EP3110916A1 - Procédé pour la conversion d'une charge de départ d'hydrocarbures de point d'ébullition élevé en produits hydrocarbures de plus faible point d'ébullition - Google Patents

Procédé pour la conversion d'une charge de départ d'hydrocarbures de point d'ébullition élevé en produits hydrocarbures de plus faible point d'ébullition

Info

Publication number
EP3110916A1
EP3110916A1 EP14816330.6A EP14816330A EP3110916A1 EP 3110916 A1 EP3110916 A1 EP 3110916A1 EP 14816330 A EP14816330 A EP 14816330A EP 3110916 A1 EP3110916 A1 EP 3110916A1
Authority
EP
European Patent Office
Prior art keywords
unit
hydrocracking
stream
hydrocracking unit
feedstock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14816330.6A
Other languages
German (de)
English (en)
Other versions
EP3110916B1 (fr
Inventor
Arno Johannes Maria OPRINS
Andrew Mark Ward
Ravichander Narayanaswamy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Saudi Basic Industries Corp
Original Assignee
SABIC Global Technologies BV
Saudi Basic Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Global Technologies BV, Saudi Basic Industries Corp filed Critical SABIC Global Technologies BV
Publication of EP3110916A1 publication Critical patent/EP3110916A1/fr
Application granted granted Critical
Publication of EP3110916B1 publication Critical patent/EP3110916B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C

Definitions

  • the present invention relates to a process for converting a high- boiling hydrocarbon feedstock into lighter boiling hydrocarbon products. More in detail, the present invention relates to a process for converting hydrocarbons, especially hydrocarbons originating from refinery operations, such as for example atmospheric distillation unit or a fluid catalytic cracking unit (FCC), into lighter boiling hydrocracked hydrocarbons having a boiling point of cyclobutane and lower.
  • refinery operations such as for example atmospheric distillation unit or a fluid catalytic cracking unit (FCC)
  • crude oil is processed, via distillation, into a number of cuts such as naphtha, gas oils and residua.
  • cuts such as naphtha, gas oils and residua.
  • Each of these cuts has a number of potential uses such as for producing transportation fuels such as gasoline, diesel and kerosene or as feeds to some petrochemicals and other processing units.
  • Light crude oil cuts such as naphtha's and some gas oils can be used for producing light olefins and single ring aromatic compounds via processes such as steam cracking in which the hydrocarbon feed stream is evaporated and diluted with steam then exposed to a very high temperature (800°C to 860°C) in short residence time ( ⁇ 1 second) furnace (reactor) tubes.
  • the hydrocarbon molecules in the feed are transformed into (on average) shorter molecules and molecules with lower hydrogen to carbon ratios (such as olefins) when compared to the feed molecules.
  • This process also generates hydrogen as a useful by-product and significant quantities of lower value co-products such as methane and C9+ Aromatics and condensed aromatic species (containing two or more aromatic rings which share edges).
  • the heavier (or higher boiling point) aromatic rich streams such as residua are further processed in a crude oil refinery to maximize the yields of lighter (distillable) products from the crude oil.
  • This processing can be carried out by processes such as hydro-cracking (whereby the hydro-cracker feed is exposed to a suitable catalyst under conditions which result in some fraction of the feed molecules being broken into shorter hydrocarbon molecules with the simultaneous addition of hydrogen).
  • Heavy refinery stream hydrocracking is typically carried out at high pressures and temperatures and thus has a high capital cost.
  • US patent application No 2009/0050523 relates to the formation of olefins by thermal cracking in a pyrolysis furnace of liquid whole crude oil and/or condensate derived from natural gas in a manner that is integrated with a hydrocracking operation.
  • Another object of the present invention is to provide a method for producing light boiling hydrocarbon products which can be used as a feedstock for further chemical processing.
  • Another object of the present invention is to provide a method for converting a high-boiling hydrocarbon feedstock into high value products, wherein the production of low value products such as methane and C9+ aromatics species is minimized.
  • the present invention relates to process for converting a high- boiling hydrocarbon feedstock into lighter boiling hydrocarbon products, said lighter boiling hydrocarbon products being suitable as a feedstock for petrochemicals processes, said converting process comprising the following steps of:
  • each hydrocracking unit(s) comprising at least a steam cracking unit and one or more units chosen from the group of pentane dehydrogenation unit, propane dehydrogenation unit, butane dehydrogenation unit and mixed propane-butane dehydrogenation unit.
  • the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking unit(s) are hydrocarbons having a boiling point lower than cyclobutane, or in a preferred embodiment methylpropane (isobutene).
  • the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking unit(s) are hydrocarbons having a boiling point lower than C5, more preferably lower than C6.
  • each hydrocracking unit present in the cascade of hydrocracking units is optimised to a specific yield distribution of lighter products, e.g. one hydrocracking unit to make mainly propane and another hydrocracking unit to make mainly butane.
  • one hydrocracking unit to make mainly propane and another hydrocracking unit to make mainly butane e.g. one hydrocracking unit to make mainly propane and another hydrocracking unit to make mainly butane.
  • cascade of hydrocracking unit(s) means a series of hydrocracking units.
  • the hydrocracking units are separated from each other by a separation unit, i.e. a unit in which the cracked feedstock is separated into a top stream comprising a light boiling hydrocarbon fraction and a bottom stream comprising a heavy hydrocarbon fraction.
  • the bottom stream comprising a heavy hydrocarbon fraction of such a hydrocracking unit is a feedstock for a subsequent hydrocracking unit.
  • Such a construction is different from a construction wherein several catalyst beds are arranged vertically wherein the effluent from one bed is cascaded into another bed, namely from the top bed into the bottom bed, since such a cascade does not apply the intermediate step of withdrawal of the complete effluent and the separation thereof into a top stream comprising a light boiling hydrocarbon fraction and a bottom stream comprising a heavy hydrocarbon fraction, wherein the bottom stream comprising a heavy hydrocarbon fraction is a feedstock for a subsequent hydrocracking unit.
  • the separation unit herein may comprise several separation sections.
  • the choice of the petrochemicals processes mentioned before is dependent on the composition of the light boiling hydrocarbon fractions. If, for example a stream mainly comprising C5 is obtained, the pentane dehydrogenation unit would be preferred. In addition, such a stream mainly comprising C5 can be sent to high severity catalytic cracking (including high severity FCC) for making propylene and ethylene as well. If, for example a stream mainly comprising C6 is obtained, a process such as light naphtha aromatization (LNA), reforming and mild hydrocracking, would be preferred.
  • LNA light naphtha aromatization
  • the present process further comprises separating said light boiling hydrocarbon fractions into a stream comprising C1 , a stream comprising C2, a stream comprising C3 and a stream comprising C4 and preferably feeding said stream comprising C3 to a propane dehydrogenation unit and preferably feeding said stream comprising C4 to a butane dehydrogenation unit, respectively.
  • the stream comprising C2 is preferably fed to a gas steam cracker unit.
  • the present method comprises as specific petrochemicals processes the combination of a gas steam cracker unit and at least one unit chosen from the group of a butanes dehydrogenation unit, a propane dehydrogenation unit, a combined propane-butanes dehydrogenation unit, or a combination of units thereof to produce a mixed product stream.
  • This combination of units provides a high yield of the desired products, namely olefinic and aromatic petrochemicals, wherein the portion of the crude oil converted to LPG is increased significantly.
  • the lighter boiling hydrocarbon fractions from all hydrocracking units in said cascade of hydrocracking unit(s) are hydrocarbons having a boiling point greater than methane and equal to or lower than that of cyclobutane.
  • a hydrocarbon feedstock for example crude oil
  • ADU fractional distillation column
  • the material boiling at a higher temperature than 12 °C the boiling point for cyclobutane
  • a series (or cascade) of hydrocracking process reactors with a range of (increasingly severe) operating conditions / catalysts etc. chosen to maximise the yield of material suitable for other petrochemicals processes (such as steam crackers or dehydrogenation units) without the need for another stage of hydrocracking.
  • lighter material is separated from the lighter products and only the heavier materials are fed to the next, more severe, stage of hydrocracking whilst lighter material is separated and thus not exposed to further hydrocracking.
  • This lighter material (boiling point ⁇ 12 °C) is fed to other processes such as steam cracking, dehydrogenation processes or a combination of these processes.
  • the present invention will be discussed in more detail in the experimental section of this application.
  • the present inventors optimise each step of the hydrocracking cascade (via chosen operating conditions, catalyst type and reactor design) such that the ultimate yield of desired products (material with boiling point higher than methane and lower than cyclobutane) is maximised and capital and associating operating costs are minimised.
  • the present process further comprises separating hydrogen from the lighter boiling hydrocarbon products and feeding the hydrogen thus separated to a hydrocracking unit in the cascade of hydrocracking unit(s), wherein the hydrogen thus separated is preferably fed to a preceding hydrocracker unit in the cascade of hydrocracking unit(s).
  • the hydrocarbon feedstock can be a cut from a crude oil atmospheric distillation unit (ADU), such as naphtha, ADU bottom stream, atmospheric gas oils, and products from refinery processes, such as cycle oils from an FCC unit or heavy cracked naphthas.
  • ADU crude oil atmospheric distillation unit
  • the temperature in the first hydrocracking unit is lower than the temperature in the second hydrocracking unit.
  • the particle size of the catalyst present in the cascade of hydrocracking units decreases from the first hydrocracking unit to the subsequent hydrocracking unit(s).
  • the reactor type design of the present hydrocracking unit(s) is chosen from the group of the fixed bed type, ebulatted bed reactor type and the slurry phase type. This may involve a series of dissimilar processes such as first a fixed bed hydrotreater, followed by a fixed bed hydrocracker, followed by an ebullated bed hydro-cracker, followed by a last hydrocracker which is a slurry hydrocracker.
  • the reactor type design of said hydrotreating unit is of the fixed bed type
  • the reactor type design of said first hydrocracking unit is of the ebulatted bed reactor type
  • the reactor type design of said second hydrocracking unit is of the slurry phase type.
  • Figure 1 is a schematic illustration of an embodiment of the process of the invention.
  • crude oil feed 1 an atmospheric distillation unit 2 for separating the crude oil into stream 29, comprising hydrocarbons having a boiling point of cyclobutane, i.e. 12 °C, and lower.
  • Bottom stream 3 leaving distillation unit 2 is fed to a hydro processing unit 4, for example a hydro treating unit, wherein the thus treated hydrocarbons 5 are sent to a separation unit 6 producing a gaseous stream 8, a hydrogen comprising stream 10 and a bottom stream 13 comprising hydrocarbons having a boiling point of cyclobutane and higher.
  • separation unit 6 has been identified as a single separation unit, in practice such a separation unit may comprise several separation units.
  • Stream 13 is fed into a hydrocracking unit 15 and its effluent 16 is sent to a separation unit 17 producing gaseous stream 18, a hydrogen comprising stream 10 and a bottom stream 20 comprising hydrocarbons having a boiling point of cyclobutane and higher. Hydrogen make up is indicated with reference number 41 .
  • the effluent 20 from separation unit 17 is sent to a further hydrocracking unit 22 and its effluent 23 is sent to a separation unit 24 producing a gaseous top stream 28, a hydrogen comprising stream 10 and a bottom stream 27.
  • Bottom stream 27 can be partly recycled as stream 25 to the inlet of hydrocracking unit 22.
  • Bottom stream 27 can be further separated in separation units (not shown here).
  • the hydrogen containing stream 10 leaving separation unit 24 is sent to a compressor and returned to the inlet of hydrocracking unit 22. Since hydrocracking unit 22 in this figure is the last hydrocracking unit in the cascade, the reactor type design of this hydrocracking unit 22 is of the slurry phase type.
  • aromatization unit 34 and dehydrogenation unit 35 are one or more chosen form aromatization unit, alkylation processes, high severity catalytic cracking (including high severity FCC), light naphtha aromatization (LNA), reforming and mild hydrocracking.
  • Separation section 38 produces into individual streams 39, 40, 41 . From individual streams 39, 40, 41 olefins and aromatics can be recovered. Although only three individual streams 39, 40, 41 have been shown, the present invention is not restricted to any number of individual streams.
  • hydroprocessing unit 4 hydrocracking unit 15 and hydrocracking unit 22 under such processing conditions that the composition of streams 8, 18 and 28 are such that each of streams 8, 18 and 28 is sent to one or more different processing units, as mentioned before.
  • separator section 30 can be by- passed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé pour la conversion d'une charge de départ d'hydrocarbures de point d'ébullition élevé en produits hydrocarbures de plus faible point d'ébullition, lesdits produits hydrocarbures de plus faible point d'ébullition étant appropriés comme charge de départ pour des procédés pétrochimiques, ledit procédé de conversion consistant : à introduire une charge de départ d'hydrocarbures lourds dans une cascade d'une ou plusieurs unités d'hydrocraquage, à effectuer le craquage de ladite charge de départ dans une unité d'hydrocraquage, à séparer ladite charge de départ craquée en un flux comprenant de l'hydrogène, un flux comprenant une fraction d'hydrocarbures de faible point d'ébullition et un flux de fond comprenant une fraction d'hydrocarbures plus lourds, à introduire ledit flux de fond d'une telle unité d'hydrocraquage en tant que charge de départ pour une unité d'hydrocraquage subséquente dans ladite cascade d'une ou plusieurs unité d'hydrocraquage, les conditions de procédé dans chaque unité d'hydrocraquage étant différentes les unes des autres, les conditions d'hydrocraquage entre la première unité d'hydrocraquage et la ou les unités d'hydrocraquage subséquentes augmentant des conditions les moins sévères aux conditions les plus sévères, et à envoyer les fractions d'hydrocarbures de faible point d'ébullition de la ou les unités d'hydrocraquage vers des procédés pétrochimiques.
EP14816330.6A 2014-02-25 2014-12-23 Procédé pour convertir une charge d'hydrocarbures à point d'ébullition élevé en produits d'hydrocarbures plus légers en ébullition Active EP3110916B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14156639 2014-02-25
PCT/EP2014/079218 WO2015128041A1 (fr) 2014-02-25 2014-12-23 Procédé pour la conversion d'une charge de départ d'hydrocarbures de point d'ébullition élevé en produits hydrocarbures de plus faible point d'ébullition

Publications (2)

Publication Number Publication Date
EP3110916A1 true EP3110916A1 (fr) 2017-01-04
EP3110916B1 EP3110916B1 (fr) 2018-08-15

Family

ID=50151231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14816330.6A Active EP3110916B1 (fr) 2014-02-25 2014-12-23 Procédé pour convertir une charge d'hydrocarbures à point d'ébullition élevé en produits d'hydrocarbures plus légers en ébullition

Country Status (9)

Country Link
US (1) US10119083B2 (fr)
EP (1) EP3110916B1 (fr)
JP (1) JP6415588B2 (fr)
KR (1) KR102387832B1 (fr)
CN (1) CN106459786B (fr)
EA (1) EA033030B1 (fr)
ES (1) ES2696423T3 (fr)
SG (1) SG11201606019YA (fr)
WO (1) WO2015128041A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10603657B2 (en) 2016-04-11 2020-03-31 Saudi Arabian Oil Company Nano-sized zeolite supported catalysts and methods for their production
US11084992B2 (en) 2016-06-02 2021-08-10 Saudi Arabian Oil Company Systems and methods for upgrading heavy oils
US10301556B2 (en) * 2016-08-24 2019-05-28 Saudi Arabian Oil Company Systems and methods for the conversion of feedstock hydrocarbons to petrochemical products
US10689587B2 (en) 2017-04-26 2020-06-23 Saudi Arabian Oil Company Systems and processes for conversion of crude oil
US10793792B2 (en) * 2017-05-15 2020-10-06 Saudi Arabian Oil Company Systems and methods for the conversion of heavy oils to petrochemical products
WO2019018221A1 (fr) * 2017-07-17 2019-01-24 Saudi Arabian Oil Company Systèmes et procédés de traitement d'huiles lourdes par valorisation d'huile suivie d'un vapocraquage
CN111032599B (zh) * 2017-08-15 2022-12-27 沙特基础工业全球技术公司 页岩气和冷凝物转化为化学品
CN111836875B (zh) 2017-12-29 2022-09-20 鲁姆斯科技有限责任公司 重质燃料油到化学产品的转化
WO2020061012A1 (fr) 2018-09-19 2020-03-26 Sabic Global Technologies, B.V. Catalyseurs bimétalliques supportés sur des zéolites pour la conversion sélective de n-butane en éthane
WO2020061010A1 (fr) * 2018-09-19 2020-03-26 Sabic Global Technologies, B.V. Hydrogénolyse sélective intégrée au craquage
WO2020178683A1 (fr) 2019-03-05 2020-09-10 Sabic Global Technologies B.V. Concentrateur de distribution pour conversion de c4 en réseau de charge d'alimentation d'éthane/propane
KR20220049489A (ko) * 2019-03-15 2022-04-21 루머스 테크놀로지 엘엘씨 올레핀 제조를 위한 구성
US11807818B2 (en) * 2021-01-07 2023-11-07 Saudi Arabian Oil Company Integrated FCC and aromatic recovery complex to boost BTX and light olefin production

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3660270A (en) * 1970-01-15 1972-05-02 Chevron Res Two-stage process for producing naphtha from petroleum distillates
JPS4914721B1 (fr) * 1970-08-11 1974-04-10
CH564050A5 (fr) 1972-04-06 1975-07-15 Sandoz Ag
US4137147A (en) * 1976-09-16 1979-01-30 Institut Francais Du Petrole Process for manufacturing olefinic hydrocarbons with respectively two and three carbon atoms per molecule
US4458096A (en) * 1983-05-26 1984-07-03 Air Products And Chemicals, Inc. Process for the production of ethylene and propylene
US4997544A (en) * 1989-05-12 1991-03-05 Mobil Oil Corporation Hydroconversion process
FI932187A (fi) * 1992-05-29 1993-11-30 Boc Group Inc Foerfarande foer framstaellning av omaettade kolvaeten och separering av desamma fraon maettade kolvaeten
US6270654B1 (en) 1993-08-18 2001-08-07 Ifp North America, Inc. Catalytic hydrogenation process utilizing multi-stage ebullated bed reactors
US5603824A (en) 1994-08-03 1997-02-18 Mobil Oil Corporation Hydrocarbon upgrading process
FR2764902B1 (fr) 1997-06-24 1999-07-16 Inst Francais Du Petrole Procede de conversion de fractions lourdes petrolieres comprenant une etape de conversion en lit bouillonnant et une etape d'hydrocraquage
US6797154B2 (en) * 2001-12-17 2004-09-28 Chevron U.S.A. Inc. Hydrocracking process for the production of high quality distillates from heavy gas oils
US7214308B2 (en) 2003-02-21 2007-05-08 Institut Francais Du Petrole Effective integration of solvent deasphalting and ebullated-bed processing
US7704377B2 (en) 2006-03-08 2010-04-27 Institut Francais Du Petrole Process and installation for conversion of heavy petroleum fractions in a boiling bed with integrated production of middle distillates with a very low sulfur content
US7550642B2 (en) 2006-10-20 2009-06-23 Equistar Chemicals, Lp Olefin production utilizing whole crude oil/condensate feedstock with enhanced distillate production
US20080093262A1 (en) 2006-10-24 2008-04-24 Andrea Gragnani Process and installation for conversion of heavy petroleum fractions in a fixed bed with integrated production of middle distillates with a very low sulfur content
US20090050523A1 (en) 2007-08-20 2009-02-26 Halsey Richard B Olefin production utilizing whole crude oil/condensate feedstock and selective hydrocracking
US20090159493A1 (en) * 2007-12-21 2009-06-25 Chevron U.S.A. Inc. Targeted hydrogenation hydrocracking
US7938952B2 (en) 2008-05-20 2011-05-10 Institute Francais Du Petrole Process for multistage residue hydroconversion integrated with straight-run and conversion gasoils hydroconversion steps
JP5270508B2 (ja) * 2009-10-15 2013-08-21 株式会社神戸製鋼所 石油系重質油の水素化分解方法
FR2951735B1 (fr) 2009-10-23 2012-08-03 Inst Francais Du Petrole Procede de conversion de residu integrant une technologie lit mobile et une technologie lit bouillonnant
US9005430B2 (en) 2009-12-10 2015-04-14 IFP Energies Nouvelles Process and apparatus for integration of a high-pressure hydroconversion process and a medium-pressure middle distillate hydrotreatment process, whereby the two processes are independent
US8658019B2 (en) 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US8658022B2 (en) 2010-11-23 2014-02-25 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
US8663456B2 (en) 2010-11-23 2014-03-04 Equistar Chemicals, Lp Process for cracking heavy hydrocarbon feed
JP6273202B2 (ja) * 2011-07-29 2018-01-31 サウジ アラビアン オイル カンパニー 段間スチームストリッピングを伴う水素化分解法
FR2981659B1 (fr) 2011-10-20 2013-11-01 Ifp Energies Now Procede de conversion de charges petrolieres comprenant une etape d'hydroconversion en lit bouillonnant et une etape d'hydrotraitement en lit fixe pour la production de fiouls a basse teneur en soufre
FR3027911B1 (fr) 2014-11-04 2018-04-27 IFP Energies Nouvelles Procede de conversion de charges petrolieres comprenant une etape d'hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
FR3027912B1 (fr) 2014-11-04 2018-04-27 IFP Energies Nouvelles Procede de production de combustibles de type fuel lourd a partir d'une charge hydrocarbonee lourde utilisant une separation entre l'etape d'hydrotraitement et l'etape d'hydrocraquage
FR3033797B1 (fr) 2015-03-16 2018-12-07 IFP Energies Nouvelles Procede ameliore de conversion de charges hydrocarbonees lourdes

Also Published As

Publication number Publication date
CN106459786B (zh) 2020-03-27
ES2696423T3 (es) 2019-01-15
EA033030B1 (ru) 2019-08-30
JP2017512232A (ja) 2017-05-18
EP3110916B1 (fr) 2018-08-15
JP6415588B2 (ja) 2018-10-31
WO2015128041A1 (fr) 2015-09-03
KR20160126044A (ko) 2016-11-01
SG11201606019YA (en) 2016-08-30
CN106459786A (zh) 2017-02-22
US10119083B2 (en) 2018-11-06
EA201691706A1 (ru) 2017-01-30
US20160362617A1 (en) 2016-12-15
KR102387832B1 (ko) 2022-04-18

Similar Documents

Publication Publication Date Title
EP3110916B1 (fr) Procédé pour convertir une charge d'hydrocarbures à point d'ébullition élevé en produits d'hydrocarbures plus légers en ébullition
AU2013301886B2 (en) Process for converting hydrocarbon feeds by thermal steamcracking
US10316259B2 (en) Process for converting hydrocarbons into olefins
EP3110918B1 (fr) Procédé de valorisation d'hydrocarbures lourds de raffinerie en produits pétrochimiques
CN106062141A (zh) 集成加氢裂化方法
US9505679B2 (en) Process for preparing olefins by thermal steamcracking in cracking furnaces
CN104540925A (zh) 通过热蒸汽裂化制备烯烃的方法
US10301559B2 (en) Method for converting a high-boiling hydrocarbon feedstock into lighter boiling hydrocarbon products
EP3110924B1 (fr) Procédé de convertion d'hydrocarbures en oléfines et btx.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014030585

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C10G0065100000

Ipc: C10G0029200000

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAUDI BASIC INDUSTRIES CORPORATION

Owner name: SABIC GLOBAL TECHNOLOGIES B.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 65/10 20060101ALI20180425BHEP

Ipc: C10G 9/36 20060101ALI20180425BHEP

Ipc: C10G 11/18 20060101ALI20180425BHEP

Ipc: C10G 29/20 20060101AFI20180425BHEP

Ipc: C10G 69/02 20060101ALI20180425BHEP

Ipc: C10G 69/06 20060101ALI20180425BHEP

Ipc: C10G 65/12 20060101ALI20180425BHEP

INTG Intention to grant announced

Effective date: 20180530

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Ref country code: AT

Ref legal event code: REF

Ref document number: 1029747

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014030585

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2696423

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190115

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1029747

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014030585

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211104

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211110

Year of fee payment: 8

Ref country code: BE

Payment date: 20211119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220104

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221223

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231116

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231108

Year of fee payment: 10

Ref country code: DE

Payment date: 20231031

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221224