EP3101170A1 - Oberflächenbeschichtungen - Google Patents

Oberflächenbeschichtungen Download PDF

Info

Publication number
EP3101170A1
EP3101170A1 EP15170410.3A EP15170410A EP3101170A1 EP 3101170 A1 EP3101170 A1 EP 3101170A1 EP 15170410 A EP15170410 A EP 15170410A EP 3101170 A1 EP3101170 A1 EP 3101170A1
Authority
EP
European Patent Office
Prior art keywords
gas
low pressure
treatment
plasma
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15170410.3A
Other languages
English (en)
French (fr)
Other versions
EP3101170B1 (de
Inventor
Eva ROGGE
Filip Legein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Europlasma NV
Original Assignee
Europlasma NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Europlasma NV filed Critical Europlasma NV
Priority to DK15170410.3T priority Critical patent/DK3101170T3/en
Priority to EP15170410.3A priority patent/EP3101170B1/de
Priority to BE2015/5507A priority patent/BE1024821B1/nl
Priority to PCT/EP2016/062733 priority patent/WO2016193486A1/en
Publication of EP3101170A1 publication Critical patent/EP3101170A1/de
Application granted granted Critical
Publication of EP3101170B1 publication Critical patent/EP3101170B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • D06M10/10Macromolecular compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Definitions

  • the present invention relates to a low pressure plasma polymerization process applied to textile products, in particular to methods, systems and uses to apply a durable water repellent polymer nanocoating to a textile product as well as the products obtainable by such methods and systems.
  • the textile products can be sheets or can be semi-finished or finished textile products.
  • DWR Durable water repellent
  • DWR coatings which are applied on textile for garments generally need to maintain the breathability properties of the textile product.
  • the DWR coating thickness is usually kept in the micrometer range. The applicants have discovered that when maintaining the thickness in nanometer range, optimal breathability is ensured.
  • coatings of less than 1000 nm are applied, and preferably even less than 500 nm.
  • Textile products can also be subject to repeated washing.
  • a coating applied to a textile product is also subjected to washing.
  • the coating is subjected to a combination of abrasion and extensive rinsing with water and detergent. Consequently, a coating of a textile product with good washability properties is a coating which is resistant against abrasion and rinsing with water and detergent, thereby maintaining its DWR properties after (repeated) washing.
  • Coatings to textile products with good washability properties generally need to have a minimal thickness and need to be well-adhered to the textile product.
  • a thickness of at least 20 nm is desirable, and preferably of at least 50 nm.
  • the coating impregnates the yarns and the fibres of the textile product as deep as possible.
  • Polymer coatings applied to a textile product by a low pressure plasma polymerization process typically have a thickness in the range between 20 nm and 1000 nm, more preferably between 50 nm and 500 nm.
  • a monomer is introduced into a vacuum chamber at low pressure and a plasma is ignited, thereby bringing the monomers in a plasma phase and allowing the excited monomers to polymerize directly onto the surfaces of the textile, in particular on the surfaces of the individual fibres and yarns of the textile.
  • the inventors have found that a degree of impregnation of the textile product by the coating can be achieved which is much more difficult or even impossible to achieve with other types of coating processes such as wet (chemical) coating processes or vapour deposition process, including graft processes. Such process are clearly even less suited for application of a DWR coating on 3D-products, finished textile products after final confection, such as jackets, trousers and gloves.
  • DWR coatings make all kinds of textiles water repellent, and often impart oil repellent properties as well for stain repellency.
  • the best performance in repellency is obtained by using fluorine-based or halogen-based chemistries applied to textile products.
  • the coating can hereby be applied by a low pressure plasma polymerization process.
  • PFAAs perfluoro-alkyl acids
  • other alkyl acids with a high amount of fluor, which may comprise long perfluoro-chains of up to 8 and more carbon atoms.
  • Document EP0988412A1 discloses a method for coating a surface by exposing the surface, optionally the surface of a textile product, to a plasma comprising 1H, 1H, 2H-perfluoro-1-dodecene or 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate.
  • Document WO2014056968A1 discloses a method and apparatus for applying a surface coating on, for example, a sheet of fabric and further provides a plasma chamber for coating a sheet of fabric, e.g. a textile material, with a polymer layer, the plasma chamber comprising a plurality of specifically arranged electrode layers.
  • Preferred monomers include acrylates and methacrylates having perfluorocarbon backbones comprising two to six carbon atoms, such as 1H, 1H, 2H, 2H-Perfluorooctyl methacrylate or 1H, 1H, 2H, 2H-Perfluorooctyl acrylate.
  • the present invention provides a solution to the problem of providing DWR coatings for textile products, with good washability properties which ensure that no halogen-containing, such as fluorine-containing, (by-)products, and in particular no PFOS's or PFOAs, are produced in the full process of providing a textile product with a DWR coating.
  • the present invention relates to a method for coating a textile product with a DWR polymer nanocoating by a low pressure plasma polymerization process, wherein the coating is completely halogen-free.
  • the method thereby advantageously combines a halogen-free "health" aspect with a low environmental footprint of the used technology.
  • halogen-free water repellent nanocoatings of the present invention are deposited by means of low pressure plasma polymerization, a technology that is known for its "dry and clean" aspect, since no water is consumed, a reduced amount of chemicals is used, and no drying and curing is needed, hence a highly reduced energy consumption and CO 2 -emission.
  • halogen-free low pressure plasma polymerization coatings of the present invention offer a solution to coating of both textiles and fabrics on rolls (2D), and finished textile products (3D), since the technology doesn't require a continuous line to dip, dry and cure.
  • the present application solves the abovementioned technical problems by providing a method for depositing a halogen-free durable water repellent nanocoating onto a textile product by means of a low pressure plasma polymerization process with an organosilane monomer.
  • the thusly obtained coating thereby provides the textile product with a water repellency which is maintained upon washing, laundering and dry cleaning. Furthermore, the breathability of the fabric is maintained after application of the coating.
  • the present inventors have found that the properties of the coatings on textile products obtained by the use of halogen-free organosilane monomers in the method of the present invention comprise DWR and washability properties comparable to prior art halogen-containing coatings. Furthermore, the resulting coatings do not contain halogens and no halogen-containing products, by-products or rest products are produced.
  • the present invention relates to a method for improving the quality of halogen-free coatings, by applying a post-treatment to a substrate coated with a nanocoating obtained by means of a low pressure plasma polymerization process with an organosilane monomer.
  • the substrate preferably comprises or is a textile product.
  • the post-treatment comprises the step of exposing the coated substrate, which is obtained by coating a substrate by means of a low pressure plasma polymerization process with an organosilane monomer, to a low pressure post-treatment gas.
  • no plasma is ignited, i.e. the post-treatment gas essentially consists of neutral gas molecules.
  • the post-treatment gas is provided at a post-treatment power which is comparable to a plasma polymerization power, i.e. the power which is applied during the plasma polymerization process to ignite the monomers, and a plasma is thus ignited during the post-treatment.
  • the post-treatment power is at least 10% of the plasma polymerization power and/or at most 190% of the plasma polymerization power.
  • the inventors have found that the post-treatment may improve the strength and durability of the coating. Without wishing to be bound by theory, it is believed that the post-treatment by a substantially neutral gas and preferably at appliance of a low power, promotes cross-linking in the deposited polymer coating.
  • the inventors have found that the above-mentioned post-treatment step for a substrate coated with a nanocoating obtained by means of low pressure plasma polymerization process with an organosilane monomer, also improves the coating properties for other types of substrates, in particular for substrates comprising smooth surfaces, e.g. metallic and/or organic substrates with smooth surfaces, such as electronic components.
  • % by weight refers to the relative weight of the respective component based on the overall weight of the formulation.
  • outgassing and “degassing”, as used herein, are used interchangeably and refer to a process of removing gasses and liquids, more in particular within the context of this document, removing contaminants, gasses and liquids from items of footwear or parts thereof, in order to ensure a good adhesion between coating and at least part and preferably all, of the internal surface of the item.
  • fabric and “textile” or “textile product”, as used herein, are used interchangeably to any material made of interlacing fibres, woven or nonwoven, which can be made by weaving, knitting, crocheting, knotting, felting or other type of bonding.
  • the present application solves the abovementioned technical problems by providing a method for depositing a halogen-free DWR nanocoating onto textiles, by means of low pressure plasma polymerization, wherein the water repellency is maintained upon washing and laundering, and wherein the breathability of the fabric is not changed by application of the coating.
  • the textile is a sheet of textile, e.g. wound to a roll (2D).
  • the textile is a finished textile product, confectioned into its final design, including zippers, buttons, pockets, etc (3D).
  • the textile is a semi-finished textile product, confectioned into an semi-finished design, such as a shirt containing seams, but not yet any buttons.
  • the fabric or textile is one of a woven, nonwoven, knitted, film, foil or membrane fabric, or a laminate of several layers of the foregoing.
  • Woven, nonwoven and knitted fabrics may have smooth surfaces or textured surfaces, in the cases of a pile weave or a pile knit for example.
  • the fabric comprises a synthetic material, a natural material or a blend.
  • Examples of materials include but are not limited to:
  • Natural and man-made cotton, cellulose, cellulose acetate, silk, wool, etc.
  • Woven and knitted fabrics may have a thickness of from 50 ⁇ m to 10 mm.
  • Nonwoven fabrics may have a thickness of from 5 ⁇ m to 10 mm.
  • Film or foil fabrics may have a thickness of from 20 ⁇ m to 1 mm.
  • Membrane fabrics and laminates may have a thickness of from 20 ⁇ m to 20 mm.
  • the low pressure plasma polymerization is a low pressure plasma polymerization of an organosilane precursor monomer which is introduced into a plasma chamber, said organosilane being of the formula (I), (II), (III), (IV) or (V).
  • the alkyl groups may be straight or branched-chain but straight groups are preferred. Such alkyl groups are aptly methyl or ethyl groups of which methyl is preferred. Aptly all of Y 3 , Y 4 , Y 5 , Y 3' , Y 4' or Y 5' are alkyl groups.
  • the alkoxy groups may be straight, branched-chain or cyclic but straight groups are preferred. Such alkoxy groups are aptly methoxy or ethoxy groups.
  • the monomer of Formula I may be one containing six methyl groups. Aptly the monomer of Formula I is hexamethyldisiloxane. Aptly the monomer of Formula I is hexamethyldisilazane.
  • the monomer of Formula II may be one wherein n is 3, or n is 4, or n is 5, or n is 6.
  • n is 3, or n is 4, or n is 5, or n is 6.
  • the monomer of Formula II is octamethylcyclotetrasiloxane.
  • the monomer of Formula II is hexamethylcyclotrisilazane.
  • the monomer of Formula V may be one wherein p is 2 and wherein each of R10, R11 and R12 are an alkoxy group, e.g. methoxy.
  • p is 2 and wherein each of R10, R11 and R12 are an alkoxy group, e.g. methoxy.
  • the monomer of Formula V is 3-(trimethoxysilyl)propyl methacrylate.
  • the monomer of Formula V is 3-(trimethoxysilyl)propyl acrylate.
  • the liquid monomer is transported to the plasma chamber without the use of a carrier gas.
  • an additional gas may be used as carrier gas to introduce the organosilane precursor monomer into the plasma chamber.
  • the organosilane monomer precursor is supplied as a liquid monomer which is subsequently vaporized and transported to the plasma chamber in its vaporized form.
  • the vaporized monomer is transported to the plasma chamber without the use of a carrier gas.
  • the liquid monomer supply system uses a carrier gas to transport the vaporized organosilane monomer precursor into the plasma chamber.
  • the carrier gas is selected from H 2 , N 2 , O 2 , N 2 O, CH 4 , He or Ar, and/or any mixture of these gases.
  • a single carrier gas is used. This is most preferably O 2 , He, or Ar.
  • the amount of carrier gas is about 5 % to about 1500 % carrier gas based on the flow of monomer, preferably about 10 % to about 1000 % additional gas, more preferably 20 % to 750 %, for example 25 % to 500 %, such as 500, 450, 400, 350, 300, 250, 200, 175, 150, 125, 100, 90, 80, 75, 70, 60, 50, 40, 35, 30, or 25 % carrier gas.
  • an additional gas may be used as a functional gas.
  • a functional gas is defined as a gas that contributes to the low pressure plasma polymerization reaction in terms of striking the plasma to ignite the plasma, or in terms of influencing the low pressure plasma polymerization reaction to realize coatings with a better performance.
  • the additional functional gas is preferably introduced into the chamber through a separate supply line, coming from e.g. the gas bottle, and hereby is not used as a carrier gas to introduce monomer vapour into the plasma chamber.
  • the additional functional gas may be introduced into the plasma chamber together with the monomer precursor vapour via the same plasma chamber inlet or inlets, whereby the additional functional gas supply line and the liquid monomer supply lines come together right before the chamber inlet or inlets, and are thus introduced together in the plasma chamber.
  • Such embodiments allow to control the relative amounts of monomer and additional functional gas to a very accurate degree.
  • the monomer and the additional functional gas supply lines stay separated and one or more separate additional gas inlets and one or more separate monomer precursor inlets are foreseen in the chamber.
  • the additional gas is both a carrier gas and a functional gas.
  • the organosilane precursor monomer may be used to strike the plasma without any additional gas being present in the chamber.
  • the organosilane precursor monomer comprises a carbon-carbon double bond.
  • Monomers having a carbon-carbon double bond may not require an additional gas to ignite the plasma and to start the polymerisation.
  • the organosilane precursor monomer may be used to strike the plasma without any additional gas being present in the chamber.
  • one or more additional gases may be introduced into the plasma chamber containing the organosilane precursor monomer to strike and ignite a stable plasma, and are therefore seen as functional gasses.
  • fragmentation of the perfluoro-alkyl chain is an unwanted phenomenon as it leads to a decrease of water-repellency.
  • controlled fragmentation can improve the water repellency, and especially the washability properties of the resulting coating.
  • an additional gas may be used to generate more fragmentation of the monomer in a controlled fashion, which leads to a more cross-linked, more dense polymer, which provides better water repellency properties, and better resistance against washing, laundering and dry cleaning.
  • the additional gas or gas mixture may comprise a carrier gas, a functional gas and/or a functional carrier gas.
  • the additional gas is selected from H 2 , N 2 , O 2 , N 2 O, CH 4 , He or Ar, and/or any mixture of these gases.
  • a single carrier gas is used. This is most preferably O 2 or Ar.
  • a mixture of a reactive and an inert gas is used. This is most preferably O 2 and Ar.
  • the amount of additional gas used as functional gas together with the organosilane monomer precursor is about 5 % to about 50 % additional gas based on the flow of monomer, preferably about 5 % to about 40 % additional gas, such as 40, 35, 30, 25, 20, 15, 10, or 5 % additional gas.
  • the total amount of additional gases, used together with the organosilane monomer precursor is about 5 % to about 50 % additional gases based on the flow of monomer, preferably about 5 % to about 40 % additional gases, such as 40, 35, 30, 25, 20, 15, 10, or 5 % additional gases.
  • the amount of additional gas 1 is about 5 % to 95 % of the total amount of additional gases, more preferably 10 % to 90 %, for example 15 % to 85 %, such as 20 % to 80 %, e.g. 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, or 20 %.
  • the amount of additional gas 2 is about 5 % to 95 % of the total amount of additional gases, more preferably 10 % to 90 %, for example 15 % to 85 %, such as 20 % to 80 %, e.g. 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, or 20 %.
  • the plasma chamber is evacuated, preferably to a set low base pressure, after the substrates to be coated have been placed in the plasma chamber and the door has been closed.
  • one or more monomer inlets are opened to allow a constant flow of monomer, optionally together with a constant flow of additional gas, to enter the plasma chamber.
  • a power is applied to the radiofrequency electrode or electrodes to generate an electromagnetic field.
  • a plasma is struck, and the monomer molecules become activated.
  • the substrates or products in the plasma chamber act as an initiation promoter or facilitator for the initiation of the plasma polymerization reaction, which will start upon contact of the activated monomer molecules, and will continue as long as there are activated monomer molecules present in the plasma chamber.
  • a post-treatment process as disclosed in this document is performed after the set plasma polymerization duration is reached, and before the chamber is brought back to atmospheric pressure.
  • a halogen-free water repellent nanocoating is deposited using a method according the present invention. This coating is also resistant against washing, laundering and dry cleaning, and doesn't have a negative impact on the breathability of the textile.
  • the plasma polymerization time (3D) or speed (2D roll-to-roll) needed to deposit this coating of the present invention, using the method and monomers of the present invention, is determined in function of the design of the substrate and the chamber, on the type of substrate that is coated (thickness, openness, polymer type), and on the performance that is required in terms of resistance against washing - a ski jacket is washed less frequently than a jogging shirt.
  • the plasma polymerization time expressed in the time that a power is applied to the electrodes, is from about 1 minute to about 30 minutes, more preferably from about 2 minutes to about 25 minutes, such as from about 5 minutes to about 20 minutes, such as 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, or 5 minutes.
  • the plasma polymerization may be continuous plasma polymerization.
  • the plasma polymerization may be pulsed wave polymerization. Whether a continuous plasma or a pulsed plasma is used for the polymerization, depends on the chemistry used and on the volume and design of the plasma chamber.
  • the applied power for the coating process when applied in continuous wave mode, is approximately 5 to 5000 W, more preferably approximately 10 to 2500 W, even more preferably approximately, say 15 to 2000W, for example 20 to 1500 W, say 25 to 1000 W, say 30 to 750 W, say 35 to 500 W, say 500, 475, 450, 425, 400, 375, 350, 325, 300, 275, 250, 225, 200, 190, 180, 175, 170, 160, 150, 140, 130, 125, 120, 110, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, or 35 W.
  • the applied power density (i.e. power per unit chamber volume) for the coating process, when applied in continuous wave mode is equivalent to the above mentioned ranges, i.e. the applied power density is approximately 5 to 5000 W, more preferably approximately 10 to 2500 W, even more preferably approximately, say 15 to 2000W, for example 20 to 1500 W, say 25 to 1000 W, say 30 to 750 W, say 35 to 500 W, say 500, 475, 450, 425, 400, 375, 350, 325, 300, 275, 250, 225, 200, 190, 180, 175, 170, 160, 150, 140, 130, 125, 120, 110, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, or 35 W, divided by 1836 litre.
  • the applied power for the coating process when applied in pulsed wave mode, is approximately 5 to 5000 W, more preferably approximately 10 to 2500 W, even more preferably approximately, say 20 to 1500W, for example 30 to 1000 W, say 50 to 900 W, say 75 to 800 W, say 100 to 750 W, say 750, 725, 700, 675, 650, 625, 600, 575, 550, 525, 500, 475, 450, 425, 400, 375, 350, 325, 300, 275, 250, 225, 200, 190, 180, 175, 170, 160, 150, 140, 130, 125, 120, 110, or 100 W.
  • the applied power density (i.e. power per unit chamber volume) for the coating process, when applied in pulsed wave mode, is equivalent to the above mentioned ranges, i.e. the applied power density is approximately 5 to 5000 W, more preferably approximately 10 to 2500 W, even more preferably approximately, say 20 to 1500W, for example 30 to 1000 W, say 50 to 900 W, say 75 to 800 W, say 100 to 750 W, say 750, 725, 700, 675, 650, 625, 600, 575, 550, 525, 500, 475, 450, 425, 400, 375, 350, 325, 300, 275, 250, 225, 200, 190, 180, 175, 170, 160, 150, 140, 130, 125, 120, 110, or 100 W, divided by 1836 litre.
  • the pulse repetition frequency when in pulsed power mode, may be from 100 Hz to 10 kHz having a duty cycle from approximately 0.05 to 50 %, with the optimum parameters being dependent on the monomer used.
  • the plasma chamber comprises one or more electrode layers, which may be radiofrequency electrode layers or ground electrode layers, to generate an electromagnetic field.
  • electrode layers which may be radiofrequency electrode layers or ground electrode layers, to generate an electromagnetic field.
  • the or each radiofrequency electrode generates a high frequency electric field at frequencies of from 20 kHz to 2.45 GHz, more preferably of from 40 kHz to 13.56 MHz, with 13.56 MHz being preferred.
  • the operating pressure for the coating step is approximately 10 to 500 mTorr, preferably approximately 15 to 200 mTorr, more preferably approximately 20 to 150 mTorr, say 30 to 100 mTorr, say less than 100, 90, 80, 70, 60, 50, 40, 30 mTorr.
  • such pressure ranges are particularly preferred.
  • the system runs at a speed of 0.1 m/min up to 20 m/min, for example 0.5 m/min to 15 m/min, such as 1 m/min to 10 m/min, say less than 9, 8, 7, 6 m/min, most preferably 1 to 5 m/min.
  • the applied power when applied in continuous wave mode in a 12000 I chamber, used to coat rolls of textile up to 1.8 m wide, is approximately 10 to 5000 W, more preferably approximately 20 to 4000 W, even more preferably approximately, say 25 to 3000 W, even further preferably, for example 30 to 2000 W, preferably still, for example 40 to 1500 W, and even further preferably from 50 to 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 175, 150, 125, 100, 90, 80, 75, 70, 60, or 50 W.
  • the applied power density i.e.
  • the applied power density is approximately 10 to 5000 W, more preferably approximately 20 to 4000 W, even more preferably approximately, say 25 to 3000 W, even further preferably, for example 30 to 2000 W, preferably still, for example 40 to 1500 W, and even further preferably from 50 to 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 175, 150, 125, 100, 90, 80, 75, 70, 60, or 50 W, divided by 12000 litre.
  • the applied power when applied in pulsed wave mode in a 12000 I chamber, used to coat rolls of textile up to 1.8 m wide, is approximately 10 to 5000 W, more preferably approximately 25 to 4000 W, even more preferably approximately 50 to 3500 W, preferably, for example 75 to 3000 W, preferably still, for example 100 to 2500 W, and even further preferably from 150 to 2000, 1900, 1800, 1750, 1700, 1600, 1500, 1400, 1300, 1250, 1200, 1100, 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, or 175 W.
  • the applied power density i.e.
  • the applied power density is approximately 10 to 5000 W, more preferably approximately 25 to 4000 W, even more preferably approximately 50 to 3500 W, preferably, for example 75 to 3000 W, preferably still, for example 100 to 2500 W, and even further preferably from 150 to 2000, 1900, 1800, 1750, 1700, 1600, 1500, 1400, 1300, 1250, 1200, 1100, 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, or 175 W, divided by 12000 litre.
  • the pulse repetition frequency when in pulsed power mode, may be from 100 Hz to 10 kHz having a duty cycle from approximately 0.05 to 50 %, with the optimum parameters being dependent on the monomer used.
  • the plasma chamber comprises one or more electrode layers, which may be radiofrequency electrode layers or ground electrode layers, to generate an electromagnetic field.
  • electrode layers which may be radiofrequency electrode layers or ground electrode layers, to generate an electromagnetic field.
  • the or each radiofrequency electrode generates a high frequency electric field at frequencies of from 20 kHz to 2.45 GHz, more preferably of from 40 kHz to 13.56 MHz, with 13.56 MHz being preferred.
  • the operating pressure for the coating step is approximately 10 to 500 mTorr, preferably approximately 15 to 200 mTorr, more preferably approximately 20 to 150 mTorr, say 25 to 100 mTorr, say less than 100, 90, 80, 75, 70, 60, 50, 40, 30, or 25 mTorr.
  • an outgassing and/or a pre-treatment step may be performed before the low pressure plasma polymerization process.
  • the outgassing is performed in the low pressure plasma chamber.
  • the pre-treatment is a low pressure plasma process.
  • An outgassing may be performed prior to starting the first process step.
  • the applicants have surprisingly discovered that an outgassing allows the deposition of a more uniform coating, that has a better performance in terms of water repellency and resistance against washing. This is because the outgassing removes not only contaminants and moisture from the surface and the plasma chamber, but also from the internal surfaces and deeper lying areas of the textile, which is not the case without outgassing.
  • said textile product or products are degassed to a degassing level of at most 50 mTorr, more preferably at most 20 mTorr, even more preferably at most 10 mTorr.
  • said garment(s) are degassed in a vacuum chamber until said vacuum chamber comprises a degassing level of at most 100 mTorr, more preferably at most 50 mTorr, such as 40 mTorr or less.
  • the degassing level of the vacuum chamber may depend on the load, i.c. on the number and design of the textile products placed inside the chamber.
  • the roll of fabric is degassed to a degassing level of at most 50 mTorr, more preferably at most 40 mTorr, even more preferably at most 25 mTorr. Additionally or alternatively, said roll of fabric is degassed in a vacuum chamber until said vacuum chamber comprises a degassing level of at most 100 mTorr, more preferably at most 50 mTorr, such as 40 mTorr or less. Note that the degassing level of the vacuum chamber may depend on the load, i.c. on the fabric structure, polymer, thickness, and openness, and on the roll dimensions of the roll of fabric placed inside the chamber.
  • the pressure increase in a vacuum chamber due to gases released from the textile needs to be determined.
  • the item is positioned in a vacuum chamber, e.g. a plasma chamber, which is pumped down to a degassing pressure P degassing , which is less than 200 mTorr, preferably less than 100 mTorr, such as less than 50 mTorr, and next the inlets and outlets of the vacuum chamber are closed off.
  • P degassing which is less than 200 mTorr, preferably less than 100 mTorr, such as less than 50 mTorr
  • the degassing level of the textile is then given by the pressure increase, ⁇ P, minus the whistling leak pressure of the vacuum chamber at the degassing pressure P degassing .
  • the degassing level of one textile product is given by the pressure increase, ⁇ P, minus the whistling leak pressure of the vacuum chamber at the degassing pressure P degassing , divided by the number of substrates in the vacuum chamber.
  • the whistling leak pressure of the vacuum chamber at the degassing pressure P degassing is determined by repeating the same procedure for an empty chamber with all electronic substrates removed from the vacuum chamber - pumping down to the same degassing pressure P degassing , closing off all inlets and outlets of the vacuum chamber and measuring the pressure increase after the same preset time as for the loaded chamber, i.e. 60 seconds.
  • the pressure increase in the vacuum chamber due to gases released from the textile products needs to be determined.
  • the textile products are positioned in a vacuum chamber, e.g. a plasma chamber, which is pumped down to a degassing pressure P degassing , which is less than 200 mTorr, preferably less than 100 mTorr, such as less than 50 mTorr, and next the inlets and outlets of the vacuum chamber are closed off.
  • P degassing which is less than 200 mTorr, preferably less than 100 mTorr, such as less than 50 mTorr
  • the degassing level of the chamber is then given by the pressure increase, ⁇ P, minus the whistling leak pressure of the vacuum chamber at the degassing pressure P degassing .
  • the whistling leak pressure of the vacuum chamber at the degassing pressure P degassing is determined by repeating the same procedure for an empty chamber with all textile products removed from the vacuum chamber - pumping down to the same degassing pressure P degassing , closing off all inlets and outlets of the vacuum chamber and measuring the pressure increase after the same preset time as for the loaded chamber, i.e. 60 seconds.
  • the low pressure plasma polymerization is preceded by a low pressure plasma pre-treatment step, preferably the degassing and the pre-treatment being combined in a single processing step.
  • a pre-treatment may be carried out before the coating polymerization step and after the outgassing step, when an outgassing step is performed.
  • the pre-treatment is a low pressure plasma process. Whether a low pressure plasma pre-treatment is carried out or not, depends on the cleanliness of the substrates to be coated, and on the monomer used in the low pressure plasma polymerization process as well.
  • the applicants have surprisingly discovered that for some monomers the performance and quality of the coating is better when no pre-treatment is carried out.
  • a pre-treatment in the form of a low pressure plasma cleaning and/or activation and/or etching may be advantageous.
  • the best performance of the coatings is measured by water contact angle measurement according to ASTM D5946-04, spray testing according to AATCC 22-2010, or ISO 9073 - part 17 and ISO 4920, and resistance against washing. Resistance against washing, laundering and dry cleaning is typically tested by washing, laundering or dry cleaning the product or sheet, followed by a spray test or a water contact angle measurement, to follow up the spray test quotation or the water contact angle measurement as function of the number of washing/laundering/dry cleaning cycles.
  • the adhesion between the coating and the substrate is sufficient, that there is an uniform coverage of the surfaces of the substrate - such as the surfaces of the yarns - and that the coating is pinhole free and water repellent.
  • a pre-treatment step in the form of an activation and/or cleaning and/or etching step is performed before the plasma polymerization process.
  • a pre-treatment step in the form of an activation and/or cleaning and/or etching step might be advantageous for improving the adhesion and cross-linking of the polymer coating.
  • this pre-treatment is preferably done using reactive gases, e.g. H 2 , O 2 , and etching reagents such as CF 4 , but also inert gases, such as Ar, N 2 or He may be used. Mixtures of the foregoing gases may be used as well.
  • reactive gases e.g. H 2 , O 2 , and etching reagents such as CF 4
  • inert gases such as Ar, N 2 or He may be used. Mixtures of the foregoing gases may be used as well.
  • the polymer deposition step may be performed in the presence of an additional gas, which may be the same gas (or mixture of gases) employed in the pre-treatment step, if such pre-treatment step is performed.
  • the pre-treatment is done with O 2 , Ar, or a mixture of O 2 and Ar, of which O 2 is favoured.
  • the pre-treatment when applied in a batch process to coat finished textile products such as garments (3D), is performed from 15 seconds to 15 minutes, for example from 30 seconds to 10 minutes, preferably 45 seconds to 5 minutes, e.g. 5, 4, 3, 2, or 1 minutes.
  • the duration of the pre-treatment depends on the precursor monomer used, on the design and the materials of the substrate to be coated, on the degree of contamination on the substrate to be coated, and on the low pressure plasma equipment.
  • the power of the pre-treatment can be applied in continuous wave mode or in pulsed wave mode.
  • the pre-treatment takes place at powers of 10 to 5000 W, more preferably 25 to 4000 W, even more preferably at 50 to 3000 W, say 75 to 2500 W, such as 100 to 2000 W, e.g. 2000, 1900, 1800, 1750, 1700, 1600, 1500, 1400, 1300, 1250, 1200, 1100, 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 175, 150, 125, or 100 W.
  • a power density equivalent to the above ranges for a 1836 litre plasma chamber is preferably used.
  • the pre-treatment takes place at a power of 10 to 5000 W, more preferably 25 to 4000 W, even more preferably at 50 to 3000 W, say 75 to 2500 W, such as 100 to 2000 W, e.g. 2000, 1900, 1800, 1750, 1700, 1600, 1500, 1400, 1300, 1250, 1200, 1100, 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 175, 150, 125, or 100 W.
  • a power density equivalent to the above ranges for a 1836 litre plasma chamber is preferably used.
  • the pulse frequency When applied in pulsed power mode, the pulse frequency may be from 100 Hz to 10 kHz having a duty cycle from approximately 0.05 to 50 %, with the optimum parameters being dependent on the gas or gas mixture used.
  • the operating pressure, e.g. in a 1836 litre or a 12000 litre plasma chamber, for the pre-treatment is 10 to 500 mTorr, more preferably 15 to 250 mTorr, even more preferably 20 to 200 mTorr, say 25 to 175 mTorr, such as 30 to 150 mTorr, e.g. 150, 140, 130, 125, 120, 110, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, or 30 mTorr.
  • the activation and/or cleaning and/or etching runs at a speed from 1 to 30 m/min, for example 2 to 20 m/min, such as 3 m/min to 15 m/min, most preferably at approximately 5 to 10 m/min.
  • the pre-treatment takes place at 25 to 10000 W, more preferably 50 to 7500 W, even more preferably at 100 to 5000 W, and further preferably 200 to 4000 W, and preferably still from 300 to 3000, such as 3000, 2900, 2800, 2750, 2700, 2600, 2500, 2400, 2300, 2250, 2200, 2100, 2000, 1900, 1800, 1750, 1700, 1600, 1500, 1400, 1300, 1250, 1200, 1100, 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, or 300 W.
  • a power density equivalent to the above ranges for a 12000 litre plasma chamber is preferably used.
  • the pre-treatment takes place at a peak power value of 25 to 10000 W, more preferably 50 to 9000 W, even more preferably at 100 to 8000 W, and further preferably at 200 to 7500 W, and preferably still at 300 to 7000, such as 7000, 6750, 6500, 6250, 6000, 5750, 5550, 5250, 5000, 4750, 4500, 4250, 4000, 3750, 3500, 3250, 3000, 2900, 2800, 2750, 2700, 2600, 2500, 2400, 2300, 2250, 2200, 2100, 2000, 1900, 1800, 1750, 1700, 1600, 1500, 1400, 1300, 1250, 1200, 1100, 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, or 300 W.
  • the pulse frequency When applied in pulsed power mode, the pulse frequency may be from 100 Hz to 10 kHz having a duty cycle from approximately 0.05 to 50 %, with the optimum parameters being dependent on the gas or gas mixture used.
  • the power value, the operating pressure and the pre-treatment time can be varied in a way that the best process parameters for the pre-treatment are used, taking into account the present teaching.
  • the polymer coating is applied in a next step, which may be carried out in the same equipment.
  • the pre-treatment and the coating step are carried out in the same chamber without opening the chamber in between the steps, to avoid deposition of additional contamination from the atmosphere in between pre-treatment step and coating step.
  • a post-treatment step may be performed after the low pressure plasma polymerization process. Whether this post-treatment is performed or not depends on the polymers deposited and on the substrate design.
  • a post-treatment may allow to obtain a denser polymer structure, or a polymer structure with improved orientation of the functional groups.
  • a denser polymer structure as well as an improved orientation of the functional groups contribute largely to a better performance of the coating in terms of water repellency, and more specifically in a better resistance against washing, laundering and dry cleaning.
  • the post-treatment is a low pressure plasma process. In another embodiment, the post-treatment is a low pressure process without ignition of a plasma.
  • the post-treatment when carried out, is performed in the same chamber as the low pressure plasma polymerization without opening the chamber in between the steps, to avoid influence from the atmosphere in between both steps.
  • this post-treatment is preferably done using inert gases, such as Ar, N 2 or He, but reactive gases, such as H 2 , O 2 , and etching reagents such as CF 4 may be used as well. Mixtures of the foregoing gases may be used as well.
  • the post-treatment is done with He or Ar.
  • the low pressure plasma post-treatment is performed from 10 seconds to 15 minutes, for example from 15 seconds to 10 minutes, preferably 30 seconds to 7.5 minutes, e.g. 7.5, 7, 6, 5, 4, 3, 2, or 1 minutes, or 45 or 30 seconds.
  • the duration of the post-treatment depends on the polymer deposited and on the design of the substrate.
  • the power of the post-treatment can be applied in continuous wave mode or in pulsed wave mode.
  • the average power applied during the post-treatment step is lower than the average power used during a low pressure plasma pre-treatment step, thereby preferably avoiding partial destruction of the deposited polymer coating. This is particularly preferred if the same gas or gas mixture is used during the pre-treatment step as during the post-treatment step.
  • the post-treatment takes place at 5 to 1000 W, more preferably 10 to 750 W, even more preferably at 15 to 500 W, say 20 to 250 W, such as 25 to 200 W, e.g. 200, 175, 150, 125, 100, 90, 80, 75, 70, 60, 50, 45, 40, 35, 30, or 25 W.
  • a power density equivalent to the above ranges for a 1836 litre plasma chamber is preferably used.
  • the post-treatment takes place at a peak power value of 5 to 2000 W, more preferably 10 to 1500 W, even more preferably at 15 to 1000 W, say 20 to 750 W, such as 25 to 500 W, e.g. 500, 450, 400, 350, 300, 250, 200, 175, 150, 125, 100, 90, 80, 75, 70, 60, 50, 45, 40, 35, 30, or 25 W.
  • a power density equivalent to the above ranges for a 1836 litre plasma chamber is preferably used.
  • the pulse repetition frequency When applied in pulsed power mode, the pulse repetition frequency may be from 100 Hz to 10 kHz having a duty cycle from approximately 0.05 to 50 %, with the optimum parameters being dependent on the gas or gas mixture used.
  • the low pressure plasma post-treatment is performed at a speed from 1 to 30 m/min, for example 2 to 20 m/min, such as 3 m/min to 15 m/min, most preferably at approximately 5 to 10 m/min.
  • the speed of the post-treatment depends on the polymer deposited and on the design of the substrate.
  • the power of the post-treatment can be applied in continuous wave mode or in pulsed wave mode.
  • the average power is lower than the typical powers used for a low pressure plasma pre-treatment, since the deposited polymer coating must not be destroyed.
  • the post-treatment takes place at 10 to 5000 W, more preferably 20 to 4000 W, even more preferably at 25 to 3000 W, and further preferably 50 to 2500 W, and preferably still from 75 to 2000, such as 2000, 1900, 1800, 1750, 1700, 1600, 1500, 1400, 1300, 1250, 1200, 1100, 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 275, 250, 225, 200, 175, 150, 125, 100, 90, 80, or 75 W.
  • a power density equivalent to the above ranges for a 12000 litre plasma chamber is preferably used.
  • the post-treatment takes place at 20 to 10000 W, more preferably 25 to 7500 W, even more preferably at 50 to 5000 W, and further preferably 75 to 4000 W, and preferably still from 100 to 3000, such as 3000, 2900, 2800, 2750, 2700, 2600, 2500, 2400, 2300, 2250, 2200, 2100, 2000, 1900, 1800, 1750, 1700, 1600, 1500, 1400, 1300, 1250, 1200, 1100, 1000, 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 275, 250, 225, 200, 175, 150, 125, or 100 W.
  • a power density equivalent to the above ranges for a 12000 litre plasma chamber is preferably used.
  • the pulse repetition frequency When applied in pulsed power mode, the pulse repetition frequency may be from 100 Hz to 10 kHz having a duty cycle from approximately 0.05 to 50 %, with the optimum parameters being dependent on the gas or gas mixture used.
  • this post-treatment is preferably done using inert gases, such as Ar, N 2 or He, but reactive gases, such as H 2 , O 2 , and etching reagents such as CF 4 may be used as well. Mixtures of the foregoing gases may be used as well.
  • the post-treatment without ignition of a plasma is done with He, Ar, or O 2 .
  • the low pressure post-treatment without ignition of a plasma is performed from 10 seconds to 15 minutes, for example from 15 seconds to 10 minutes, preferably 30 seconds to 7.5 minutes, e.g. 7.5, 7, 6, 5, 4, 3, 2.5, 2, or 1 minutes, or 45 or 30 seconds.
  • the duration of the post-treatment without ignition of a plasma depends on the polymer deposited and on the design of the substrate.
  • the low pressure plasma post-treatment without ignition of a plasma is performed at a speed from 1 to 30 m/min, for example 2 to 20 m/min, such as 3 m/min to 15 m/min, most preferably at approximately 5 to 10 m/min.
  • the speed of the post-treatment without ignition of a plasma depends on the polymer deposited and on the design of the substrate.
  • the method according to the present invention includes the step of applying a low pressure plasma polymer coating having a thickness of from 50 to 1000 nm, more preferably of from 75 to 500 nm, such as 500, 475, 450, 425, 400, 375, 350, 325, 300, 275, 250, 225, 200, 175, 150, 125, 100, or 75 nm.
  • a low pressure plasma polymer coating having a thickness of from 50 to 1000 nm, more preferably of from 75 to 500 nm, such as 500, 475, 450, 425, 400, 375, 350, 325, 300, 275, 250, 225, 200, 175, 150, 125, 100, or 75 nm.
  • hydrophobic surfaces when using organosilane monomers according to any of formula (I) to formula (V), hydrophobic surfaces can be created with contact angles for water of more than 90°, even more than 100°, such as more than 110°, or more than 120°, according to ASTM D5946-04.
  • the method includes applying a polymer coating having a uniformity variation of the contact angles for water of less than 10° according to ASTM D5946-04.
  • hydrophobic surfaces can be created with a spray test quotation of at least 3 or higher, such as a quotation of 4 or 5, according to AATCC 22-2010, or ISO 9073 - part 17 and ISO 4920.
  • the water contact angle and the spray test quotation obtained depends on the monomer used, any additional gases that may be used optionally, on the process parameters used, but also on the substrate onto which the nanocoating is deposited, e.g. roughness, complexity of design, etc.
  • the best performance of the coatings is measured by means of water contact angle measurement, spray test, and this before and after washing, laundering or dry cleaning.
  • Table 1 Process parameters in a 600 litre chamber according to Example 1 Parameter Value Plasma Chamber Dimensions 600 x 600 x 600 mm Temperature wall 30 - 60 °C Electrodes RF/ground Pre-treatment Details Table 2 Coating Monomer Hexamethyldisiloxane Flow 75 - 125 sccm Additional gas Oxygen (O 2 ) Flow (% of monomer flow) 5 - 20% Base pressure 10 - 30 mTorr Work pressure 20 - 75 mTorr Power 150 - 250 W Frequency 13.56 MHz Frequency mode cw Table 2: Process parameters for pre-treatments according to Example 1 Gas None Ar O2 He N 2 Flow - 100-300 sccm 100-300 sccm 100-300 sccm 100-300 sccm Power - 200-400 W 200-400 W 200-400 W 200-400 W 200-400 W Frequency - 13.56 MHz 13.56 MHz 13.56 MHz Frequency mode - CW CW CW
  • Figure 1 shows the spray test results and Figure 2 shows the water contact angle measurements, for the different pre-treatments, before and after washing. It is clear from Figure 1 that only the samples coated without pre-treatment give a spray test quotation higher than 0 after 1 and 2 washing cycles. It is also clear from Figure 2 that the samples without any pre-treatment and a coating according to Table 1 give water contact angles higher than 0° after 3 washing cycles. It is concluded that for the tested monomer, no plasma pre-treatment gives the best performance in terms of resistance against washing. Prior to washing, no clear differences are noted between the pre-treatments
  • the low pressure plasma process according to Table 4 has been carried out (no pre-treatment).
  • the additional gas or gas mixture has been varied according to the three variations in Table 5.
  • Spray test and water contact angle have been measured before and after washing according to the washing details in Table 3.
  • Table 4 Process parameters in a 600 litre chamber according to Example 2 Parameter Value Plasma Chamber Dimensions 600 x 600 x 600 mm Temperature wall 30 - 60 °C Electrodes RF/ground Pre-treatment None Coating Monomer Hexamethyldisiloxane Flow 75 - 125 sccm Additional gas See Table 5 Base pressure 10 - 30 mTorr Work pressure 20 - 75 mTorr Power 150 - 250 W Frequency 13.56 MHz Frequency mode cw Table 5: Process parameters for additional gases according to Example 2 Gas O 2 O 2 + Ar O 2 + He Flow (% of monomer flow) 10 % 10%+10% 10%+10%
  • Figure 3 shows the spray test quotations for varying additional gas mixtures, as function of number of washing cycles.
  • Figure 4 shows the water contact angles for varying additional gas mixtures, as function of number of washing cycles. It is clear that no significant difference was noticed in terms of resistance against washing.
  • Table 6 Process parameters in a 50 litre chamber according to Example 3 Parameter Value Plasma Chamber Dimensions 500 x 400 x 250 mm Temperature wall 30 - 60 °C Electrodes RF/ground Pre-treatment None Coating Monomer Hexamethyldisiloxane Flow 5 - 15 sccm Additional gas O 2 Flow 5 - 20 % of monomer flow Base pressure 10 - 30 mTorr Work pressure 15 - 75 mTorr Power 100 - 275 W Frequency 13.56 MHz Frequency mode cw Table 7: Process parameters in a 50 litre chamber according to Example 3 Parameter Value Plasma Chamber Dimensions 500 x 400 x 250 mm Temperature wall 50 - 80 °C Electrodes RF/ground Pre-treatment None Coating Monomer 3-(trimethoxysilyl)propyl methacrylate Flow 5 - 30 sccm Base pressure 10 - 30 mTorr Work pressure 15 - 75 mTorr Power 10 - 100 W Frequency 13.56 MHz

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
EP15170410.3A 2015-06-03 2015-06-03 Oberflächenbeschichtungen Active EP3101170B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DK15170410.3T DK3101170T3 (en) 2015-06-03 2015-06-03 surface coatings
EP15170410.3A EP3101170B1 (de) 2015-06-03 2015-06-03 Oberflächenbeschichtungen
BE2015/5507A BE1024821B1 (nl) 2015-06-03 2015-08-12 Oppervlakte deklagen
PCT/EP2016/062733 WO2016193486A1 (en) 2015-06-03 2016-06-03 Surface coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15170410.3A EP3101170B1 (de) 2015-06-03 2015-06-03 Oberflächenbeschichtungen

Publications (2)

Publication Number Publication Date
EP3101170A1 true EP3101170A1 (de) 2016-12-07
EP3101170B1 EP3101170B1 (de) 2018-08-22

Family

ID=53373288

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15170410.3A Active EP3101170B1 (de) 2015-06-03 2015-06-03 Oberflächenbeschichtungen

Country Status (4)

Country Link
EP (1) EP3101170B1 (de)
BE (1) BE1024821B1 (de)
DK (1) DK3101170T3 (de)
WO (1) WO2016193486A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079283A3 (en) * 2019-10-24 2021-06-03 Saati S.P.A. A method for preparing a composite filter medium and the composite filter medium obtained with this method
WO2022171581A1 (en) 2021-02-12 2022-08-18 Agc Glass Europe Method of producing a water repellent coating onto textile substrates using a plasma generated by hollow cathodes
JP2022553468A (ja) * 2019-10-24 2022-12-23 サーティ・エッセ・ピ・ア 複合フィルタ材を作成するための方法およびこの方法によって得られた複合フィルタ材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3470573A1 (de) 2017-10-16 2019-04-17 Werner & Mertz GmbH Verfahren zur herstellung eines textilen artikels mit hydrophobierter textiler oberfläche durch plasmabehandlung und nasschemische behandlung
JP6656524B2 (ja) * 2018-06-28 2020-03-04 ライフスタイルアクセント株式会社 撥水性衣類の製造方法及び撥水性衣類製造システム
CN112301725B (zh) * 2019-08-02 2023-04-07 香港纺织及成衣研发中心 通过等离子体技术获得的防水织物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126276A (en) * 1978-03-24 1979-10-01 Agency Of Ind Science & Technol Treatment of porous sheet
WO1999005358A1 (en) * 1997-07-24 1999-02-04 Scapa Group Plc Industrial fabrics and method of treatment
EP0988412A1 (de) 1997-06-14 2000-03-29 The Secretary of State for Defence in Her Britannic Majesty's Government of The United Kingdom of Great Britain and Northern I Oberflächenbehandlung
WO2000016913A1 (en) * 1998-09-21 2000-03-30 The Procter & Gamble Company Durably wettable, liquid pervious webs
CN101082178A (zh) * 2007-07-10 2007-12-05 浙江理工大学 一种赋予棉织物拒水功能的接枝改性方法
US20090069790A1 (en) * 2007-09-07 2009-03-12 Edward Maxwell Yokley Surface properties of polymeric materials with nanoscale functional coating
WO2014056968A1 (en) 2012-10-09 2014-04-17 Europlasma Nv Apparatus and method for applying surface coatings
EP2905374A2 (de) * 2014-02-10 2015-08-12 Korea Institute of Science and Technology Verfahren zur Herstellung von Mikro-/Nanohybridwebstoff zur Öl-Ölfiltration oder Öl-Wasser-Filtration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126276A (en) * 1978-03-24 1979-10-01 Agency Of Ind Science & Technol Treatment of porous sheet
EP0988412A1 (de) 1997-06-14 2000-03-29 The Secretary of State for Defence in Her Britannic Majesty's Government of The United Kingdom of Great Britain and Northern I Oberflächenbehandlung
WO1999005358A1 (en) * 1997-07-24 1999-02-04 Scapa Group Plc Industrial fabrics and method of treatment
WO2000016913A1 (en) * 1998-09-21 2000-03-30 The Procter & Gamble Company Durably wettable, liquid pervious webs
CN101082178A (zh) * 2007-07-10 2007-12-05 浙江理工大学 一种赋予棉织物拒水功能的接枝改性方法
US20090069790A1 (en) * 2007-09-07 2009-03-12 Edward Maxwell Yokley Surface properties of polymeric materials with nanoscale functional coating
WO2014056968A1 (en) 2012-10-09 2014-04-17 Europlasma Nv Apparatus and method for applying surface coatings
EP2905374A2 (de) * 2014-02-10 2015-08-12 Korea Institute of Science and Technology Verfahren zur Herstellung von Mikro-/Nanohybridwebstoff zur Öl-Ölfiltration oder Öl-Wasser-Filtration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 197945, Derwent World Patents Index; AN 1979-81629B, XP002751034 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079283A3 (en) * 2019-10-24 2021-06-03 Saati S.P.A. A method for preparing a composite filter medium and the composite filter medium obtained with this method
CN114502252A (zh) * 2019-10-24 2022-05-13 纱帝股份公司 一种用于制备复合过滤介质的方法和用该方法获得的复合过滤介质
JP2022553468A (ja) * 2019-10-24 2022-12-23 サーティ・エッセ・ピ・ア 複合フィルタ材を作成するための方法およびこの方法によって得られた複合フィルタ材
WO2022171581A1 (en) 2021-02-12 2022-08-18 Agc Glass Europe Method of producing a water repellent coating onto textile substrates using a plasma generated by hollow cathodes

Also Published As

Publication number Publication date
BE1024821A1 (nl) 2018-07-06
BE1024821B1 (nl) 2018-07-13
WO2016193486A1 (en) 2016-12-08
DK3101170T3 (en) 2018-10-08
EP3101170B1 (de) 2018-08-22

Similar Documents

Publication Publication Date Title
EP3101170B1 (de) Oberflächenbeschichtungen
EP1729894B1 (de) Beschichtung einer polymerschicht unter verwendung von niederdruckgepulstem plasma in einer plasmakammer mit einem grossen volumen
KR102184276B1 (ko) 표면 코팅을 제공하기 위한 장치 및 방법
US10410833B2 (en) Ways to generate plasma in continuous power mode for low pressure plasma processes
EP2937890B1 (de) Plasma-beschichtungsvorrichtung mit einem plasma-verteiler und verfahren zur vermeidung der entfärbung eines substrates
KR102183754B1 (ko) 표면 코팅
EP2287394B1 (de) Verfahren zur Verarbeitung polymerischer und anorganischer Materialien mit Plasma
CN116806279A (zh) 使用由空心阴极产生的等离子体在纺织品基材上产生防水涂层的方法
BE1022606B1 (nl) Oppervlakte deklagen.
CN116783346A (zh) 借助于等离子体在织物基材上涂覆的方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20150603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1032648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015015014

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20181001

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181122

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1032648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015015014

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180822

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240621

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240621

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240619

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240530

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240619

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240701

Year of fee payment: 10