposée entre l'extrémité extérieure (50) de la membrane d'étanchéité secondaire du dôme liquide et la paroi de sommet (46), la plaque de liaison comportant une branche principale s'étendant parallèlement à la paroi étanche externe entre la paroi étanche externe et la gaine formée par la paroi étanche interne du dôme liquide, la branche principale comportant une extrémité supérieure attachée à la plaque de sommet (46) et une extrémité inférieure se prolongeant par un rebord (51) coudé vers l'intérieur du dôme liquide par rapport à la banche principale, l'extrémité extérieure (50) de la membrane d'étanchéité secondaire étant attachée de manière étanche sur le rebord (51),
dans lequel la barrière isolante secondaire du dôme liquide comporte une garniture fibreuse (52) disposée entre la branche principale de la plaque de liaison (48) et la paroi étanche externe (103), et
dans lequel la conduite d'échappement secondaire (K, M) débouche dans la garniture fibreuse. - Ouvrage flottant selon la revendication 7, dans lequel la conduite d'échappement primaire (N, I) traverse la branche principale de la plaque de liaison (48) et débouche dans la barrière isolante primaire entre la branche principale de la plaque de liaison et la membrane d'étanchéité primaire (113) du dôme liquide.
- Ouvrage flottant selon l'une des revendications 5 à 8, comportant en outre un système de distribution d'azote incluant un réservoir d'azote gazeux (45) et un réseau de distribution, le réseau de distribution comportant une conduite de distribution primaire (44, A-G, L, J) s'étendant depuis un pont supérieur de l'ouvrage flottant à travers l'espace primaire (112) du dôme liquide et à travers la barrière d'isolation primaire (12) d'une paroi transversale de la cuve jusqu'à une zone de fond de la cuve, et une conduite de distribution secondaire (V) s'étendant depuis le pont supérieur de l'ouvrage flottant à travers l'espace secondaire (110) du dôme liquide et à travers la barrière d'isolation secondaire de la paroi transversale de la cuve jusqu'à la zone de fond de la cuve, et
dans lequel le système de distribution d'azote comporte en outre des moyens de régulation de pression pour réguler la pression régnant dans la barrière d'isolation primaire et la barrière d'isolation secondaire des parois de la cuve au moyen des conduite de distribution primaire et secondaire. - Ouvrage flottant selon l'une des revendications 1 à 9, dans lequel le gaz traceur est sélectionné parmi l'argon, l'hélium et leurs mélanges.
- Ouvrage flottant selon l'une des revendications 1 à 10, dans lequel le réservoir de gaz traceur (41, 141) est fixé de manière amovible au dispositif d'échappement primaire ou secondaire.
- Procédé d'exploitation d'un ouvrage flottant selon l'une des revendications 1 à 11, comportant :injecter le gaz traceur à travers l'un des dispositifs d'échappement primaire et secondaire (25, 125, 35, 135) dans l'espace primaire ou secondaire de la tourelle (15, 221) de l'ouvrage flottant selon l'une des revendications 1 à 11, sans dépasser la pression d'ouverture de la soupape de surpression primaire ou secondaire,détecter le gaz traceur à travers l'autre des dispositifs d'échappement primaire et secondaire (25, 125, 35, 135) dans l'espace primaire ou secondaire de la tourelle, et diagnostiquer une fuite dans la barrière d'étanchéité secondaire (11, 211) de la paroi supérieure de cuve et/ou dans la paroi de séparation (111, 60, 61) de la tourelle en réponse à la détection du gaz traceur.
- Procédé selon la revendication 12, dans lequel le gaz traceur est injecté dans l'espace secondaire à travers le dispositif d'échappement secondaire (35, 135) et détecté dans l'espace primaire à travers le dispositif d'échappement primaire (25, 125), le procédé comportant en outre :
maintenir une pression totale plus élevée dans l'espace secondaire (110, 210) que dans l'espace primaire (112, 212) par injection d'azote gazeux dans l'espace secondaire, sans dépasser la pression d'ouverture de la soupape de surpression secondaire. - Procédé selon la revendication 12 ou 13, dans lequel l'étape de diagnostiquer une fuite comporte l'une des mesures sélectionnée dans le groupe consistant à enregistrer la présence d'une fuite, mesurer une quantité ou une concentration du gaz traceur pour déterminer un débit de la fuite, et mesurer un retard temporel entre l'injection et la détection du gaz traceur pour déterminer une position de la fuite.
- Procédé de chargement ou déchargement d'un ouvrage flottant (70) selon l'une des revendications 1 à 11, dans lequel on achemine du gaz liquéfié à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante ou terrestre (77) vers ou depuis la cuve étanche et thermiquement isolante (71) de l'ouvrage flottant selon l'une des revendications 1 à 11.
- Système de transfert pour gaz liquéfié à basse température, le système comportant un ouvrage flottant (70) selon l'une des revendications 1 à 11, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve étanche et thermiquement isolante (71) à une installation de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l'installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1453115A FR3019520B1 (fr) | 2014-04-08 | 2014-04-08 | Cuve etanche et thermiquement isolante logee dans un ouvrage flottant |
PCT/EP2015/097015 WO2015155377A1 (fr) | 2014-04-08 | 2015-04-03 | Cuve etanche et thermiquement isolante logee dans un ouvrage flottant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3129700A1 EP3129700A1 (fr) | 2017-02-15 |
EP3129700B1 true EP3129700B1 (fr) | 2018-12-19 |
Family
ID=51726590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15715321.4A Active EP3129700B1 (fr) | 2014-04-08 | 2015-04-03 | Cuve etanche et thermiquement isolante logee dans un ouvrage flottant |
Country Status (13)
Country | Link |
---|---|
US (1) | US20170138536A1 (fr) |
EP (1) | EP3129700B1 (fr) |
JP (1) | JP6630288B2 (fr) |
KR (1) | KR102285764B1 (fr) |
CN (1) | CN106170657B (fr) |
AU (1) | AU2015245422B2 (fr) |
CL (1) | CL2016002523A1 (fr) |
ES (1) | ES2715887T3 (fr) |
FR (1) | FR3019520B1 (fr) |
MY (1) | MY181455A (fr) |
PH (1) | PH12016501956A1 (fr) |
SG (1) | SG11201608266SA (fr) |
WO (1) | WO2015155377A1 (fr) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5926464B2 (ja) * | 2012-12-14 | 2016-05-25 | ワルトシラ フィンランド オサケユキチュア | 液化ガスで燃料タンクを充填する方法及び液化ガス燃料システム |
FR3030014B1 (fr) * | 2014-12-15 | 2017-10-13 | Gaztransport Et Technigaz | Bloc isolant convenant pour realiser une paroi isolante dans une cuve etanche |
FR3035175B1 (fr) * | 2015-04-20 | 2017-04-28 | Gaztransport Et Technigaz | Cuve etanche et thermiquement isolante equipee d'un element traversant |
FR3050009B1 (fr) * | 2016-04-07 | 2018-04-27 | Gaztransport Et Technigaz | Cuve etanche et thermiquement isolante |
FR3052843B1 (fr) * | 2016-06-15 | 2018-07-06 | Gaztransport Et Technigaz | Structure de dome gaz pour une cuve etanche et thermiquement isolante |
FR3062703B1 (fr) * | 2017-02-09 | 2020-10-02 | Gaztransport Et Technigaz | Structure de dome gaz pour une cuve etanche et thermiquement isolante |
FR3069904B1 (fr) | 2017-08-07 | 2020-10-02 | Gaztransport Et Technigaz | Cuve etanche et thermiquement isolante comportant une structure de dome gaz |
FR3070745B1 (fr) * | 2017-09-04 | 2019-09-06 | Gaztransport Et Technigaz | Cuve etanche et thermiquement isolante a element de remplissage anti-convectif |
FR3070747B1 (fr) * | 2017-09-04 | 2021-01-08 | Gaztransport Et Technigaz | Cuve etanche et thermiquement isolante comportant une bande de couverture anti-convective |
FR3070673B1 (fr) * | 2017-09-07 | 2019-09-13 | Gaztransport Et Technigaz | Ouvrage flottant comprenant une cuve apte a contenir du gaz combustible liquefie |
FR3077617B1 (fr) * | 2018-02-07 | 2022-08-19 | Gaztransport Et Technigaz | Installation pour le stockage et le transport d'un gaz liquefie |
FR3078135B1 (fr) * | 2018-02-20 | 2021-01-15 | Gaztransport Et Technigaz | Installation de stockage et de transport d'un fluide cryogenique embarquee sur un navire |
FR3087537B1 (fr) * | 2018-10-22 | 2021-01-29 | Gaztransport Et Technigaz | Procede de test d’etancheite d’une membrane et dispositif de detection de fuite associe |
FR3087872B1 (fr) * | 2018-10-30 | 2022-08-05 | Gaztransport Et Technigaz | Installation de stockage pour gaz liquefie |
FR3089489B1 (fr) * | 2018-12-11 | 2020-11-06 | Gaztransport Et Technigaz | Tour de chargement et/ou de déchargement d’une cuve d’un navire et cuve comportant une telle tour. |
FR3090809B1 (fr) | 2018-12-19 | 2020-12-25 | Gaztransport Et Technigaz | Procede de detection de fuite sur une cuve etanche et thermiquement isolante |
FR3090872B1 (fr) * | 2018-12-21 | 2021-04-23 | Gaztransport Et Technigaz | Procédé de contrôle de l’étanchéité d’une cuve étanche et thermiquement isolante de stockage d’un fluide |
FR3093786B1 (fr) * | 2019-03-15 | 2023-03-24 | Gaztransport Et Technigaz | Paroi de cuve comprenant une isolation améliorée autour d’une traversée |
FR3096111B1 (fr) * | 2019-05-16 | 2023-03-24 | Gaztransport Et Technigaz | Cuve de transport et/ou de stockage pour gaz sous forme liquide |
EP4010621A1 (fr) * | 2019-08-09 | 2022-06-15 | Gaztransport Et Technigaz | Cuve étanche et thermiquement isolante comportant des bouchons isolants inter-panneaux |
KR102335584B1 (ko) * | 2020-06-18 | 2021-12-03 | 현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
KR102335581B1 (ko) * | 2020-06-18 | 2021-12-03 | 현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
KR102335580B1 (ko) * | 2020-06-18 | 2021-12-03 | 현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
KR102350341B1 (ko) * | 2020-06-18 | 2022-01-11 | 현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
KR102335582B1 (ko) * | 2020-06-18 | 2021-12-03 | 현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
KR102335577B1 (ko) * | 2020-06-18 | 2021-12-03 | 현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
KR102335583B1 (ko) * | 2020-06-18 | 2021-12-03 | 현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
KR102335578B1 (ko) * | 2020-06-18 | 2021-12-03 | 현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
KR102469998B1 (ko) * | 2020-12-14 | 2022-11-25 | 현대중공업 주식회사 | 액화가스 저장탱크 및 이를 포함하는 선박 |
FR3122706B1 (fr) * | 2021-05-07 | 2023-12-01 | Gaztransport Et Technigaz | Système d’alimentation d’un consommateur configuré pour être alimenté en un carburant préparé à partir d’un gaz issu de l’évaporation d’un liquide cryogénique comprenant au moins du méthane |
FR3123409B1 (fr) | 2021-05-31 | 2023-12-08 | Gaztransport Et Technigaz | Installation de stockage d’un gaz liquéfié |
FR3134615B1 (fr) | 2022-04-15 | 2024-08-09 | Gaztransport Et Technigaz | Installation pour le stockage et/ou le transport de gaz liquéfié |
CN114673925B (zh) * | 2022-04-26 | 2024-01-23 | 中太能源科技(上海)有限公司 | 一种用于液氢储存的常压储罐 |
CN115013727B (zh) * | 2022-05-10 | 2024-02-02 | 浙江冠南能源科技有限公司 | 基于能源管理的故障实时控制系统及控制方法 |
FR3135774B1 (fr) | 2022-05-20 | 2024-08-30 | Gaztransport Et Technigaz | Dôme gaz et cuve étanche et thermiquement isolante comportant un tel dôme gaz |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4359958A (en) * | 1978-06-28 | 1982-11-23 | Durant Peter D | Cargo transport system |
US4372340A (en) * | 1980-09-29 | 1983-02-08 | Chicago Bridge & Iron Company | Liquid storage tank |
FR2517802A1 (fr) * | 1981-12-04 | 1983-06-10 | Gaz Transport | Cuve destinee au stockage d'un gaz liquefie comportant une detection de fuite et procede de detection de fuite correspondant |
JPS61129884A (ja) * | 1984-11-29 | 1986-06-17 | Toshiba Corp | 極低温容器 |
HUP9800578A1 (hu) * | 1998-03-16 | 1999-11-29 | István Szakály | Eljárás és berendezés tartályokban tárolt illékony anyagok töltési és légzési veszteségeinek kiküszöbölésére, továbbá a tárolt termék és a tartályok korrózió elleni védelmére |
FR2847245B1 (fr) * | 2002-11-19 | 2005-06-24 | Coflexip | Installation de transfert de gaz liquefie et son utilisation |
GB0320474D0 (en) * | 2003-09-01 | 2003-10-01 | Cryostar France Sa | Controlled storage of liquefied gases |
KR100787777B1 (ko) * | 2007-03-09 | 2007-12-24 | 현대중공업 주식회사 | 보일오프가스 활용설비의 밀폐공간내 누출가스 감지 및환기 방법 |
WO2010042075A1 (fr) * | 2008-10-09 | 2010-04-15 | Keppel Offshore & Marine Technology Centre Pte Ltd | Conversion de coque de navires existants pour intégration de réservoir |
FR2960640A1 (fr) * | 2010-06-01 | 2011-12-02 | Gaztransp Et Technigaz | Epreuve d'etancheite d'un reservoir par rapport a un gaz presentant une signature infrarouge |
FI123162B (fi) * | 2011-05-04 | 2012-11-30 | Waertsilae Finland Oy | Nestekaasun poistojärjestelmä, säiliö nestekaasun varastoimiseksi, menetelmä nestekaasusäiliön uusimiseksi ja menetelmä nestekaasusäiliön valmistamiseksi |
FR2984454B1 (fr) * | 2011-12-20 | 2015-04-03 | Gaztransp Et Technigaz | Paroi de cuve comportant une conduite |
-
2014
- 2014-04-08 FR FR1453115A patent/FR3019520B1/fr not_active Expired - Fee Related
-
2015
- 2015-04-03 EP EP15715321.4A patent/EP3129700B1/fr active Active
- 2015-04-03 AU AU2015245422A patent/AU2015245422B2/en active Active
- 2015-04-03 KR KR1020167030039A patent/KR102285764B1/ko active IP Right Grant
- 2015-04-03 SG SG11201608266SA patent/SG11201608266SA/en unknown
- 2015-04-03 JP JP2016560927A patent/JP6630288B2/ja active Active
- 2015-04-03 MY MYPI2016703641A patent/MY181455A/en unknown
- 2015-04-03 ES ES15715321T patent/ES2715887T3/es active Active
- 2015-04-03 CN CN201580018633.8A patent/CN106170657B/zh active Active
- 2015-04-03 WO PCT/EP2015/097015 patent/WO2015155377A1/fr active Application Filing
- 2015-04-03 US US15/302,002 patent/US20170138536A1/en not_active Abandoned
-
2016
- 2016-10-03 PH PH12016501956A patent/PH12016501956A1/en unknown
- 2016-10-04 CL CL2016002523A patent/CL2016002523A1/es unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US20170138536A1 (en) | 2017-05-18 |
CL2016002523A1 (es) | 2017-04-21 |
FR3019520A1 (fr) | 2015-10-09 |
SG11201608266SA (en) | 2016-11-29 |
PH12016501956A1 (en) | 2017-01-09 |
ES2715887T3 (es) | 2019-06-06 |
EP3129700A1 (fr) | 2017-02-15 |
JP2017512953A (ja) | 2017-05-25 |
JP6630288B2 (ja) | 2020-01-15 |
AU2015245422A1 (en) | 2016-11-03 |
KR20160141780A (ko) | 2016-12-09 |
FR3019520B1 (fr) | 2016-04-15 |
CN106170657A (zh) | 2016-11-30 |
KR102285764B1 (ko) | 2021-08-04 |
CN106170657B (zh) | 2018-09-21 |
WO2015155377A1 (fr) | 2015-10-15 |
MY181455A (en) | 2020-12-22 |
AU2015245422B2 (en) | 2017-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3129700B1 (fr) | Cuve etanche et thermiquement isolante logee dans un ouvrage flottant | |
EP3250849B1 (fr) | Installation de stockage et de transport d'un fluide cryogénique embarquée sur un navire | |
EP3164636B1 (fr) | Cuve etanche et isolante disposee dans une double coque flottante | |
EP3074744B1 (fr) | Surveillance d'une cuve etanche et thermiquement isolante | |
FR3017924A1 (fr) | Procede et systeme d'inertage d'une paroi d'une cuve de stockage d'un gaz combustible liquefie | |
EP3361138B1 (fr) | Structure de dome gaz pour une cuve etanche et thermiquement isolante | |
WO2013041796A1 (fr) | Support installe en mer equipe de reservoirs externes | |
WO2017216477A1 (fr) | Structure de dome gaz pour une cuve etanche et thermiquement isolante | |
EP3749889A1 (fr) | Installation pour le stockage et le transport d'un gaz liquefie | |
WO2016128696A1 (fr) | Gestion des fluides dans une cuve etanche et thermiquement isolante | |
WO2020128370A1 (fr) | Procede de controle de l'etancheite d'une cuve etanche et thermiquement isolante de stockage d'un fluide | |
WO2019030447A1 (fr) | Cuve etanche et thermiquement isolante comportant une structure de dome gaz | |
EP3710741B1 (fr) | Dispositif d'inertage d'une cuve de stockage de gaz liquefie pour un navire de transport de ce gaz | |
FR3065941A1 (fr) | Procede de manutention d'une cargaison de gaz liquefie et installation de stockage | |
WO2004059205A2 (fr) | Installation de stockage d'un liquide | |
EP3699475A1 (fr) | Cuve étanche et thermiquement isolante | |
WO2023198853A1 (fr) | Installation pour le stockage et/ou le transport de gaz liquéfié | |
EP4083494A1 (fr) | Installation de stockage pour gaz liquefie | |
EP4198375A1 (fr) | Installation de stockage d'un gaz liquefie comportant une cuve et une structure de dome | |
EP4098539A1 (fr) | Navire pour le transport ou l'utilisation d'un fluide froid | |
FR3135126A1 (fr) | Paroi de cuve traversée par une conduite étanche d’évacuation de fluide | |
FR3134616A1 (fr) | Cuve étanche et thermiquement isolante et procédé de mise sous vide associé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161006 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GONCALVES, JEAN-PAUL Inventor name: JOLIVET, PIERRE Inventor name: GLORY, JULIEN Inventor name: BLEOMELEN, MAEL Inventor name: OLLIVIER, JULIEN Inventor name: PETITPAS, MATHIEU |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GAZTRANSPORT ET TECHNIGAZ |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180712 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015021847 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1079120 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20181219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190319 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190319 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1079120 Country of ref document: AT Kind code of ref document: T Effective date: 20181219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190320 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2715887 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190419 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190419 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015021847 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602015021847 Country of ref document: DE |
|
26N | No opposition filed |
Effective date: 20190920 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190430 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191101 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150403 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181219 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230612 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240506 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240423 Year of fee payment: 10 |