EP3113901A1 - Procédé de réparation d'un corps d'aube et manchon de refroidissement - Google Patents

Procédé de réparation d'un corps d'aube et manchon de refroidissement

Info

Publication number
EP3113901A1
EP3113901A1 EP15721613.6A EP15721613A EP3113901A1 EP 3113901 A1 EP3113901 A1 EP 3113901A1 EP 15721613 A EP15721613 A EP 15721613A EP 3113901 A1 EP3113901 A1 EP 3113901A1
Authority
EP
European Patent Office
Prior art keywords
cooling
airfoil
cooled
elements
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15721613.6A
Other languages
German (de)
English (en)
Inventor
Roman Kalocsay
Nikolai Arjakine
Georg Bostanjoglo
Bernd Burbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3113901A1 publication Critical patent/EP3113901A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/80Repairing, retrofitting or upgrading methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/125Fluid guiding means, e.g. vanes related to the tip of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade

Definitions

  • the present invention relates to a process for Repara ⁇ structure of a blade of an axial flow turbomachine, in which on the blade by means of welding material kisstra ⁇ gene.
  • Blades of axial turbomachinery such as gas turbine blades
  • gas turbine blades are often subjected to very high temperatures and thermal stresses during operation.
  • Schaufelblät ⁇ ter made of high-strength materials, such as nickel-base superalloy.
  • blade wear due to oxidation, thermal fatigue cracking, metal erosion or the like can not be prevented. Accordingly, the blades must be serviced at regular intervals and replaced in case of wear or repaired.
  • a problem with known repair methods is that with the build-up welding heat is introduced into the blade to be repaired, whereby Sch healthyeigenspannun ⁇ conditions are caused in the component, which can lead to cracks among other things.
  • One way of counteracting such residual stresses is, for example, pre-heating the component prior to welding, thereby eliminating perspiration. Tensions are reduced by recovery during the welding process.
  • welding methods can be selected in which comparatively little heat is introduced into the substrate, for example laser deposition welding, to name but one example.
  • Another problem of known repair methods is that if several layers of material are to be applied to one another, the previously generated layer of material must first cool in order to keep the process conditions constant, which leads to long waiting times.
  • the present invention provides a method of the type mentioned, which is characterized in that the airfoil is cooled during the application welding.
  • a significant advantage of a sol ⁇ chen cooling during hardfacing is that the introduced by the welding process in the component heat is removed quickly, which leads to very constant Pro ⁇ zess petition.
  • waiting times can be avoided between welding see welding layers arranged one above the other.
  • sidewall regions of the airfoil are preferably cooled during build-up welding. Accordingly, a large-area and efficient cooling can be achieved.
  • the material is applied at least to the blade tip.
  • damage to the blade tip can be eliminated, which are due to a réellesbe ⁇ related contact of the blade tip with a stationary seal or a stationary housing.
  • Sidewall portions of the actor ⁇ felblattes are preferably formed during hardfacing adjacent to the blade tip cooled arranged. Accordingly ⁇ contract is obtained on the blade tip, a very efficient cooling during a material.
  • the material is applied in the inventive Ver ⁇ drive by means of micro-powder build-up welding advantageous, which is also known as Micro-cladding.
  • micro-powder build-up welding advantageous, which is also known as Micro-cladding.
  • a continuous stream of powder is melted on the substrate using a focused laser, in particular a fiber laser, whereby layer-wise coatings or also specific structures can be produced.
  • a significant advantage of micropulver application welding is that only a small amount of heat is introduced into the component, which is why there are hardly any stresses.
  • the realizable material application is very accurate, wes ⁇ half be connected to the material application only minor Nacharbei ⁇ th.
  • the present invention provides a cooling sleeve, which is particularly suitable for carrying out the method according to the invention.
  • the cooling sleeve comprises at least one cooling channel, which has a coolant inlet and a coolant outlet and flows through a coolant in the intended state, as well as several along ei ⁇ ner inner wall of the cooling sleeve and adjacent to the ⁇ least one cooling channel arranged cooling elements in be ⁇ mood condition to rest against an object to be cooled.
  • Such a cooling jacket may be arranged one object to be cooled on the order ⁇ fang and an effective cooling via cooled by the at least one cooling passage coolant flowing through cooling elements cause problems.
  • the cooling elements are movably held on the cooling sleeve. On In this way, an alignment of the cooling elements is made possible relative to an object to be cooled, whereby a good contact between the cooling elements and the object to be cooled and, accordingly, a good heat transfer can be ensured.
  • flexible sealing elements are arranged between the respective cooling elements, which allow a movement of the cooling elements. At the same time prevent the sealing elements, that exits through the cooling channel strö ⁇ ing coolant between the cooling elements.
  • the cooling elements are preferably made of a metallic work ⁇ material, in particular aluminum.
  • Metallic materials and in particular aluminum are characterized by their good thermal conductivity.
  • the arrangement, the number and the shape of the cooling elements are adapted to the outer contour of a blade ⁇ blade to be cooled, in particular to the outer contour of be ⁇ adjacent to the blade tip arranged side wall portions of the airfoil.
  • the cooling jacket ⁇ cuff is preferably designed for the cooling of side wall portions of an airfoil of a turbomachine, in particular for cooling a stator vane of a gas turbine.
  • the at least one cooling duct defining anddeele ⁇ housing receiving elements are provided.
  • the housing is preferably ver ⁇ see with a clamping device, which is designed such that it presses the cooling elements in the intended condition against the object to be cooled.
  • a clamping device which is designed such that it presses the cooling elements in the intended condition against the object to be cooled.
  • the cooling sleeve can be pushed onto an object to be cooled and then firmly fixed to this under Actu ⁇ tion of the clamping device.
  • the housing in the circumferential direction is divided into two the cooling channel dividing housing sections divided, which are connected by an elastic, a coolant passage defining connecting element mitein ⁇ other, wherein the tensioning means connects the free ends of the housing sections to each other.
  • FIG. 1 is a schematic sectional plan view of a cooling sleeve according to an embodiment of the present invention with reference to the accompanying drawings.
  • Cooling sleeve according to an embodiment of the present invention
  • FIG. 2 shows a partial view of the cooling sleeve shown in FIG. 5 in the direction of the arrow II in FIG. 1 and FIG
  • Figure 3 is a schematic perspective view of the in
  • Figure 1 illustrated cooling sleeve, which is arranged on a blade to be cooled airfoil.
  • the figures show a cooling collar 1 according to an exporting ⁇ approximate shape of the present invention.
  • the cooling sleeve 1 comprises an elongated, kidney-shaped housing 2 with opposing free housing ends 3 and 4.
  • a cooling channel 5 which at the one free housing end 3 with a coolant inlet 6 and at the other free housing end 4 is provided with adekar- telauslass 7.
  • the cooling sleeve 1 furthermore comprises a plurality of cooling elements 8 arranged along an inner wall of the cooling sleeve 1 and adjacent to the cooling channel 5, which in the intended condition bear against an airfoil 9 of a turbomachine, as will be described in more detail below is explained.
  • the cooling elements 8 are made of a metalli ⁇ rule material, in particular aluminum, wel ⁇ ches is characterized by its good thermal conductivity. Between the respective cooling elements 8 flexible sealing elements 10 are arranged, which on the one hand seal the intermediate spaces between the cooling elements 8, in order to prevent a coolant passed through the cooling channel 5 from exiting through these intermediate spaces. On the other hand, the sealing elements 10, which surround the cooling elements 8 circumferentially, give the cooling elements 8 a certain mobility.
  • the arrangement, the number and the shape of the cooling elements 8 are adapted to the outer contour of the airfoil 9 to be cooled, more precisely to the outer contour of adjacent to the blade tip 11 arranged side wall portions 12 of the Blade felblattes 9.
  • the housing 2 is in the circumferential direction approximately with ⁇ tig divided into two the cooling passage 5 dividing housing sections 2a, 2b, which are miteinan ⁇ connected via an elastic, ademit- tel filelass 13 defining connecting element 14. Thanks to the elasticity of the connecting element 14, the housing sections 2a and 2b can be moved within certain limits in the direction of the arrows A and B relative to each other.
  • the free housing ends 3 and 4 are interconnected by a clamping device 15.
  • the tensioning device 15 comprises a tensioning lever 16 and a spring 17 extending between the housing ends 3 and 4 and is designed in such a way that the housing ends 3 and 4, upon actuation of the tensioning lever 16, oppose each other against the force of the spring 17 and are supported by the force of the spring 17 can be moved away from each other.
  • the cooling sleeve 1 is used to cool the side wall portions 12 of an airfoil 9, while in the context of a repair process on the blade tip 11 of the blade ⁇ blade 9 by means of build-up welding material is applied.
  • the cooling sleeve 1 is mounted on the blade 9 in a first step.
  • the tensioning lever 16 of the tensioning device 15 is released so that the cooling cuff 1 can be slid onto the airfoil 9 from above.
  • the cooling sleeve 1 is positioned in such a way that the cooling elements 8 engage with the side wall regions 12 of the airfoil 9 arranged adjacent to the blade tip 11.
  • the clamping device 15 is tensioned under the operation of the clamping lever 16 against the force of the spring 17, as shown in Figure 3, so that the individual cooling elements 8 ge ⁇ conditions the opposite sections the side wall portions 12 of the airfoil 9 are pressed.
  • the cooling channel 5 is supplied with a coolant through the cooling medium inlet 6, which flows through the cooling channel 5 and exits through the coolant outlet 7 from the cooling ⁇ cuff 1 again.
  • the airfoil repair process is performed.
  • material is supported on the blade tip 11 of the airfoil 9 ⁇ by micro-powder build-up welding. The heat which is supplied to the airfoil 9 during the welding process is transferred from the side wall regions 12 of the airfoil 9 via the cooling elements 8 to the coolant flowing through the cooling channel 5 and removed.
  • a significant advantage of such cooling during hardfacing is that the process introduced by the welding in the component heat is asklei ⁇ tet faster, which leads to very constant process conditions. In addition, waiting times between the welding of superimposed weld layers can be avoided.
  • the cooling jacket 1 of the invention is characterized insbeson ⁇ particular by the fact that it has a simple, inexpensive and little space engaging structure. Accordingly, the cooling sleeve 1 can be easily transported and used flexibly. The implementation of a repair method of a still installed airfoil 9 in situ is possible using the cooling sleeve 1 according to the invention.
  • the repair process according to the invention is preferably carried out using micropulver deposition welding.
  • a significant advantage of the micro powder hardfacing be ⁇ is the fact that very little heat is introduced into the component that can be removed easily through the cooling collar, which is why hardly stresses occur.
  • the realizable material application is very accurate, which is why the material application only minor reworking subsequent ⁇ SEN.
  • the applied material may be a base material of the airfoil, a protective coating or the like. Suitable materials are well known to those skilled in the art, which is why will not be discussed in detail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un procédé de réparation d'un corps d'aube (9) d'une turbomachine axiale. Selon ledit procédé, une matière est apportée sur le corps d'aube (9) par soudage par apport de matière, le corps d'aube (9) étant refroidi pendant le soudage par apport de matière. L'invention concerne en outre un manchon de refroidissement (1) comprenant au moins un canal de refroidissement (5), qui comporte une entrée de réfrigérant (6) et une sortie de réfrigérant (7), et qui, dans l'état conforme à l'usage prévu, est traversé par un réfrigérant, et plusieurs éléments de refroidissement (8) disposés le long d'une périphérie intérieure du manchon de refroidissement (1), adjacents au ou aux canaux de refroidissement (5) et reposant, dans l'état conforme à l'usage prévu, sur un objet à refroidir, en particulier sur un corps d'aube (9) à refroidir.
EP15721613.6A 2014-05-23 2015-04-28 Procédé de réparation d'un corps d'aube et manchon de refroidissement Withdrawn EP3113901A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014209847.5A DE102014209847A1 (de) 2014-05-23 2014-05-23 Verfahren zur Reparatur eines Schaufelblattes
PCT/EP2015/059166 WO2015176923A1 (fr) 2014-05-23 2015-04-28 Procédé de réparation d'un corps d'aube et manchon de refroidissement

Publications (1)

Publication Number Publication Date
EP3113901A1 true EP3113901A1 (fr) 2017-01-11

Family

ID=53174993

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15721613.6A Withdrawn EP3113901A1 (fr) 2014-05-23 2015-04-28 Procédé de réparation d'un corps d'aube et manchon de refroidissement

Country Status (7)

Country Link
US (1) US20170080529A1 (fr)
EP (1) EP3113901A1 (fr)
KR (1) KR20160145180A (fr)
CN (1) CN106457487A (fr)
DE (1) DE102014209847A1 (fr)
RU (1) RU2016146264A (fr)
WO (1) WO2015176923A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200376599A1 (en) * 2019-05-30 2020-12-03 Delavan Inc. Liquation cracking prevention
FR3101663B1 (fr) * 2019-10-07 2021-10-01 Safran Aircraft Engines Procédé de rechargement d’une pale de turbomachine d’aéronef

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE811066C (de) * 1950-04-09 1951-08-16 Babcock & Wilcox Dampfkessel W Verfahren zum Erzielen einer harten Oberflaeche beim Aufschmelzen einer Gusseisenschicht auf Stahlplatten geringer Wandstaerke
IT1089145B (it) * 1977-12-23 1985-06-18 Sio Ind Ossigeno Altri Gas Procedimento e relativa apparecchiatura per la saldatura di superfici metalliche rivestite di un elemento volatile col calore
DE3012295C2 (de) * 1980-03-29 1982-08-19 Manfred 5210 Troisdorf Hawerkamp Vorrichtung zum Kühlen und gegebenenfalls Kalibrieren des Rohrprofils eines Rohres mit im Längsschnitt profilierter Rohrwand
DE3438439A1 (de) * 1983-10-26 1985-05-09 Daido Tokushuko K.K., Nagoya, Aichi Pulveroberflaechenschweissverfahren
FR2698572B1 (fr) * 1992-11-27 1995-02-03 Metallisation Ind Ste Nle Procédé de rechargement d'une pièce au moyen d'un plasma à arc transféré.
DE10202193B4 (de) * 2002-01-22 2006-11-23 Man B&W Diesel A/S Verfahren zum Versehen eines Großmaschinenbauteils mit einem Schutzbelag
US9527169B2 (en) * 2007-02-27 2016-12-27 Siemens Energy, Inc. Process and apparatus for cooling a metal part during a welding operation
US20090057275A1 (en) * 2007-08-31 2009-03-05 General Electric Company Method of Repairing Nickel-Based Alloy Articles
US8636471B2 (en) * 2010-12-20 2014-01-28 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
DE102011101369A1 (de) * 2011-05-12 2012-11-15 Mtu Aero Engines Gmbh Verfahren zum Herstellen, Reparieren oder Austauschen eines Bauteils

Also Published As

Publication number Publication date
CN106457487A (zh) 2017-02-22
KR20160145180A (ko) 2016-12-19
US20170080529A1 (en) 2017-03-23
WO2015176923A1 (fr) 2015-11-26
RU2016146264A3 (fr) 2018-06-25
RU2016146264A (ru) 2018-06-25
DE102014209847A1 (de) 2015-11-26

Similar Documents

Publication Publication Date Title
DE60126723T2 (de) Reparaturmethode für einen Turbinenleitapparat
DE60211228T2 (de) Methode zum Reparieren einenTurbinenleitapparat
EP1207004B1 (fr) Procédé de réparation d' aubes
EP3191244B1 (fr) Procédé de production d'une aube mobile et aube obtenue
EP2943652B1 (fr) Dispositif de serrage d'une aube de turbine
DE60319492T2 (de) Reparaturmethode für einen Turbinenleitapparat und Turbinenleitapparat
DE102011052675A1 (de) Komponenten mit konform gekrümmten Filmlöchern und Verfahren für deren Herstellung
DE102010001414B4 (de) Verfahren zur Reparatur von Labyrinth-Dichtungsstegen
DE3102575A1 (de) "spitzenkappe fuer eine rotorschaufel und verfahren zum austauschen derselben"
DE102014103000A1 (de) Bauteil mit mikrogekühlter laserabgeschiedener Materialschicht und Verfahren zur Herstellung
EP3251787A1 (fr) Procédé de fabrication d'un composant de machine rotative et composant fabriqué selon un tel procédé
WO2009065385A1 (fr) Procédé de réparation d'un élément de turbine à gaz
EP1812199A1 (fr) Procede de reparation d'aubes de turbomachines
DE102014226055A1 (de) Verfahren zum Ausbessern einer Beschädigung an einer Turbinenschaufel
DE102010024083A1 (de) Verfahren zur Reparatur von Rotorschaufeln
EP2038083B1 (fr) Procédé de réparation et/ou de remplacement d'éléments individuels d'une pièce d'une turbine à gaz
EP3113901A1 (fr) Procédé de réparation d'un corps d'aube et manchon de refroidissement
EP1940581B1 (fr) Procédé de fabrication d un raccord soudé
DE102006016703A1 (de) Verfahren zur Reparatur eines Leitschaufelsegments
DE102015219513B4 (de) Reparaturverfahren für Dichtsegmente
DE102014224156B4 (de) Lötverfahren zur Panzerung der Z-Notch von TIAL-Schaufeln und Bauteil einer Strömungsmaschine mit einer solchen Panzerung
DE10319020A1 (de) Verfahren und Vorrichtung zum Verrunden von Kanten an Bauteilen
WO2011117395A1 (fr) Composant doté d'une paroi extérieure pouvant être exposée à un gaz chaud d'une turbine à gaz et procédé de fabrication d'un tel composant
DE102008036450A1 (de) Labyrinth-Dichtungssteg-Reparaturverfahren für Gasturbinen
DE102016214208B4 (de) Verfahren zur Herstellung einer Kanalstruktur und Komponente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17P Request for examination filed

Effective date: 20161006

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

18W Application withdrawn

Effective date: 20161219