EP3128380A1 - Uhreinstellmechanismus mit magnetisch synchronisierten dreharmen - Google Patents

Uhreinstellmechanismus mit magnetisch synchronisierten dreharmen Download PDF

Info

Publication number
EP3128380A1
EP3128380A1 EP15179711.5A EP15179711A EP3128380A1 EP 3128380 A1 EP3128380 A1 EP 3128380A1 EP 15179711 A EP15179711 A EP 15179711A EP 3128380 A1 EP3128380 A1 EP 3128380A1
Authority
EP
European Patent Office
Prior art keywords
inertial
inertial arm
arm
mechanical
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15179711.5A
Other languages
English (en)
French (fr)
Other versions
EP3128380B1 (de
Inventor
Pascal Winkler
Jean-Jacques Born
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETA SA Manufacture Horlogere Suisse
Original Assignee
ETA SA Manufacture Horlogere Suisse
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETA SA Manufacture Horlogere Suisse filed Critical ETA SA Manufacture Horlogere Suisse
Priority to EP15179711.5A priority Critical patent/EP3128380B1/de
Priority to CH01127/15A priority patent/CH711402A2/fr
Priority to JP2016145173A priority patent/JP6255067B2/ja
Priority to US15/220,024 priority patent/US9785116B2/en
Priority to RU2016131904A priority patent/RU2703096C1/ru
Priority to CN201610626625.8A priority patent/CN106444335B/zh
Publication of EP3128380A1 publication Critical patent/EP3128380A1/de
Application granted granted Critical
Publication of EP3128380B1 publication Critical patent/EP3128380B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means

Definitions

  • the invention relates to a timepiece control mechanism comprising a plate and, movably mounted at least in pivoting movement relative to said plate, an escapement that pivots about an exhaust axis and is subjected to a torque motor, and at least a first resonator comprising a first rigid structure connected to said plate by first resilient return means, said first rigid structure carrying at least one inertial arm including a first inertial arm arranged to cooperate with said exhaust mobile by intermediate magnetized tracks and / or electrified that comprise both said at least a first inertial arm and said exhaust mobile, to form a synchronization device between said exhaust mobile and said at least a first resonator.
  • the invention also relates to a watch movement comprising at least one such regulating mechanism.
  • the invention also relates to a timepiece comprising such a movement or such a regulating mechanism.
  • the invention relates to the field of watchmaking mechanisms, in particular watchmaking exhaust mechanisms, and more particularly to the field of non-contact exhausts.
  • the invention proposes to remedy this deficiency of the state of the art, by developing a watch, including a mechanical watch, provided with a rotary arm regulator, synchronized magnetically, and equipped with an anti-stall mechanical.
  • the invention relates to a regulating mechanism according to claim 1.
  • the invention also relates to a watch movement comprising at least one such regulating mechanism.
  • the invention also relates to a timepiece comprising such a movement.
  • the invention proposes to develop a mechanical regulator, comprising resonators having a high quality factor, a high frequency, and / or low amplitudes, while increasing the efficiency of the exhaust and without giving up its robustness to shocks.
  • the invention relates to a watchmaking mechanism 200 comprising a plate 1 and mounted movable at least in pivoting movement relative to the plate 1, an exhaust mobile 10 and at least a first resonator 100.
  • the escapement wheel 10 is here illustrated, without limitation, by an escape wheel. It pivots around an exhaust axis D0, and is subjected to a driving torque, from an accumulator such as a cylinder or the like.
  • At least one first resonator 100 comprises a first rigid structure 110, which is connected to the plate 1 by first elastic return means 120.
  • This first rigid structure 110 carries at least one inertial arm 130 or 140. It also carries, at the arm end 111, masses of inertia 112 carrying inertia adjusting and balancing screws 113.
  • the figure 1 shows a first inertial arm 130, which is arranged to cooperate with the escapement mobile 10 via magnetized tracks and / or electrified that comprise both the at least one first inertial arm 130 and the mobile escape 10 , to form a synchronization device between the escapement wheel 10 and the at least one first resonator 100.
  • This arm 130 comprises a polar mass carrying distal end carried by a rod 115.
  • the synchronization device is protected from stalling during an accidental increase in torque by a mechanical anti-stall mechanism comprising mechanical exhaust stops 12 carried by the escape wheel 10, and by at least one mechanical stop of inertial arm 132, carried by the at least one first inertial arm 130, and arranged together for a stop abutment hold in such case of accidental increase in torque.
  • a mechanical anti-stall mechanism comprising mechanical exhaust stops 12 carried by the escape wheel 10, and by at least one mechanical stop of inertial arm 132, carried by the at least one first inertial arm 130, and arranged together for a stop abutment hold in such case of accidental increase in torque.
  • the at least one first inertial arm 130 pivots around a first virtual axis D1.
  • mechanical stops of inertial arm 132 which includes the inertial arm 130, each extend in a direction substantially tangent to the swing oscillation race of the inertial arm 130 around the first virtual axis D1.
  • the first virtual axis D1 is located at the intersection, in projection on the plane of the plate 1, flexible blades 121 and 122 that comprise the first elastic return means 120.
  • the first virtual axis D1 is situated at the rest position of a single flexible blade 125 which constitutes the first elastic return means 120.
  • the magnetized and / or electrised track that the at least one first inertial arm 130 comprises comprises at least a first polar mass of inertial arm 131A and a second polar mass of inertial arm 131 B, alternating, which extend on either side of a radial R from the first virtual axis D1, and on either side of a common perpendicular T to the radial R.
  • At least one magnetized and / or electrified track which comprises the escapement wheel 10 comprises an alternation of exhaust polar masses 11 and mechanical exhaust stops 12, at the same angular pitch ⁇ with respect to the exhaust axis D0.
  • the total space, along the radial R, of a group formed by a first polar mass of inertial arm 131A and a second polar mass of inertial arm 131B consecutive, along the radial R is substantially equal to a linear pitch P which is the projection on the radial R of the angular pitch ⁇ .
  • the separation, along the radial R, mechanical stops of inertial arm 132 corresponding to the same group is substantially equal to half of this linear pitch P.
  • the first rigid structure 110 still carries at least a second inertial arm 140 that includes a second resonator 150.
  • This second inertial arm 140 pivots around a second virtual axis D2, and is arranged as the first inertial arm 130, to cooperate with the escapement mobile 10 via magnetized tracks and / or electrified that include both the second inertial arm 140 and the exhaust mobile 10.
  • L "assembly consisting of the first resonator 100 and the second resonator 150 form then a tuning fork.
  • the mechanical anti-stall mechanism comprises at least a second mechanical stop of inertial arm 142 carried by the second inertial arm 140. Nevertheless, the mechanism can operate with the only first stop of the first arm 130.
  • the first inertial arm 130 and the second inertial arm 140 each comprise a fastener 133, respectively 143, of at least one flexible blade 135, respectively 145, the flexible blades 135, 145 respectively. , being fixed at their other end to the first rigid structure 110 constituted by the same connecting piece 20, comprising a bending zone 21, here collar type, just at the rigid attachment to the plate, and attached to the plate 1 at a recess 2.
  • the first inertial arm 130 and the second inertial arm 140 are arranged to vibrate in phase opposition with each other. It is in this configuration that the quality factor is the best.
  • the first inertial arm 130 and the second inertial arm 140 are arranged on either side of the escapement wheel 10, and each comprise at least one pair consisting of a polar mass of inertial arm 131, 141, and of a mechanical stop of inertial arm 132, 142, arranged to cooperate alternately with the runway of the escape wheel 10.
  • At least one magnetized and / or electrified track included in the escapement wheel 10 comprises an alternation of exhaust polar masses 11 and exhaust mechanical stops 12 at the same angular pitch ⁇ , and in each pair , the angular distance, in projection on the same plane perpendicular to the exhaust axis D0, between the polar mass of inertial arm 131, 141, and the mechanical stop of inertial arm 132, 142, is equal to half of this angular step ⁇ .
  • first inertial arm 130 and the second inertial arm 140, and the flexible blades 135, 145 extend in directions substantially parallel to each other and orthogonal to that of the connecting piece 20.
  • each inertial arm 130, 140 is arranged to cooperate with the mobile exhaust 10 continuously, without periodic stop of the mobile escape 10.
  • the regulating mechanism 200 constitutes an exhaust mechanism with type dowels Lepaute, where the escapement mobile 10 comprises a half-pin forming a mechanical exhaust stop 12 near each polar exhaust mass 11 that includes the mobile escape 10, and wherein the at least a first inertial arm 130 comprises a mechanical stop of inertial arm 132A, which is the inner surface of a first compass leg, and another mechanical stop of inertial arm 132B corresponding to the next step which is the outer surface of a second compass leg.
  • the inner surface of the first compass leg and the outer surface of the second compass leg are separated by a space of greater width than the radius of the half-pin.
  • the mechanical stop system is coplanar and comprises at least one finger arranged to cooperate radially with a toothed wheel.
  • each inertial arm 130, 140 is less than 20 °.
  • At least one of the inertial arms 130, 140 of the tuning fork carries two magnetic pallets.
  • the two inertial arms 130, 140 of the tuning fork each carry at least one magnetic paddle.
  • At least one of the inertial arms 130, 140 of the tuning fork carries two anti-stall mechanical pallets.
  • the two inertial arms 130, 140 of the tuning fork each carry at least one mechanical anti-stall pallet.
  • the regulating mechanism 200 comprises at least two inertial arms 130, 140, rotating whose phase shift of one with respect to the other is controlled by a mechanical connection.
  • the figure 7 illustrates the mechanical phase-shift control connection comprising a groove-pin mechanism, with a pin 31 integral with a 130 of the two inertial arms 130, 140, sliding in a groove 32 of a fitting 33 secured to the other 140 of the two inertial arms 130, 140.
  • the figure 7 illustrates the variant comprising at least one gear sector 34, 35, arranged to synchronize symmetrical movements of the inertial arms 130, 140, with a first toothed sector 34 integral with a 130 of the two inertial arms 130, 140, meshing permanently with a second toothed sector 35 integral with the other 140 of the two inertial arms 130, 140.
  • the figure 9 illustrates a flexible mechanical connection comprising flexible blades 36, 37, joining in cross the opposite ends of the two inertial arms 130 and 140.
  • the connecting piece 20 of the two arms of the tuning fork is connected to the plate 1 by a viscoelastic component or polyurethane, arranged to dissipate the reaction forces to the support due to a possible transient mode of "windshield wiper" type.
  • tuning fork when the inertial arms 130, 140 have a substantially synchronous movement.
  • the connecting piece 20 of the two arms of the tuning fork is connected to the plate 1 by a friction mechanism, coupled to an elastic return means in neutral position, and arranged to dissipate reaction forces to the support due to a possible transient mode of "wiper" type of tuning fork when the inertial arms 130, 140 have a substantially synchronous movement.
  • At least one component of mechanical anti-stall mechanism is made of a shock-absorbing material, so as to avoid bouncing.
  • At least one component of said mechanical anti-stall mechanism is a thin pallet, integral with an inertial arm 130, 140, and in an arc substantially concentric with the pivot axis, real or virtual , of the inertial arm 130, 140, which carries it.
  • the mechanical anti-stall mechanism comprises at least one set formed by a pallet of an inertial arm 130, 140, arranged to cooperate in the abutment position with an anchor of the escapement mobile 10. And the pallets and pins of the anti-stall are arranged to intercept in case of forced pivoting of the mobile escape 10 while the at least one first resonator 100 is maintained in its equilibrium position.
  • the first resilient return means 120 comprise at least one flexible strip made of oxidized silicon to thermally compensate for frequency variations.
  • the synchronization is magnetic.
  • the regulator mechanism 200 constitutes a regulation and exhaust mechanism.
  • the invention also relates to a clockwork movement 300 comprising at least one such regulating mechanism 200.
  • the invention also concerns a timepiece 400 comprising such a movement 300, or comprising at least one such regulating mechanism 200.
  • the advantage of the invention is to reconcile the high efficiency offered by a magnetic synchronization system (more than 90%), while eliminating its main defect, namely, the stall in case of high torque. Reliability is therefore improved without impairing performance performance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Micromachines (AREA)
  • Electric Clocks (AREA)
  • Gears, Cams (AREA)
EP15179711.5A 2015-08-04 2015-08-04 Uhreinstellmechanismus mit magnetisch synchronisierten dreharmen Active EP3128380B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15179711.5A EP3128380B1 (de) 2015-08-04 2015-08-04 Uhreinstellmechanismus mit magnetisch synchronisierten dreharmen
CH01127/15A CH711402A2 (fr) 2015-08-04 2015-08-04 Mécanisme régulateur d'horlogerie à bras rotatifs synchronisé magnétiquement.
JP2016145173A JP6255067B2 (ja) 2015-08-04 2016-07-25 磁気によって同期される回転アームを有する時計用調速機構
US15/220,024 US9785116B2 (en) 2015-08-04 2016-07-26 Timepiece regulating mechanism with magnetically synchronized rotating arms
RU2016131904A RU2703096C1 (ru) 2015-08-04 2016-08-03 Регулирующий часовой механизм с магнитно-синхронизированными поворотными рычагами
CN201610626625.8A CN106444335B (zh) 2015-08-04 2016-08-03 具有磁性同步旋转臂的钟表调速机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15179711.5A EP3128380B1 (de) 2015-08-04 2015-08-04 Uhreinstellmechanismus mit magnetisch synchronisierten dreharmen

Publications (2)

Publication Number Publication Date
EP3128380A1 true EP3128380A1 (de) 2017-02-08
EP3128380B1 EP3128380B1 (de) 2018-11-21

Family

ID=64270565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15179711.5A Active EP3128380B1 (de) 2015-08-04 2015-08-04 Uhreinstellmechanismus mit magnetisch synchronisierten dreharmen

Country Status (6)

Country Link
US (1) US9785116B2 (de)
EP (1) EP3128380B1 (de)
JP (1) JP6255067B2 (de)
CN (1) CN106444335B (de)
CH (1) CH711402A2 (de)
RU (1) RU2703096C1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561604A1 (de) 2018-04-25 2019-10-30 The Swatch Group Research and Development Ltd Uhrreglermechanismus mit über gelenke verbundenen resonatoren
CN110928170A (zh) * 2018-09-19 2020-03-27 斯沃奇集团研究和开发有限公司 优化的磁-机械钟表擒纵机构
CH716677A1 (fr) * 2019-10-08 2021-04-15 Richemont Int Sa Balancier à moment d'inertie variable.

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3032352A1 (de) * 2014-12-09 2016-06-15 LVMH Swiss Manufactures SA Uhrregler, Uhrwerk und Uhr mit solch einem Regler
EP3035126B1 (de) * 2014-12-18 2017-12-13 The Swatch Group Research and Development Ltd. Resonator einer Uhr mit sich kreuzenden Blättern
ES2698115T3 (es) * 2015-12-16 2019-01-31 Sa De La Manufacture Dhorlogerie Audemars Piguet & Cie Mecanismo de regulación de una velocidad media en un movimiento de relojería y movimiento de relojería
EP3208667A1 (de) * 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Magnetisches hemmungsdrehteil eines uhrwerks
EP3336613B1 (de) * 2016-12-16 2020-03-11 Association Suisse pour la Recherche Horlogère Resonator für uhr, der zwei pendellager umfasst, die so angeordnet sind, dass sie auf derselben ebene schwingen können
EP3425458A1 (de) * 2017-07-07 2019-01-09 ETA SA Manufacture Horlogère Suisse Abtrennbares stück eines uhrenoszillators
US11108154B2 (en) 2018-04-23 2021-08-31 John Mezzalingua Associates, LLC Compact antenna phase shifter with simplified drive mechanism
EP3579058B1 (de) * 2018-06-07 2021-09-15 Montres Breguet S.A. Uhr, die ein tourbillon umfasst
EP3663868B1 (de) * 2018-12-07 2021-09-08 Montres Breguet S.A. Uhrwerk, das ein tourbillon mit einem festen magnetischen rad umfasst

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2750730A (en) * 1952-03-20 1956-06-19 Ingraham E Co Shock and vibration proof oscillator
US2762222A (en) * 1949-05-28 1956-09-11 Clifford Cecil Frank Magnetic escapement mechanism
US3183426A (en) * 1962-02-14 1965-05-11 Cons Electronics Ind Magnetically coupled constant speed system
EP2221676A1 (de) * 2009-02-24 2010-08-25 Montres Breguet SA Uhr bestehend aus einem Chronographen und einem Uhrwerk
EP2887156A1 (de) * 2013-12-23 2015-06-24 The Swatch Group Research and Development Ltd. Einstellvorrichtung
EP2889704A2 (de) * 2013-12-23 2015-07-01 Nivarox-FAR S.A. Kontaktloser Zylindrische Uhrhemmungsmechanismus
WO2015096979A2 (fr) * 2013-12-23 2015-07-02 The Swatch Group Research And Development Ltd Echappement naturel
EP2990885A1 (de) * 2013-12-23 2016-03-02 ETA SA Manufacture Horlogère Suisse Mechanisches Uhrwerk mit magnetischem Hemmungsmechanismus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4514755Y1 (de) * 1967-08-14 1970-06-22
US3487630A (en) * 1967-09-28 1970-01-06 Us Time Corp The Balance mechanism for an electronic watch
JP4462190B2 (ja) * 2003-09-25 2010-05-12 セイコーエプソン株式会社 時計
EP2790067A1 (de) * 2013-04-12 2014-10-15 Montres Breguet SA Hemmungssystem für einen Spiralunruh-Schwinger
JP6087895B2 (ja) * 2013-12-23 2017-03-01 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド 磁気脱進機機構を含む時計ムーブメント内のホイールセットのための角速度調節デバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2762222A (en) * 1949-05-28 1956-09-11 Clifford Cecil Frank Magnetic escapement mechanism
US2750730A (en) * 1952-03-20 1956-06-19 Ingraham E Co Shock and vibration proof oscillator
US3183426A (en) * 1962-02-14 1965-05-11 Cons Electronics Ind Magnetically coupled constant speed system
EP2221676A1 (de) * 2009-02-24 2010-08-25 Montres Breguet SA Uhr bestehend aus einem Chronographen und einem Uhrwerk
EP2887156A1 (de) * 2013-12-23 2015-06-24 The Swatch Group Research and Development Ltd. Einstellvorrichtung
EP2889704A2 (de) * 2013-12-23 2015-07-01 Nivarox-FAR S.A. Kontaktloser Zylindrische Uhrhemmungsmechanismus
WO2015096979A2 (fr) * 2013-12-23 2015-07-02 The Swatch Group Research And Development Ltd Echappement naturel
EP2990885A1 (de) * 2013-12-23 2016-03-02 ETA SA Manufacture Horlogère Suisse Mechanisches Uhrwerk mit magnetischem Hemmungsmechanismus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561604A1 (de) 2018-04-25 2019-10-30 The Swatch Group Research and Development Ltd Uhrreglermechanismus mit über gelenke verbundenen resonatoren
EP3561603A1 (de) * 2018-04-25 2019-10-30 The Swatch Group Research and Development Ltd Reguliermechanismus einer uhr mit verbundenen resonatoren
EP3561605A1 (de) 2018-04-25 2019-10-30 The Swatch Group Research and Development Ltd Uhrreglermechanismus mit über gelenke verbundenen resonatoren
US11454933B2 (en) 2018-04-25 2022-09-27 The Swatch Group Research And Development Ltd Timepiece regulating mechanism with articulated resonators
CN110928170A (zh) * 2018-09-19 2020-03-27 斯沃奇集团研究和开发有限公司 优化的磁-机械钟表擒纵机构
CN110928170B (zh) * 2018-09-19 2021-08-27 斯沃奇集团研究和开发有限公司 优化的磁-机械钟表擒纵机构
US11567456B2 (en) 2018-09-19 2023-01-31 The Swatch Group Research And Development Ltd Optimised magneto-mechanical timepiece escapement mechanism
CH716677A1 (fr) * 2019-10-08 2021-04-15 Richemont Int Sa Balancier à moment d'inertie variable.

Also Published As

Publication number Publication date
JP2017032553A (ja) 2017-02-09
CH711402A2 (fr) 2017-02-15
JP6255067B2 (ja) 2017-12-27
CN106444335A (zh) 2017-02-22
US9785116B2 (en) 2017-10-10
RU2703096C1 (ru) 2019-10-15
US20170038730A1 (en) 2017-02-09
CN106444335B (zh) 2018-11-16
EP3128380B1 (de) 2018-11-21

Similar Documents

Publication Publication Date Title
EP3128380A1 (de) Uhreinstellmechanismus mit magnetisch synchronisierten dreharmen
EP3327515B1 (de) Sich drehender resonator mit einer flexiblen führung, der von einer freien ankerhemmung gehalten wird
EP1736838B1 (de) Uhr
EP3312682B1 (de) Qualitativ hochwertiger resonator für mechanische armbanduhr
EP3312683B1 (de) Mechanisches uhrwerk mit resonator mit zwei freiheitsgraden und wartungsmechanismus über eine auf einer laufpiste rollenden laufrolle
CH709536A2 (fr) Mécanisme régulateur d'horlogerie comportant deux oscillateurs.
WO2013144238A1 (fr) Mécanisme d'échappement flexible à balancier sans plateau
EP2995999B1 (de) Synchronisierung der resonatoren eines uhrwerks
EP2908189A2 (de) Mechanismus zur Synchronisation von zwei Oszillatoren eines Uhrwerks mit einem Räderwerk
EP3037894B1 (de) Mechanismus und Verfahren zur Geschwindigkeitseinstellung in einem Uhrwerk
EP3191897B1 (de) Mechanismus zur synchronisierung von zwei uhrenoszillatoren mit einen rädersatz
EP3316047B1 (de) Mechanische armbanduhr mit einem isochronen sich drehenden resonator, der positionsunempfindlich ist
WO2013092316A1 (fr) Mecanisme d'echappement
EP3781994B1 (de) Restanker-hemmungmechanismus und uhrzeit mit einem solchen hemmungmechanismus
EP3561604B1 (de) Uhrreglermechanismus mit über gelenke verbundenen resonatoren
CH718169A2 (fr) Mécanisme résonateur d'horlogerie à guidage flexible muni de moyens d'ajustement de la rigidité.
WO2018215284A1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune
WO2019106448A1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique ayant des masses rotatives et une force de rappel commune
EP3044637A1 (de) Uhrwerkresonator und anordnung mit einem derartigen resonator und hemmwerk
EP3019916A2 (de) Hemmung für eine uhr mit einem tourbillon ohne käfig
CH713829A1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune.
CH714927A2 (fr) Mécanisme régulateur d'horlogerie à résonateurs articulés.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170808

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180531

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20180919

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015020010

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1068275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1068275

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015020010

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190804

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230720

Year of fee payment: 9

Ref country code: DE

Payment date: 20230720

Year of fee payment: 9