EP3099841A1 - Système de capotage pour cuve d'électrolyse - Google Patents

Système de capotage pour cuve d'électrolyse

Info

Publication number
EP3099841A1
EP3099841A1 EP15740112.6A EP15740112A EP3099841A1 EP 3099841 A1 EP3099841 A1 EP 3099841A1 EP 15740112 A EP15740112 A EP 15740112A EP 3099841 A1 EP3099841 A1 EP 3099841A1
Authority
EP
European Patent Office
Prior art keywords
covers
cover
shutter
closing
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15740112.6A
Other languages
German (de)
English (en)
Other versions
EP3099841A4 (fr
EP3099841B1 (fr
Inventor
Steeve RENAUDIER
Guillaume Girault
Frédéric BRUN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Publication of EP3099841A1 publication Critical patent/EP3099841A1/fr
Publication of EP3099841A4 publication Critical patent/EP3099841A4/fr
Application granted granted Critical
Publication of EP3099841B1 publication Critical patent/EP3099841B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/22Collecting emitted gases
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the present invention relates to a cowling system for an electrolytic cell, an electrolysis cell comprising this cowling system and a method of changing an anode assembly.
  • Aluminum is conventionally produced in aluminum smelters, by electrolysis, according to the Hall-Héroult process.
  • An aluminum smelter traditionally comprises several hundred electrolytic cells connected in series and traversed by an electrolysis current whose intensity can reach several hundreds of thousands of amperes. It is known to arrange the electrolytic cells transversely with respect to the flow direction of the electrolysis current at the scale of the series.
  • Electrolysis tanks conventionally comprise a steel box inside which is arranged a coating of refractory materials, a cathode of carbon material, crossed by cathode conductors for collecting the electrolysis current at the cathode to conduct it up to cathode outlets passing through the bottom or sides of the box, routing conductors extending substantially horizontally to the next tank from the cathode outlets, an electrolytic bath in which the alumina is dissolved, at least one set anode having at least one anode immersed in said electrolytic bath and an anode rod sealed in the anode, an anode frame to which the anode assembly is suspended via the anode rod, and electrolytic current rise conductors, extending from bottom to top, connected to the routing conductors of the preceding electrolytic cell to convey electrolysis current e from the cathode outlets to the anode frame and the anode assembly and the anode of the next vessel.
  • the anodes are more particularly of anode type precooked with precooked carbon blocks,
  • the anode assemblies are consumed during the electrolysis reaction and must therefore be regularly replaced by new anode assemblies.
  • the sides of the electrolytic cell define an opening through which the anode assemblies are introduced into the electrolytic cell to be immersed in the electrolytic bath or removed from the electrolytic cell for replacement.
  • tank gases gases generated during the electrolysis reaction
  • tank gases gases generated during the electrolysis reaction
  • Known rollover systems include removable, horizontally inclined side caps. These covers rest on the one hand on one side of the electrolytic cell and on the other hand against a part of superstructure, intended to support the anode assemblies, extending in a longitudinal direction of the electrolytic cell, to above the opening defined by the sides of the tank, that is to say, in line with the anode assemblies and the electrolytic bath.
  • the covers thus form a containment chamber limiting the diffusion of the tank gases when the rollover system is completely closed. This also limits heat losses.
  • cowling systems offer a limited response to the problem of diffusion of tank gas out of the electrolysis cell and preservation of the thermal equilibrium of the electrolysis cell.
  • hoods are removed to create an opening through the rollover system.
  • This opening necessary, allows access to the interior of the tank, in particular to remove a spent anode assembly.
  • the opening thus created provides the opportunity for the cell gases to diffuse out of the containment. This opening can also disturb the thermal equilibrium of the tank.
  • hoods of known rollover systems are designed to have their adjacent edges superimposed on each other. This superposition makes it possible to limit the leakage of vat gas and the energetic losses at the interface between two adjacent covers.
  • hoods of traditional rollover systems are similar, especially in terms of dimensions, so that the only possibility of selecting an opening surface through the rollover system is the selection of the number of covers to remove. This does not allow a fine adjustment of the opening surface, that is to say the selection of a minimum opening area but sufficient to perform a maintenance intervention to achieve.
  • the presence of the superstructure and electrolytic current rise conductors above the opening defined by the sides of the tank make it difficult the crust breaking operation being formed between the anode assemblies because the access under the superstructure and climbing conductors is particularly cramped.
  • the crust breaking operation traditionally carried out with a jack hammer mounted on an arm with an angular inclination, requires more time than if there were no such obstacles, which increases the duration opening of the cowling.
  • the crust breaking is sometimes incomplete at the periphery of the anode assembly and the extracted anode assembly comprises solid crust pieces that increase its passage section, its size and can damage adjacent covers still in place.
  • hoods rest in the lower part on the top of the box on which collapses the cover product of the anodes, so that the supports of the hoods are unstable and their positioning is not accurate. They are also exposed in the lower part to the flames and hot spots related to the discontinuities of the anode cover, which causes their rapid degradation.
  • the present invention aims at overcoming all or part of these disadvantages by proposing a rollover system, an electrolysis cell comprising this cowling system and a method of changing an anode assembly, offering the possibility of effectively containing the diffusion tank gas and maintain thermal equilibrium, especially during a maintenance intervention.
  • the present invention relates to a cowling system intended to close an opening delimited by sides of an electrolytic cell, the cowling system comprising a plurality of cowls, characterized in that:
  • each cover comprises two opposite support edges intended to rest on two opposite sides of the electrolytic cell among the sides of the electrolytic cell delimiting the opening, so that each cover extends from one side to the other. other of the electrolysis cell, above the opening,
  • the rollover system is designed to present, substantially parallel to the hoods, longitudinal intervention windows, to release a predetermined passage through the plurality of covers,
  • the rollover system further comprises shutter covers, each shutter cover being movable relative to the covers between a closed position, in which each shutter cover closes one of the intervention windows, and a intervention position, in which each shutter cover releases a passage through the rollover system via one of the intervention windows, the shutter caps being intended to rest at least partly on the covers, and
  • the shutter covers are adapted to be moved from the shut-off position to the intervention position, independently of one another, without moving the covers on which the shutter covers rest.
  • cowling system offers the possibility of accessing the inside of the electrolysis cell by removing only one of the blanking covers, without moving or removing the covers.
  • opposite sides of the electrolytic cell is meant sides located on either side of a median plane, in particular a longitudinal median plane, of the electrolytic cell.
  • each cover is intended to extend on both sides of this median plane to rest simultaneously on these two opposite sides.
  • the covers and shutter covers have a vertical assembly stroke, which is an important advantage to automate the introduction of the covers, because there is no complex angular movements to achieve unlike the state of the art.
  • the closure covers have longitudinal edges which are intended to rest each on one of the covers.
  • the seal at the junction between the closure covers and the covers is ensured over the entire length of the covers, respectively the closure covers, by superimposing an edge of the closure cover over a cover. hood edge.
  • the closure covers have a T-shaped cross-section defining two longitudinal returns, the covers have an inverted T-shaped cross-section delimiting two longitudinal returns, each return of one of the closure covers being based on one of the returns of an adjacent cowl, so that the rollover system has an alternation of covers and nested sealing lids.
  • This configuration offers both a simple solution to allow the shutter covers to be removed without interference with the covers on which they rest and the other shutter covers, and at the same time to improve the tightness of the rollover system. This thus makes it possible to limit tank gas leaks and heat losses.
  • the returns of the covers and the closure covers have an L-shaped section, so that the engagement of a cover and a closure cover forms a sealing baffle.
  • This feature also offers the advantage of improved sealing, to contain tank gas leaks and heat losses.
  • the rollover system comprises sealing means interposed between the returns of each closure cover and the returns of the adjacent covers on which each closure cover rests.
  • the covers and lids extend horizontally and the longitudinal returns of the hoods comprise chutes containing a powdery material and having an upper opening, the longitudinal returns of the lids having an L-shaped section, so that end portion of the L-section of the lid is pressed into the powder material via the upper opening in the chute when the cover and the cover are nested.
  • the powdery material contains alumina.
  • the pulverulent material may be formed of alumina or crushed electrolysis bath which comprises alumina. These materials have the advantage of being available in an aluminum smelter and are further introduced into the electrolysis tanks so that they do not risk polluting the electrolytic cell in case of accidental spillage into the tank.
  • alumina is a very good adsorbent for the HF and SO 2 released by the electrolytic cell so that any infiltration of bottom gas through the powder material will have less environmental impact.
  • the covers and / or the covers comprise a shutter arranged to close the opening of the chute when the cover and the cover are nested.
  • This flap that can be fixed or mobile, including pivoting is intended to retain the powder material in the chute.
  • the sealing means comprise elastic seals intended to compensate for a difference in relative deformation between two consecutive covers of the cowling system between which is intended to extend a closure cover in position. shutter.
  • the space or the clearance between covers and closure covers is side so that the crushing of the seals separating them, taking into account the sagging of hoods and shutter covers, either in the elastic range of crushing seals.
  • the seal is improved.
  • the covers comprise a face provided with at least one reinforcing rib intended to limit the bending of the covers.
  • the covers comprise a face provided with thermal insulation means.
  • the isolation means are arranged on the underside of the covers so as to limit the warpage and therefore the degradation of the covers.
  • the covers comprise a substantially longitudinal tubular body, the tubular body defining a cavity inside which is arranged a thermally insulating material.
  • the covers comprise a bottom face provided with deflection means for deflecting a flow of vat gas.
  • the tank gases can be diverted towards a capture system that can equip the electrolysis tank, so that the tank gas leaks are limited.
  • the closure covers comprise gripping means designed to allow a substantially vertical lifting of each shutter cover without moving the covers and independently of the other sealing covers.
  • a substantially vertical withdrawal of the closure covers limits the risk of moving the adjacent covers during removal and is the simplest solution to implement a sealing system between the closure covers and the covers adjacent thereto.
  • the closure covers comprise a lower bearing surface designed to allow the closure covers to rest stably on one of the covers or on another closure cover.
  • closure covers when removed, can be stacked on an adjacent hood or other close shutter cover. Consequently, the trajectories described by the electrolysis service machine during an intervention are minimal, so that the duration of opening of the intervention window is also minimal. This results in a decrease in the leakage of the tank gas and thermal losses that may occur during an intervention.
  • the covers comprise a bottom support face designed to allow the covers to rest stably on one of the closure covers.
  • the hoods when removed, can be stacked on an adjacent hood or a close shutter cover. This reduces the trajectories of the electrolysis service machine, thus the opening time of the intervention window. Tank gas leaks and heat losses during the intervention, in particular an anode assembly change, are less.
  • the covers and the closure covers extend in a substantially horizontal plane.
  • the intervention window has a width less than that of the covers that the intervention window separates.
  • This small opening area of the cowling allows to create in combination with the traditional suction of the tank gases a suction effect of the outside air to the inside of the tank, against the movement of the tank gases. Tank gas leaks are thus limited.
  • each shutter cover has a width less than the width of the covers.
  • the hoods have a bending stiffness greater than that of the closure covers.
  • the hoods deform more difficultly than the shutter covers, and the shutter caps deform more easily than the hoods under the effect of their weight, so that the shutter covers can deform to compensate the deformations, the least, of the hoods on which they rest. This improves the seal.
  • the present invention also relates to an electrolytic cell comprising a plurality of anode assemblies, the sides delimiting an opening through which the anode assemblies are intended to be put in place or removed in a vertical translation movement respectively downward or upward, and an rollover system having the above characteristics, the rollover system extending above the anode assemblies to cover said opening.
  • This electrolytic cell has a stable thermal equilibrium and limits the gas discharges from tanks, including during the intervention as an anode assembly replacement.
  • the electrolytic cell comprises sealing means interposed between the support edges of the covers and the sides of the electrolytic cell on which the support edges rest.
  • the sealing means interposed between the support edges of the covers and the sides of the tank on which the support edges rest, comprise a seal
  • the electrolysis cell comprises means pinching the seal
  • each shutter cover extends above and all along a subjacent interanode space separating two adjacent anode assemblies from the electrolytic cell.
  • inter-anode space space separating anodes from two adjacent anode sets.
  • each cap extends above and along an anode assembly subjacent to the electrolytic cell.
  • the electrolysis cell comprises indexing means adapted to indicate a predetermined position of the covers such that the covers extend to the right of the anode assemblies.
  • This feature allows fast, repeatable and accurate placement of covers, to quickly close the opening and prevent them from moving.
  • covers extending to the right of the anode assemblies is meant that under each cover extends a single anode assembly.
  • the electrolytic cell comprises means for capturing the bottom gases, designed to capture and collect the cell gases emitted during the electrolysis reaction.
  • the capturing means comprise suction holes arranged under the hoods and the closure covers.
  • the capturing means comprise a diaphragm for modifying an air passage section in order to modify a capture rate of the tank gases.
  • each cap is less than the width of an anode assembly of the electrolytic cell.
  • the invention also relates to a method of changing a spent anode assembly of an electrolytic cell with a new anode assembly, the method comprising:
  • a step of breaking or sawing a crust formed on the surface of an electrolytic bath by inserting a tool adapted to break or saw the crust through the passage released in the previous step.
  • This method provides the possibility of providing access to the interior of the electrolytic cell with a minimum opening area, and thus breaking or sawing the crust formed during the electrolysis reaction with a minimum of gas leaks and thermal losses. During the change of anode assembly, the diffusion of vat gas and heat losses are therefore substantially limited.
  • the method comprises a step of placing the first closure cover on one of the covers adjacent to the first closure cover.
  • the method comprises a step of moving a second shutter cover, from the shut-off position to the intervention position, without moving the covers of the rollover system and the other covers.
  • shutter the second shutter cover being arranged on the other side of one of the covers beside which was arranged the first shutter cover, so as to release a second passage on the other side of this cover, and a step of breaking or sawing a crust formed on the surface of an electrolytic bath, by inserting a tool adapted to break or saw the crust through this second passage.
  • the method comprises a step of placing the second closure cover on the first closure cover.
  • the stacking of the closure covers limits the paths of the electrolysis service machine, thus the duration during which the corresponding intervention windows are open.
  • the method comprises a step of removing a cover initially adjacent to the first closure cover.
  • the method according to the invention limits the leakage of vat gas and preserves the thermal equilibrium of an electrolytic cell during an anode assembly change.
  • the method comprises a step of stacking said cover on the first shutter cover or, if appropriate, on the second shutter cover. This reduces the path of the electrolysis service machine having removed the hood, so that the opening resulting from the removal of the hood, and the first and second shutter covers for the anode assembly change, is performed during a period of time. limited time.
  • the method may then comprise a step of extracting the spent anode assembly, underlying the cap previously removed, and then a step of inserting the new anode assembly inside the electrolytic cell.
  • steps can be performed by substantially vertical upward or downward translation, respectively of the used anode assembly and the new anode assembly.
  • the method may comprise a step of repositioning the cover previously removed, then the first and second closure cover.
  • FIG. 1 is a diagrammatic cross-sectional view of an electrolysis cell and a cowling system according to one embodiment of the invention, in a substantially longitudinal plane of the electrolytic cell,
  • FIG. 2 is a diagrammatic and top view of the interior of the electrolytic cell of FIG. 1,
  • FIGS. 3 and 4 are diagrammatic sectional views of the electrolysis cell and the cowling system of FIG. 1, in a substantially longitudinal plane of the electrolytic cell, and through which an access window is formed,
  • FIGS. 5 to 7 are diagrammatic and side views of part of a rollover system according to one embodiment of the invention.
  • Figure 7bis is a schematic side view of a portion of a cowling system according to one embodiment of the invention.
  • FIG. 8 is a schematic view from below of a hood of a cowling system according to one embodiment of the invention.
  • FIG. 9 is a diagrammatic cross-sectional view of an electrolysis cell and a cowling system according to one embodiment of the invention, in a substantially longitudinal plane of the electrolytic cell;
  • FIG. 10 is a schematic view from above of the electrolytic cell of FIG. 9,
  • FIG. 11 is a diagrammatic cross-sectional view of an electrolytic cell and a cowling system according to one embodiment of the invention, in a substantially transverse plane of the electrolytic cell,
  • FIGS. 12 to 14 are diagrammatic sectional views of a portion of an electrolytic cell and a cowling system according to one embodiment of the invention, illustrating various steps of a method of changing the anode assembly according to one embodiment of the invention.
  • FIG. 1 shows, according to one embodiment of the invention, an electrolytic cell 100, intended to produce aluminum by electrolysis, and a rollover system 1, designed to close an opening in the electrolytic cell.
  • the electrolysis tank 100 can equip an electrolysis plant, such as an aluminum smelter.
  • the electrolysis plant may comprise a plurality of electrolytic cells 100 aligned and electrically connected to each other to form a line or series of electrolysis cells.
  • the electrolytic tanks 100 are intended to be traversed by an electrolysis current of up to several hundreds of thousands of amperes.
  • the electrolysis tanks 100 may be arranged transversely with respect to the direction of the line or series, that is to say substantially perpendicularly to the overall direction of flow of electrolysis current at the scale of the line or from the Serie.
  • the electrolysis tank 100 may comprise two opposite longitudinal sides 101 which may be substantially parallel to each other and two opposite transverse sides 103 which may be substantially parallel to each other and perpendicular to the longitudinal sides 101, so that the electrolysis tank 100 may have a substantially rectangular shape.
  • the electrolysis tank 100 comprises a fixed structure.
  • the fixed structure comprises a box 102 and / or a side wall 105 of a gas containment enclosure.
  • the box 102 may contain a bottom 104 of refractory materials, a plurality of cathode blocks 106 and conductors 108 for collecting an electrolysis current passing through the cathode blocks 106.
  • the electrolytic cell 100 also comprises a plurality of anode assemblies 109 which are movable in substantially vertical translation relative to the fixed structure of the electrolytic cell so that they can be immersed in an electrolytic bath as and when their consumption.
  • the anode assemblies 109 here comprise a plurality of carbon blocks 12, supported by an electrically conductive anode cross member 14.
  • the anode cross-member 14 advantageously extends in a substantially transverse direction Y of the electrolytic cell, in a substantially horizontal plane.
  • the ends of this cross member January 14 are electrically connected to routing conductors (not shown) for routing the electrolysis current from a previous electrolysis tank.
  • the sides of the electrolysis tank 100 delimit an opening 116 which is intended for insertion or extraction of the anode assemblies 109 respectively inside or outside the electrolytic cell 100.
  • this opening 1 16 is adapted to allow this insertion or extraction by substantially vertical displacement, respectively descending or ascending, of the assembly 109 anode.
  • the electrolysis tank 100 further comprises the cowling system 1.
  • the rollover system 1 is intended to seal the opening 116, to prevent the diffusion of tank gases generated during the electrolysis reaction, out of the electrolysis tank 100.
  • the rollover system 1 also makes it possible to limit heat losses.
  • the rollover system 1 extends above the anode assemblies 109 in order to completely cover the opening 1 16.
  • the rollover system 1 comprises a plurality of covers 2.
  • the covers 2 are self-supporting.
  • Each cap 2 comprises two opposite support edges 4, visible in particular in FIG. 11, intended to rest on two opposite sides of the electrolysis tank 100, in particular on an upper edge of the two longitudinal sides 101 of the tank 100. 'electrolysis.
  • Each cover 2 thus rests integrally on the electrolysis tank 100, extending between the two longitudinal sides 101, above the opening 1 16.
  • the cowling system 1 is also designed to present, substantially parallel to the hoods 2, longitudinal intervention windows 6, as can be seen, for example, in FIG. 4.
  • Each intervention window 6 makes it possible to release a passage predetermined through the plurality of covers 2.
  • the intervention windows 6 extend longitudinally between two adjacent covers 2.
  • the rollover system 1 further comprises closure caps 8, each intended to close a window 6 intervention.
  • Each shutter cover 8 is movable relative to the covers 2 between a closed position, in which each shutter cover 8 closes one of the intervention windows 6, and an intervention position, in which each cover Shutter 8 releases a passage through the rollover system 1 via one of the intervention windows 6.
  • closure caps 8 are intended to rest at least partly on the covers 2, as can be seen for example in FIG. 5.
  • the closure caps 8 have longitudinal edges which are intended to rest each on one of the covers 2 and have side edges which can rest on an upper edge of the longitudinal sides 101 of the electrolysis tank 100, and.
  • closure lids 8 can rest straddling two adjacent covers 2 and extend between these two adjacent covers 2.
  • shutter covers 8 are designed to be moved from the shutter position to the intervention position without moving the covers 2 on which the shutter covers 8 rest.
  • the shutter covers 8 can also be moved from the shutter position to the intervention position independently of each other, that is to say without the movement of one of the closure lids 8 involves that of another cover 8 shutter.
  • the covers 2 and, if appropriate, the closure covers 8 advantageously extend in one piece from one longitudinal side to the other of the electrolytic cell 00.
  • the covers 2 and, if applicable, the closure covers 8 extend substantially parallel to a transverse direction Y of the electrolytic cell 100.
  • covers 2 and the closure lids 8 extend in a substantially horizontal plane.
  • the covers 2 and the closure covers 8 preferably extend above the working floor, which limits the risk of falling in the tank of the operating personnel.
  • covers 2 and the closure covers 8 are intended to extend above the electrolytic bath, the temperature of which can reach about 1000 ° C.
  • the covers 2 and the closure lids 8 must therefore be adapted to withstand a temperature of the order of several hundred degrees Celsius, without prejudice to their mechanical properties and, where appropriate, thermal insulation.
  • closure lids 8 have a T-shaped cross section defining two longitudinal returns 10.
  • the covers 2 have in turn an inverted T cross section delimiting two longitudinal returns 12.
  • Each return 10 of one of the closure lids 8 rests on one of the returns 12 of an adjacent cover 2.
  • the rollover system 1 has an alternation of T right and inverted T formed by an alternation of covers 2 and nested closure caps 8.
  • the returns 10, 12 of the covers 2 and the closure covers 8 have an L-shaped section.
  • the engagement of a cover 2 and a closure cover 8 forms a sealing baffle.
  • the cowling system 1 advantageously also comprises sealing means interposed between the returns 10 of each closure cover 8 and the returns 12 adjacent covers 2.
  • the sealing means comprise, for example, elastic seals 14.
  • the elastic sealing seals 14 are intended to compensate for a difference in relative deformation between two consecutive covers 2 between which a closure cover 8 extends.
  • the returns 12 of the covers have chutes having an upper opening and containing a powder material 31.
  • the returns 10 of the lids have an L-shaped section and an end portion of the L-section of the cover is pressed into the powder material 31 via the upper opening in the chute when the cover and the cover are nested.
  • the realization of such a seal by means of a powder material is possible because the covers and covers extend horizontally so that the powder material remains distributed with a uniform height over the entire length of the chute.
  • the powder material serves as a sealing means to form a barrier which prevents the vent gases from escaping.
  • the pulverulent material may in particular comprise alumina or crushed electrolysis bath which comprises alumina.
  • alumina is a very good adsorbent for the HF and SO 2 released by the electrolytic cell so that any infiltration of bottom gas through the powder material will have less environmental impact.
  • the cover further comprises on its upper face pivoting flaps 32 arranged to close the opening of the chute when the cover and the cover are fitted. These flaps are intended to retain the powder material in the chute. Flaps may alternatively be arranged on the lid and be fixed.
  • the covers 2 have a lower face 16, visible in particular in FIG. 8.
  • the lower face 16 may be provided with at least one reinforcing rib 18 intended to limit the flexion of the covers 2.
  • the covers 2 may comprise two crossed ribs 18.
  • the lower face 16 may be provided with thermal insulation means.
  • the thermal insulation means comprise for example rock wool, advantageously maintained and protected by a steel plate.
  • the covers 2 and the closure covers 8 comprise a substantially flat plate-shaped main body.
  • This body 20 is intended to extend longitudinally along a transverse direction Y of the electrolysis tank 100.
  • the body 20 may be tubular.
  • the body 20 advantageously delimits a cavity inside which can be arranged a thermally insulating material, such as rock wool.
  • the body 20 may be alternately full, so that the mass of the covers 2 is larger. This allows compression or pinching of a sealing gasket 22, visible in FIG. 5 and in FIG. 11, extending between the support edges 4 of the covers 2 and the part of the tank 100. electrolysis on which these support edges 4 rest, in order to improve the seal.
  • the lower face 16 of the hoods 2 may be provided with deflection means for diverting a flow of tank gas to holes 120 of a tank gas collection system that can equip the tank 100 electrolysis, as will be described in more detail below.
  • the closure lids 8 advantageously comprise gripping means, such as a handle 24.
  • the gripping means are designed to allow a substantially vertical lift of each closure cover 8 by an electrolysis service machine, such as a bridge. handling, without having to move caps 2 or other caps 8 shutter.
  • the lower face 16 may also be designed to allow the covers 2 to rest stably on one of the closure lids 8, to allow the stacking of covers 2 on closure lids 8.
  • the lower surface 16 may have a housing (not shown) adapted to receive the gripping means 8 shutter covers.
  • the closure caps 8 may also have a bottom face 26 designed to allow the closure caps 8 to rest stably on one of the covers 2, or on another cover 8 shutter.
  • the lower surface 26 may have a housing (not shown) adapted to receive gripping means of the hoods 2, these gripping means being intended to allow lifting of the hoods 2 by an electrolysis service machine.
  • this cover 8 shutter can be placed on one of the adjacent covers 2.
  • the lower face 26 of the closure lids 8 may also be provided with thermal insulation means and / or means for deflecting the vat gases.
  • the hoods 2 advantageously have a greater bending stiffness than that of the closing lids 8. In other words, the hoods 2 are more rigid than the closure lids 8.
  • the intervention window 6 has a width that is smaller than that of the covers 2 that it separates.
  • the closure caps 8 may also have a width less than the width of the covers 2.
  • the opening formed by the withdrawal of a closure cover 8 is small, the function of the closure lids 8 being able to provide access to the interior of the electrolysis tank 100 with a surface open minimum.
  • the invention also relates to the electrolysis tank 100 comprising the cowling system 1.
  • This electrolysis tank 100 advantageously comprises sealing means interposed between the support edges 4 of the covers 2 and the sides of the electrolysis tank 101 on which the support edges 4 rest.
  • These sealing means comprise for example the seal 22, which extends along the longitudinal sides 101, that is to say in a longitudinal direction X of the electrolytic cell.
  • the electrolysis tank 100 advantageously comprises means for clamping this seal 22.
  • the clamping means may comprise a screw pressing the support edges 4 of the covers 2 against the upper edge of the longitudinal sides 101, where the seal 22 is located.
  • the clamping means may comprise a ballast equipping the covers 2 and / or the closure caps 8, the weight of the covers 2 and / or the closure covers 8 compressing the seal 22.
  • each closure cover 8 advantageously extends above and all along a space 11 1 inter-anode subjacent. This inter-anode gap separates two adjacent anode assemblies 109 from the electrolytic cell 100.
  • Each cover 2 extends above and all along an assembly 109 anode subjacent electrolytic tank 100.
  • the electrolysis tank 100 may comprise indexing means adapted to indicate a predetermined position of the hoods 2, this predetermined position being such that the hoods 2 extend to the right of the anode assemblies 109, that is to say to the above the sets 109 and parallel to these anode assemblies 109.
  • the indexing means comprise, for example, lugs, pions or crenellations.
  • the electrolysis tank 100 comprises means for capturing the tank gases. These tank gas collection means are designed to capture and collect the tank gases emitted during the electrolysis reaction.
  • the capturing means here comprise suction holes 120, shown in FIGS. 10 and 11, arranged under the covers 2 and the closing lids 8.
  • the suction holes 120 allow an air communication between the inside of the electrolysis tank 100 and a collection duct 122 which is intended to conduct the sucked tank gases to a collector where these tank gases will be treated.
  • the sheath 122 extends along the longitudinal sides 101 of the electrolytic tank 100.
  • the sheath 122 may also be along the transverse sides 103.
  • the capturing means may also comprise a diaphragm (not shown), arranged for example at the connection between the capture sheath and the collector.
  • the diaphragm is intended to modify an air passage section in order to modify a capture rate of the tank gases.
  • each cap 2 is smaller than the width ⁇ of the underlying anodic assembly 109.
  • the intervention window 6 may have a width I "of the order of 350-480 mm, in particular 360 mm, and each cover comprises a width I less than a width of between 700 mm and 2000 mm.
  • the invention also relates to a method of changing a used anode assembly 130 of an electrolytic cell, in particular of the electrolytic cell 100 described above, with a new anode assembly.
  • the method comprises a step of moving a first closure cover 8a among the closure caps 8 of a rollover system 1 as described above, from the shut-off position to the intervention position, as shown in FIG. is shown in Figure 12.
  • This step is performed without moving the covers 2 and the other covers 8 shutter. Thus, a passage is released through the rollover system 1 via one of the intervention windows 6.
  • the method advantageously comprises a step of placing the first cover 8a shutter on one of the covers 2 adjacent to the first cover 8a shutter, as shown in Figure 13.
  • the method also comprises a step of breaking or sawing a crust formed on the surface of the electrolytic bath, by inserting a tool adapted to break or saw the crust through the passage previously released.
  • the method comprises a step of moving a second closure cover 8b from the shutter position to the intervention position, without moving the covers 2 and the others. 8 shutter covers.
  • the second shutter cover 8b is initially arranged on the other side of one of the covers 2, in particular the cover 2, where, if appropriate, the cover 2 is not installed.
  • first cover 8a shutter beside which was arranged the first cover 8a shutter, so that a second passage is released on the other side of the cover 2.
  • the method comprises a step of breaking or sawing the crust formed on the surface of the electrolytic bath, by inserting a tool adapted to break or saw the crust through this second passage.
  • the method may comprise a step of placing the second closure cover 8b on the first closure cover 8a, as is more particularly visible in FIG. 13.
  • the method also comprises a step of removing one of the hoods 2 initially arranged next to the first shutter cover 8a, in particular the hood 2, which is not fitted where appropriate. the first cover 8a shutter.
  • the method may comprise an additional step of stacking this cover on the second closure cover 8b. Note that the first and optionally the second cover 8a, 8b shutter and the cover 2 are stacked above an anodic assembly 109 unchanged.
  • the method may then comprise a step of extracting the spent anode assembly 130, underlying the cap 2 previously removed, and then inserting the new anode assembly inside the electrolysis cell.
  • steps can be performed by substantially vertical upward or downward translation, respectively of the used anode assembly 130 and the new anode assembly.
  • the method may comprise a step of repositioning the cover 2 previously removed, then the first and second closure cover 8a, 8b.
  • first shutter cover 8a and the second shutter cover 8b are displaced by means of an electrolysis service machine, such as a handling bridge, suitable for docking these caps 8 shutter and the cover by their gripping means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Ce système (1) comprend des capots (2), chaque capot (2) comprenant deux bords opposés destinés à reposer sur deux côtés opposés de la cuve d'électrolyse, de sorte que chaque capot (2) s'étende d'un côté à l'autre de la cuve d'électrolyse, au-dessus d'une ouverture (116). De plus, le système (1 ) est conçu pour présenter des fenêtres (6) d'intervention longitudinales parallèles aux capots (2). Le système (1) comprend aussi des couvercles (8) d'obturation, chaque couvercle (8) étant mobile relativement aux capots (2) entre une position d'obturation, où chaque couvercle (8) obture une fenêtre (6), et une position d'intervention, où chaque couvercle (8) d'obturation libère un passage via une fenêtre (6). Les couvercles (8) reposent au moins partiellement sur les capots (2), et sont conçus pour être déplacés de la position d'obturation à la position d'intervention, indépendamment les uns des autres, sans déplacer les capots (2) sur lesquels les couvercles (8) d'obturation reposent.

Description

SYSTEME DE CAPOTAGE POUR CUVE D'ELECTROLYSE
La présente invention concerne un système de capotage pour une cuve d'électrolyse, une cuve d'électrolyse comprenant ce système de capotage et un procédé de changement d'un ensemble anodique.
L'aluminium est classiquement produit dans des alumineries, par électrolyse, selon le procédé de Hall-Héroult.
Une aluminerie comprend traditionnellement plusieurs centaines de cuves d'électrolyse connectées en série et parcourues par un courant d'électrolyse dont l'intensité peut atteindre plusieurs centaines de milliers d'Ampère. Il est connu d'agencer les cuves d'électrolyse transversalement par rapport au sens de circulation du courant d'électrolyse à l'échelle de la série.
Les cuves d'électrolyse comprennent classiquement un caisson en acier à l'intérieur duquel est agencé un revêtement en matériaux réfractaires, une cathode en matériau carboné, traversée par des conducteurs cathodiques destinés à collecter le courant d'électrolyse à la cathode pour le conduire jusqu'à des sorties cathodiques traversant le fond ou les côtés du caisson, des conducteurs d'acheminement s'étendant sensiblement horizontalement jusqu'à la cuve suivante depuis les sorties cathodiques, un bain électrolytique dans lequel est dissout l'alumine, au moins un ensemble anodique comportant au moins une anode plongée dans ce bain électrolytique et une tige anodique scellée dans l'anode, un cadre anodique auquel est suspendu l'ensemble anodique via la tige anodique, et des conducteurs de montée du courant d'électrolyse, s'étendant de bas en haut, reliés aux conducteurs d'acheminement de la cuve d'électrolyse précédente pour acheminer le courant d'électrolyse depuis les sorties cathodiques jusqu'au cadre anodique et à l'ensemble anodique et l'anode de la cuve suivante. Les anodes sont plus particulièrement de type anodes précuites avec des blocs carbonés précuits, c'est-à-dire cuits avant introduction dans la cuve d'électrolyse.
Les ensembles anodiques sont consommés au cours de la réaction d'électrolyse et doivent donc être régulièrement remplacés par des ensembles anodiques neufs.
Les côtés de la cuve d'électrolyse délimitent une ouverture par l'intermédiaire de laquelle les ensembles anodiques sont introduits dans la cuve d'électrolyse pour être plongés dans le bain électrolytique ou extraits hors de la cuve d'électrolyse pour être remplacés.
Pour limiter les pertes thermiques et éviter la diffusion, hors de la cuve d'électrolyse, de gaz générés pendant la réaction d'électrolyse, ci-après appelés gaz de cuve, il est prévu d'obturer l'ouverture délimitée par la cuve d'électrolyse avec un système de capotage. Les systèmes de capotage connus, comme ceux divulgués dans les documents de brevet US4043892 et WO2007067061 , comprennent des capots latéraux, amovibles, inclinés par rapport à l'horizontale. Ces capots reposent d'une part sur un des côtés de la cuve d'électrolyse et d'autre part contre une partie de superstructure, destinée à supporter les ensembles anodiques, s'étendant selon une direction longitudinale de la cuve d'électrolyse, au-dessus de l'ouverture délimitée par les côtés de la cuve, c'est-à-dire à l'aplomb des ensembles anodiques et du bain électrolytique.
Les capots forment ainsi une enceinte de confinement limitant la diffusion des gaz de cuve lorsque le système de capotage est complètement fermé. Cela limite aussi les pertes thermiques.
Cependant, lors d'une intervention nécessitant une ouverture du système de capotage, comme c'est le cas pour le remplacement d'un ensemble anodique usé par un ensemble anodique neuf, les systèmes de capotage traditionnels offrent une réponse limitée au problème de diffusion des gaz de cuve hors de la cuve d'électrolyse et de préservation de l'équilibre thermique de la cuve d'électrolyse.
En effet, lors d'une intervention comme un changement d'ensemble anodique, des capots sont retirés pour créer une ouverture à travers le système de capotage. Cette ouverture, nécessaire, permet d'accéder à l'intérieur de la cuve, notamment pour retirer un ensemble anodique usé. Toutefois, l'ouverture ainsi créée offre la possibilité aux gaz de cuve de se diffuser hors de l'enceinte de confinement. Cette ouverture peut également perturber l'équilibre thermique de la cuve.
Plus l'ouverture ainsi créée est grande, plus la quantité de gaz de cuve pouvant s'échapper est importante, et plus les pertes thermiques peuvent être élevées. Il en est de même avec la durée d'ouverture du capotage pendant une intervention : plus le système de capotage est ouvert longtemps, plus la quantité de gaz de cuve pouvant s'échapper est grande, et plus l'équilibre thermique de la cuve est perturbé.
Compte-tenu de la présence, au-dessus du caisson, d'une superstructure sur laquelle les capots des systèmes de capotage traditionnels prennent appui, les capots ayant été retirés pour créer l'ouverture nécessaire à l'intervention sont souvent placés à côté de la cuve d'électrolyse, notamment dans un espace inter-cuves séparant deux cuves adjacentes. Cela peut poser un problème d'encombrement, et ce problème d'encombrement peut ralentir l'intervention, c'est-à-dire augmenter la durée pendant laquelle le système de capotage est ouvert. Cela peut en outre poser un problème de sécurité, dans la mesure où un opérateur peut trébucher. De plus, les capots des systèmes de capotage connus sont conçus pour avoir leurs bords adjacents qui se superposent les uns aux autres. Cette superposition permet de limiter les fuites de gaz de cuve et les pertes énegrétiques à l'interface entre deux capots adjacents.
Cependant, les solutions traditionnelles de superposition des capots présentent un inconvénient : les capots sont imbriqués les uns dans les autres, et le retrait de l'un d'entre eux impose le déplacement ou le retrait d'un ou plusieurs capots adjacents. On comprend donc que, pour une intervention de maintenance nécessitant théoriquement le retrait d'un seul capot, plusieurs capots doivent être déplacés ou retirés. La surface ouverte à travers le système de capotage est alors plus grande que nécessaire. Les documents de brevet US4043892 et WO2007067061 enseignent le retrait des capots par groupes de trois.
Enfin, certaines interventions de maintenance peuvent nécessiter des surfaces ouvertes plus petites que pour d'autres interventions de maintenance. Par exemple, pour casser les croûtes générées sur le bain électrolytique en cours de réaction d'électrolyse, il suffit d'une ouverture permettant de laisser passer au bon endroit un outil adapté pour casser ces croûtes, tandis que pour extraire ou mettre en place un ensemble anodique, il faut une ouverture plus grande adaptée aux dimensions de l'ensemble anodique à extraire ou à mettre en place.
Or, les capots des systèmes de capotage traditionnels sont similaires, notamment en termes de dimensions, si bien que la seule possibilité de sélection d'une surface d'ouverture à travers le système de capotage consiste en la sélection du nombre de capots à retirer. Cela ne permet pas un ajustement fin de la surface d'ouverture, c'est-à- dire la sélection d'une surface d'ouverture minimale mais suffisante à la réalisation d'une intervention de maintenance à réaliser.
Par ailleurs, la présence de la superstructure et des conducteurs de montée du courant d'électrolyse au dessus de l'ouverture délimitée par les côtés de la cuve rendent difficile l'opération de cassage de croûte se formant entre les ensembles anodiques car l'accès sous la superstructure et les conducteurs de montée est particulièrement exigu. Il s'en suit que l'opération de cassage de croûte, traditionnellement réalisée avec un marteau piqueur monté sur un bras à inclinaison angulaire, nécessite plus de temps que s'il n'y avait pas de tels obstacles, ce qui augmente la durée d'ouverture du capotage. De plus, du fait de cette problématique d'accessibilité, le cassage de la croûte est parfois incomplet en périphérie de l'ensemble anodique et l'ensemble anodique extrait comporte des morceaux de croûte solides qui augmentent sa section de passage, son encombrement et peuvent endommager les capots adjacents encore en place. Enfin, les capots reposent en partie basse sur le haut du caisson sur lequel vient s'affaisser du produit de couverture des anodes, de sorte que les appuis des capots sont instables et leur positionnement peu précis. Ils sont en outre exposés en partie basse aux flammes et points chauds liés aux discontinuités de la couverture d'anode, ce qui entraîne leur dégradation rapide.
Aussi, la présente invention vise à pallier tout ou partie de ces inconvénients en proposant un système de capotage, une cuve d'électrolyse comprenant ce système de capotage et un procédé de changement d'un ensemble anodique, offrant la possibilité de contenir efficacement la diffusion de gaz de cuve et de préserver l'équilibre thermique, en particulier lors d'une intervention de maintenance.
A cet effet, la présente invention a pour objet un système de capotage destiné à obturer une ouverture délimitée par des côtés d'une cuve d'électrolyse, le système de capotage comprenant une pluralité de capots, caractérisé en ce que :
chaque capot comprend deux bords d'appui opposés destinés à reposer sur deux côtés opposés de la cuve d'électrolyse parmi les côtés de la cuve d'électrolyse délimitant l'ouverture, de sorte que chaque capot s'étende d'un côté à l'autre de la cuve d'électrolyse, au-dessus de l'ouverture,
le système de capotage est conçu pour présenter, de façon sensiblement parallèle aux capots, des fenêtres d'intervention longitudinales, permettant de libérer un passage prédéterminé à travers la pluralité de capots,
le système de capotage comprend en outre des couvercles d'obturation, chaque couvercle d'obturation étant mobile par rapport aux capots entre une position d'obturation, dans laquelle chaque couvercle d'obturation obture l'une des fenêtres d'intervention, et une position d'intervention, dans laquelle chaque couvercle d'obturation libère un passage à travers le système de capotage via l'une des fenêtres d'intervention, les couvercles d'obturation étant destinés à reposer au moins en partie sur les capots, et
les couvercles d'obturation sont conçus pour être déplacés de la position d'obturation à la position d'intervention, indépendamment les uns des autres, sans déplacer les capots sur lesquels les couvercles d'obturation reposent.
Ainsi, le système de capotage selon l'invention offre la possibilité d'accéder à l'intérieur de la cuve d'électrolyse en retirant uniquement l'un des couvercles d'obturation, sans déplacer ou retirer les capots.
Cela permet de ménager une ouverture de dimension contenue à travers le système de capotage, tout en laissant en place les capots. Dans le cadre d'une intervention telle qu'un changement d'ensemble anodique, cela permet de réaliser certaines opérations préalables, comme un sciage de croûtes formées autour de l'ensemble anodique usé au cours de la réaction d'électrolyse, avec une surface ouverte minimale à travers le système de capotage.
Cela limite les rejets de gaz de cuve à l'extérieur de la cuve d'électrolyse et empêche de perturber l'équilibre thermique de la cuve d'électrolyse.
Par côtés opposés de la cuve d'électrolyse on entend côtés situés de part et d'autre d'un plan médian, notamment un plan médian longitudinal, de la cuve d'électrolyse. Ainsi, chaque capot est destiné à s'étendre de part et d'autre de ce plan médian pour reposer simultanément sur ces deux côtés opposés.
Les capots et couvercles d'obturation ont une course d'assemblage verticale, ce qui présente un avantage important en vue d'automatiser la mise en place des capots, car il n'y a pas de mouvements angulaires complexes à réaliser contrairement à l'état de la technique.
Selon un mode de réalisation préféré, les couvercles d'obturation présentent des bords longitudinaux qui sont destinés à reposer chacun sur un des capots. Ainsi, l'étanchéité à la jonction entre les couvercles d'obturation et les capots est assurée sur toute la longueur des capots, respectivement des couvercles d'obturation, par superposition d'un bord du couvercle d'obturation au-dessus d'un bord du capot.
Selon un mode de réalisation préféré, les couvercles d'obturation présentent une section transversale en T délimitant deux retours longitudinaux, les capots présentent une section transversale en T inversé délimitant deux retours longitudinaux, chaque retour de l'un des couvercles d'obturation reposant sur l'un des retours d'un capot adjacent, de sorte que le système de capotage présente une alternance de capots et de couvercles d'obturation emboîtés.
Cette configuration offre à la fois une solution simple pour permettre un retrait des couvercles d'obturation sans interférence avec les capots sur lesquels ils reposent et les autres couvercles d'obturation, et pour améliorer en même temps l'étanchéité du système de capotage. Cela permet ainsi de limiter les fuites de gaz de cuves et les pertes thermiques.
De manière avantageuse, les retours des capots et des couvercles d'obturation présentent une section en L, de sorte que l'emboîtement d'un capot et d'un couvercle d'obturation forme une chicane d'étanchéité. Cette caractéristique offre aussi l'avantage d'une étanchéité améliorée, permettant de contenir les fuites de gaz de cuve et les pertes thermiques.
De manière avantageuse, le système de capotage comprend des moyens d'étanchéité interposés entre les retours de chaque couvercle d'obturation et les retours des capots adjacents sur lesquels chaque couvercle d'obturation repose.
Ainsi, l'étanchéité est améliorée.
Selon un mode de réalisation avantageux, les capots et couvercles s'étendent horizontalement et les retours longitudinaux des capots comportent des goulottes contenant un matériau pulvérulent et présentant une ouverture supérieure, les retours longitudinaux des couvercles présentant une section en L, de sorte qu'une portion d'extrémité de la section en L du couvercle soit enfoncée dans le matériau pulvérulent via l'ouverture supérieure dans la goulotte lorsque le capot et le couvercle sont emboîtés. La réalisation d'un tel joint d'étanchéité au moyen d'un matériau pulvérulent est possible car les capots et couvercles s'étendent horizontalement de sorte que le matériau pulvérulent reste réparti avec une hauteur homogène sur toute la longueur de la goulotte. Le matériau pulvérulent forme une barrière empêchant les gaz de cuve de s'échapper.
Avantageusement le matériau pulvérulent contient de l'alumine. Plus particulièrement le matériau pulvérulent peut-être formé d'alumine ou de bain d'électrolyse concassé qui comporte de l'alumine. Ces matériaux présentent l'avantage d'être disponibles dans une aluminerie et sont en outre introduits dans les cuves d'électrolyse de sorte qu'ils ne risquent pas de polluer la cuve d'électrolyse en cas de déversement accidentel dans la cuve. En outre, l'alumine est un très bon adsorbant pour le HF et le S02 dégagé par la cuve d'électrolyse de sorte qu'une éventuelle infiltration de gaz de cuve à travers le matériau pulvérulent aura un impact environnemental moindre.
Avantageusement, les capots et/ou les couvercles comportent un volet agencé pour fermer l'ouverture de la goulotte lorsque le capot et le couvercle sont emboîtés. Ce volet qui peut être fixe ou mobile, notamment pivotant a pour but de retenir le matériau pulvérulent dans la goulotte.
Selon un mode de réalisation avantageux, les moyens d'étanchéité comprennent des joints d'étanchéité élastiques destinés à compenser une différence de déformation relative entre deux capots consécutifs du système de capotage entre lesquels est destiné à s'étendre un couvercle d'obturation en position d'obturation.
Autrement dit, l'espace ou le jeu entre capots et couvercles d'obturation est côté de sorte que l'écrasement des joints d'étanchéité les séparant, compte-tenu du fléchissement des capots et des couvercles d'obturation, soit dans la gamme élastique d'écrasement des joints d'étanchéité. Ainsi, l'étanchéité est améliorée.
Selon un mode de réalisation avantageux, les capots comprennent une face pourvue d'au moins une nervure de renfort destinée à limiter la flexion des capots.
Cela permet de rigidifier les capots. Ainsi, l'écrasement des joints d'étanchéité est relativement uniforme. L'étanchéité est donc améliorée.
Selon un mode de réalisation préféré, les capots comprennent une face pourvue de moyens d'isolation thermique.
Cela permet de limiter les pertes thermiques à travers le système de capotage.
De préférence, les moyens d'isolation sont disposés sur la face inférieure des capots de sorte à limiter le gauchissement et donc la dégradation des capots.
Avantageusement, les capots comprennent un corps tubulaire sensiblement longitudinal, le corps tubulaire délimitant une cavité à l'intérieur de laquelle est agencé un matériau thermiquement isolant.
Ces caractéristiques permettent de protéger le matériau thermiquement isolant et de limiter les pertes thermiques, par effet de synergie entre le matériau thermiquement isolant, qui ralentit la propagation de chaleur à travers le système de capotage, et la rigidité améliorée des capots du fait du caractère tubulaire du corps, cette rigidité permettant un appui uniforme du capot contre la surface sur laquelle il repose et un appui uniforme des couvercles d'obturation qui reposent sur ce capot.
Selon un mode de réalisation préféré, les capots comprennent une face inférieure pourvue de moyens de déflexion destinés à dévier un écoulement de gaz de cuve.
Ainsi, les gaz de cuve peuvent être déviés en direction d'un système de captation pouvant équiper la cuve d'électrolyse, si bien que les fuites de gaz de cuve sont limitées.
Selon un mode de réalisation préféré, les couvercles d'obturation comprennent des moyens de préhension conçus pour permettre un soulèvement sensiblement vertical de chaque couvercle d'obturation sans déplacer les capots et indépendamment des autres couvercles d'obturation.
Un retrait sensiblement vertical des couvercles d'obturation limite le risque de déplacer les capots adjacents pendant le retrait et constitue la solution la plus simple pour mettre en œuvre un système d'étanchéité entre les couvercles d'obturation et les capots qui leur sont adjacents.
Selon un mode de réalisation avantageux, les couvercles d'obturation comprennent une face inférieure d'appui conçue pour permettre aux couvercles d'obturation de reposer de façon stable sur l'un des capots ou sur un autre couvercle d'obturation.
Ainsi, les couvercles d'obturation, lorsqu'ils sont retirés, peuvent être empilés sur un capot adjacent ou un autre couvercle d'obturation proche. Par conséquent, les trajectoires décrites par la machine de service d'électrolyse pendant une intervention sont minimales, si bien que la durée d'ouverture de la fenêtre d'intervention est aussi minimale. Il en résulte une diminution des fuites de gaz de cuve et des pertes thermiques susceptibles de survenir au cours d'une intervention.
Selon un mode de réalisation préféré, les capots comprennent une face inférieure d'appui conçue pour permettre aux capots de reposer de façon stable sur l'un des couvercles d'obturation.
Ainsi, les capots, lorsqu'ils sont retirés, peuvent être empilés sur un capot adjacent ou un couvercle d'obturation proche. Cela réduit les trajectoires de la machine de service d'électrolyse, donc la durée d'ouverture de la fenêtre d'intervention. Les fuites de gaz de cuve et les pertes thermiques pendant l'intervention, notamment un changement d'ensemble anodique, sont moindres.
Selon un mode de réalisation préféré, les capots et les couvercles d'obturation s'étendent dans un plan sensiblement horizontal.
Ainsi, il est plus facile de les empiler rapidement lors d'une intervention, ce qui réduit d'autant la durée de cette intervention, donc la durée d'ouverture du système de capotage.
Avantageusement, la fenêtre d'intervention présente une largeur inférieure à celle des capots que la fenêtre d'intervention sépare.
Cette faible surface d'ouverture du capotage permet de créer en combinaison avec l'aspiration traditionnelle des gaz de cuve un effet d'aspiration de l'air extérieur vers l'intérieur de la cuve, contre le mouvement des gaz de cuve. Les fuites de gaz de cuves sont ainsi limitées.
Aussi, chaque couvercle d'obturation présente une largeur inférieure à la largeur des capots.
De préférence, les capots ont une raideur à la flexion supérieure à celle des couvercles d'obturation.
Autrement dit, les capots se déforment plus difficilement que les couvercles d'obturation, et les couvercles d'obturation se déforment plus facilement que les capots sous l'effet de leur poids, si bien que les couvercles d'obturation peuvent se déformer pour compenser les déformations, moindres, des capots sur lesquels ils reposent. Cela améliore l'étanchéité.
La présente invention concerne aussi une cuve d'électrolyse comprenant une pluralité d'ensembles anodiques, des côtés délimitant une ouverture par laquelle sont destinés à être mis en place ou retirés les ensembles anodiques selon un mouvement de translation verticale respectivement descendant ou ascendant, et un système de capotage ayant les caractéristiques précitées, le système de capotage s'étendant au-dessus des ensembles anodiques afin de recouvrir ladite ouverture.
Cette cuve d'électrolyse présente un équilibre thermique stable et limite les rejets de gaz de cuves, y compris lors d'intervention comme un remplacement d'ensemble anodique.
Selon un mode de réalisation préféré, la cuve d'électrolyse comprend des moyens d'étanchéité interposés entre les bords d'appui des capots et les côtés de la cuve d'électrolyse sur lesquels les bords d'appui reposent.
Ainsi, l'étanchéité est améliorée. Les fuites de gaz de cuve sont empêchées et les pertes thermiques limitées.
De manière avantageuse, les moyens d'étanchéité, interposés entre les bords d'appui des capots et les côtés de la cuve sur lesquels reposent les bords d'appui, comprennent un joint d'étanchéité, et la cuve d'électrolyse comprend des moyens de pincement du joint d'étanchéité.
Cela permet de corriger les éventuels défauts de planéité des capots et le cas échéant des couvercles d'obturation, en vue de limiter les fuites de gaz de cuve et les pertes thermiques.
Selon un mode de réalisation préféré, chaque couvercle d'obturation s'étend au-dessus et tout le long d'un espace inter-anodes subjacent séparant deux ensembles anodiques adjacents de la cuve d'électrolyse.
Ainsi, il est possible de ménager un accès à l'aplomb des espaces inter-anodes, si bien qu'une intervention de type sciage de croûtes peut être réalisée avec une surface ouverte minimale. Cette intervention, préalable à un changement d'ensemble anodique, est donc réalisée avec un minimum de fuites de gaz de cuve et de pertes thermiques.
Par espace inter-anodes, on entend espace séparant des anodes de deux ensembles anodiques adjacents.
Selon un mode de réalisation préféré, chaque capot s'étend au-dessus et le long d'un ensemble anodique subjacent de la cuve d'électrolyse. Ainsi, il n'est nécessaire de retirer des capots que lorsque le retrait d'un ensemble anodique doit être réalisé. Le reste du temps, les capots peuvent rester en place, pour empêcher les fuites de gaz de cuve et pour limiter les pertes thermiques. Cette configuration minimise aussi fortement le risque de chute dans la cuve pour le personnel d'exploitation.
Selon un mode de réalisation préféré, la cuve d'électrolyse comprend des moyens d'indexation adaptés pour indiquer une position prédéterminée des capots telle que les capots s'étendent au droit des ensembles anodiques.
Cette caractéristique permet une mise en place rapide, répétable et précise des capots, pour obturer rapidement l'ouverture et empêche que ceux-ci ne se déplacent.
Par capots s'étendant au droit des ensembles anodiques on entend que sous chaque capot s'étend un seul ensemble anodique.
Selon un mode de réalisation préféré, la cuve d'électrolyse comprend des moyens de captation des gaz de cuve, conçus pour capter et collecter les gaz de cuve émis pendant la réaction d'électrolyse.
Ainsi, cela limite la quantité de gaz de cuve pouvant fuir à travers une ouverture faite dans le système de capotage.
Avantageusement, les moyens de captation comprennent des trous d'aspiration agencés sous les capots et les couvercles d'obturation.
Cela permet de limiter la température d'air à proximité des capots et des couvercles d'obturation, pour ne pas dégrader la tenue mécanique des matériaux dans lesquels les capots et les couvercles d'obturation sont réalisés. Cela limite des déformations des capots et couvercles d'obturation, ces déformations pouvant engendrer des fuites de gaz de cuve et des pertes thermiques.
Aussi, en coopération avec des moyens de déflexion agencés sur la face inférieure des capots destinés à dévier un écoulement des gaz, cela permet d'améliorer le rendement de captation de la cuve.
De manière avantageuse, les moyens de captation comprennent un diaphragme destiné à modifier une section de passage d'air en vue de modifier un débit de captation des gaz de cuve.
Cette caractéristique offre la possibilité d'augmenter le débit de captation lorsqu'un capot et/ou un couvercle d'obturation sont retirés, par exemple lors d'un changement d'ensemble anodique. Ainsi, la diffusion de gaz de cuve pendant une intervention est sensiblement limitée. Selon un mode de réalisation préféré, la largeur de chaque capot est inférieure à la largeur d'un ensemble anodique de la cuve d'électrolyse.
Selon un autre aspect, l'invention concerne également un procédé de changement d'un ensemble anodique usé d'une cuve d'électrolyse par un ensemble anodique neuf, le procédé comprenant :
une étape de déplacement d'un premier couvercle d'obturation parmi les couvercles d'obturation d'un système de capotage ayant les caractéristiques précitées, de la position d'obturation à la position d'intervention, sans déplacer les capots du système de capotage et les autres couvercles d'obturation, en vue de libérer un passage à travers le système de capotage via l'une des fenêtres d'intervention, et
une étape de cassage ou de sciage d'une croûte formée en surface d'un bain électrolytique, par insertion d'un outil adapté pour casser ou scier la croûte à travers le passage libéré à l'étape précédente.
Ce procédé offre la possibilité de ménager un accès à l'intérieur de la cuve d'électrolyse avec une surface d'ouverture minimale, et donc de casser ou scier la croûte formée pendant la réaction d'électrolyse avec un minimum de fuites de gaz et de pertes thermiques. Lors du changement d'ensemble anodique, la diffusion de gaz de cuve et les pertes thermiques sont donc sensiblement limitées.
Selon un mode de réalisation préféré, le procédé comprend une étape de pose du premier couvercle d'obturation sur l'un des capots adjacents au premier couvercle d'obturation.
Cela minimise les trajets de la machine de service d'électrolyse lorsqu'elle manipule le premier couvercle d'obturation. La durée de l'intervention est donc limitée, si bien que la durée pendant laquelle la fenêtre d'intervention est ouverte est aussi limitée.
Selon un mode de réalisation préféré, le procédé comprend une étape de déplacement d'un second couvercle d'obturation, de la position d'obturation à la position d'intervention, sans déplacer les capots du système de capotage et les autres couvercles d'obturation, le second couvercle d'obturation étant agencé de l'autre côté de l'un des capots à côté desquels était agencé le premier couvercle d'obturation, de manière à libérer un deuxième passage de l'autre côté de ce capot, et une étape de cassage ou de sciage d'une croûte formée en surface d'un bain électrolytique, par insertion d'un outil adapté pour casser ou scier la croûte à travers ce deuxième passage.
Cela permet, en prévision d'un changement d'ensemble anodique, de scier, casser ou piquer la croûte de part et d'autre de l'ensemble anodique usé devant être remplacé, c'est-à-dire de part et d'autre du capot initialement agencé entre le premier et le deuxième couvercles d'obturation, sans toutefois ouvrir tout l'espace au-dessus de cet ensemble anodique usé. Par conséquent, les fuites de gaz et pertes thermiques lors d'un changement d'ensemble anodique sont limitées.
Selon un mode de réalisation préféré, le procédé comprend une étape de pose du second couvercle d'obturation sur le premier couvercle d'obturation.
L'empilement des couvercles d'obturation limite les trajets de la machine de service d'électrolyse, donc la durée pendant laquelle les fenêtres d'intervention correspondantes sont ouvertes.
Selon un mode de réalisation préféré, le procédé comprend une étape de retrait d'un capot initialement adjacent au premier couvercle d'obturation.
Ainsi, ce n'est qu'au dernier moment, c'est-à-dire au moment de saisir et soulever l'ensemble anodique usé pour le remplacer, qu'est retiré l'un des capots. Pendant toutes les étapes préalables nécessaires au changement d'ensemble anodique, ce capot était en place. Ainsi, le procédé selon l'invention limite les fuites de gaz de cuve et préserve l'équilibre thermique d'une cuve d'électrolyse pendant un changement d'ensemble anodique.
Avantageusement, le procédé comprend une étape d'empilement dudit capot sur le premier couvercle d'obturation ou lé cas échéant sur le second couvercle d'obturation. Cela réduit le trajet de la machine de service d'électrolyse ayant retiré le capot, si bien que l'ouverture résultant du retrait du capot, et des premier et deuxième couvercles d'obturation pour le changement d'ensemble anodique, est réalisée pendant une durée limitée.
Le procédé peut ensuite comprendre une étape d'extraction de l'ensemble anodique usé, sous-jacent au capot préalablement retiré, puis une étape d'insertion de l'ensemble anodique neuf à l'intérieur de la cuve d'électrolyse.
Ces étapes peuvent être réalisées par translation sensiblement verticale ascendante ou descendante, respectivement de l'ensemble anodique usé et de l'ensemble anodique neuf.
Enfin, le procédé peut comprendre une étape de repositionnement du capot préalablement retiré, puis du premier et deuxième couvercle d'obturation.
Le fait de commencer par la mise en place du capot permet d'obturer une plus grande partie de la surface ouverte que celle qui serait obturée avec un couvercle d'obturation. D'autres caractéristiques et avantages de la présente invention ressortiront clairement de la description ci-après d'un mode particulier de réalisation, donné à titre d'exemple non limitatif, en référence aux dessins annexés dans lesquels :
la figure 1 est une vue schématique et en coupe d'une cuve d'électrolyse et d'un système de capotage selon un mode de réalisation de l'invention, dans un plan sensiblement longitudinal de la cuve d'électrolyse,
la figure 2 est une vue schématique et de dessus de l'intérieur de la cuve d'électrolyse de la figure 1 ,
les figures 3 et 4 sont des vues schématiques et en coupe de la cuve d'électrolyse et du système de capotage de la figure 1 , dans un plan sensiblement longitudinal de la cuve d'électrolyse, et à travers lequel une fenêtre d'accès est ménagée,
les figures 5 à 7 sont des vues schématiques et de côté d'une partie d'un système de capotage selon un mode de réalisation de l'invention,
la figure 7bis est une vue schématique et de côté d'une partie d'un système de capotage selon un mode de réalisation de l'invention.
la figure 8 est une vue schématique et de dessous d'un capot d'un système de capotage selon un mode de réalisation de l'invention,
la figure 9 est une vue schématique et en coupe d'une cuve d'électrolyse et d'un système de capotage selon un mode de réalisation de l'invention, dans un plan sensiblement longitudinal de la cuve d'électrolyse,
la figure 10 est une vue schématique et de dessus de la cuve d'électrolyse de la figure 9,
la figure 1 1 est une vue schématique et en coupe d'une cuve d'électrolyse et d'un système de capotage selon un mode de réalisation de l'invention, dans un plan sensiblement transversal de la cuve d'électrolyse,
les figures 12 à 14 sont des vues schématiques et en coupe d'une partie d'une cuve d'électrolyse et d'un système de capotage selon un mode de réalisation de l'invention, illustrant différentes étapes d'un procédé de changement d'ensemble anodique selon un mode de réalisation de l'invention.
La figure 1 montre, selon un mode de réalisation de l'invention, une cuve 100 d'électrolyse, destinée à produire de l'aluminium par électrolyse, et un système 1 de capotage, destiné à obturer une ouverture de la cuve d'électrolyse. La cuve 100 d'électrolyse peut équiper une usine d'électrolyse, comme une aluminerie. L'usine d'électrolyse peut comprendre une pluralité de cuves 100 d'électrolyse alignées et reliées électriquement les unes aux autres pour former une file ou une série de cuves d'électrolyse. Les cuves 100 d'électrolyse sont destinées à être parcourues par un courant d'électrolyse pouvant atteindre plusieurs centaines de milliers d'Ampère. Les cuves 100 d'électrolyse peuvent être agencées transversalement par rapport au sens de la file ou la série, c'est-à-dire de façon sensiblement perpendiculaire au sens de circulation global du courant d'électrolyse à l'échelle de la file ou de la série.
Comme cela apparaît sur les figures, la cuve 100 d'électrolyse peut comprendre deux côtés 101 longitudinaux opposés qui peuvent être sensiblement parallèles entre eux et deux côtés 103 transversaux opposés qui peuvent être sensiblement parallèles entre eux et perpendiculaires aux côtés 101 longitudinaux, si bien que la cuve 100 d'électrolyse peut présenter une forme sensiblement rectangulaire.
La cuve 100 d'électrolyse comprend une structure fixe. La structure fixe comprend un caisson 102 et/ou une paroi latérale 105 d'une enceinte de confinement des gaz.
Le caisson 102 peut contenir un fond 104 en matériaux réfractaires, une pluralité de blocs 106 cathodiques et des conducteurs 108 de collecte d'un courant d'électrolyse traversant les blocs 106 cathodiques.
La cuve 100 d'électrolyse comprend aussi une pluralité d'ensembles 109 anodiques qui sont mobiles en translation sensiblement verticale par rapport à la structure fixe de la cuve d'électrolyse pour pouvoir être plongés dans un bain 1 10 électrolytique au fur et à mesure de leur consommation.
Les ensembles 109 anodiques comprennent ici une pluralité de blocs 1 12 carbonés, supportés par une traverse 1 14 anodique électriquement conductrices. La traverse 1 14 anodique s'étend avantageusement selon une direction sensiblement transversale Y de la cuve d'électrolyse, dans un plan sensiblement horizontal. Les extrémités de cette traverse 1 14 sont reliées électriquement à des conducteurs d'acheminement (non représentés) permettant d'y acheminer le courant d'électrolyse depuis une cuve d'électrolyse précédente.
Les côtés de la cuve 100 d'électrolyse délimitent une ouverture 1 16 qui est destinée à l'insertion ou à l'extraction des ensembles 109 anodiques respectivement à l'intérieur ou hors de la cuve 100 d'électrolyse.
On notera que cette ouverture 1 16 est adaptée pour permettre cette insertion ou cette extraction par déplacement sensiblement vertical, respectivement descendant ou ascendant, de l'ensemble 109 anodique. La cuve 100 d'électrolyse comprend ici en outre le système 1 de capotage. Le système 1 de capotage est destiné à obturer l'ouverture 116, pour empêcher la diffusion de gaz de cuve, générés pendant la réaction d'électrolyse, hors de la cuve 100 d'électrolyse. Le système 1 de capotage permet aussi de limiter les pertes thermiques.
Comme on peut le voir sur les figures 1 , 3 à 5, 9 et 11 à 14, le système 1 de capotage s'étend au-dessus des ensembles 109 anodiques afin de recouvrir intégralement l'ouverture 1 16.
Le système 1 de capotage comprend une pluralité de capots 2.
Les capots 2 sont autoportants. Chaque capot 2 comprend deux bords 4 d'appui opposés, visibles notamment sur la figure 1 1 , destinés à reposer sur deux côtés opposés de la cuve 100 d'électrolyse, notamment sur un bord supérieur des deux côtés 101 longitudinaux de la cuve 100 d'électrolyse.
Chaque capot 2 repose ainsi intégralement sur la cuve 100 d'électrolyse, en s'étendant entre les deux côtés 101 longitudinaux, au-dessus de l'ouverture 1 16.
Le système 1 de capotage est par ailleurs conçu pour présenter, de façon sensiblement parallèle aux capots 2, des fenêtres 6 d'intervention longitudinales, comme cela est par exemple visible sur la figure 4. Chaque fenêtre 6 d'intervention permet de libérer un passage prédéterminé à travers la pluralité de capots 2.
Selon le mode de réalisation de la figure 4, les fenêtres 6 d'intervention s'étendent longitudinalement entre deux capots 2 adjacents.
Le système 1 de capotage comprend en outre des couvercles 8 d'obturation, destinés chacun à obturer une fenêtre 6 d'intervention.
Chaque couvercle 8 d'obturation est mobile par rapport aux capots 2 entre une position d'obturation, dans laquelle chaque couvercle 8 d'obturation obture l'une des fenêtres 6 d'intervention, et une position d'intervention, dans laquelle chaque couvercle 8 d'obturation libère un passage à travers le système 1 de capotage via l'une des fenêtres 6 d'intervention.
Les couvercles 8 d'obturation sont destinés à reposer au moins en partie sur les capots 2, comme cela est visible par exemple sur la figure 5.
Les couvercles 8 d'obturation présentent des bords longitudinaux qui sont destinés à reposer chacun sur un des capots 2 et présentent des bords latéraux qui peuvent reposer sur un bord supérieur des côtés 101 longitudinaux de la cuve 100 d'électrolyse, et.
Ainsi, les couvercles 8 d'obturation peuvent reposer à cheval sur deux capots 2 adjacents et s'étendre entre ces deux capots 2 adjacents.
Il est important de noter que les couvercles 8 d'obturation sont conçus pour être déplacés de la position d'obturation à la position d'intervention sans déplacer les capots 2 sur lesquels les couvercles 8 d'obturation reposent.
Les couvercles 8 d'obturation peuvent en outre être déplacés de la position d'obturation à la position d'intervention indépendamment les uns des autres, c'est-à-dire sans que le déplacement de l'un des couvercles 8 d'obturation implique celui d'un autre couvercle 8 d'obturation.
Comme on peut le voir sur les figures, les capots 2 et le cas échéant les couvercles 8 d'obturation s'étendent avantageusement d'un seul tenant d'un côté longitudinal à l'autre de la cuve 00 d'électrolyse.
Les capots 2 et le cas échéant les couvercles 8 d'obturation s'étendent de façon sensiblement parallèle à une direction transversale Y de la cuve 100 d'électrolyse.
On notera également que les capots 2 et les couvercles 8 d'obturation s'étendent dans un plan sensiblement horizontal. Les capots 2 et les couvercles 8 d'obturation s'étendent de préférence au-dessus du plancher de travail, ce qui limite le risque de chute dans la cuve du personnel d'exploitation.
On notera que les capots 2 et les couvercles 8 d'obturation sont destinés à s'étendre au- dessus du bain 110 électrolytique, dont la température peut atteindre environ 1000°C. Les capots 2 et les couvercles 8 d'obturation doivent donc être adaptés pour supporter une température de l'ordre de plusieurs centaines de degrés Celsius, et ce sans préjudice de leurs propriétés mécaniques et le cas échéant d'isolation thermique.
Comme on peut le voir sur les figures 6 et 7, les couvercles 8 d'obturation présentent une section transversale en T délimitant deux retours 10 longitudinaux. Les capots 2 présentent quant à eux une section transversale en T inversé délimitant deux retours 12 longitudinaux.
Chaque retour 10 de l'un des couvercles 8 d'obturation repose sur l'un des retours 12 d'un capot 2 adjacent.
Ainsi, le système 1 de capotage présente une alternance de T droits et T inversés formée par une alternance de capots 2 et de couvercles 8 d'obturation emboîtés.
De plus, comme cela est représenté sur la figure 7, les retours 10, 12 des capots 2 et des couvercles 8 d'obturation présentent une section en L. Ainsi, l'emboîtement d'un capot 2 et d'un couvercle 8 d'obturation forme une chicane d'étanchéité.
Le système 1 de capotage comprend avantageusement par ailleurs des moyens d'étanchéité interposés entre les retours 10 de chaque couvercle 8 d'obturation et les retours 12 des capots 2 adjacents.
Les moyens d'étanchéité comprennent par exemple des joints 14 d'étanchéité élastiques. Les joints 14 d'étanchéité élastique sont destinés à compenser une différence de déformation relative entre deux capots 2 consécutifs entre lesquels s'étend un couvercle 8 d'obturation.
Aussi, comme visible sur la figure 7bis, les retours 12 des capots comportent des goulottes présentant une ouverture supérieure et contenant un matériau pulvérulent 31. Les retours 10 des couvercles présentent une section en L et une portion d'extrémité de la section en L du couvercle est enfoncée dans le matériau pulvérulent 31 via l'ouverture supérieure dans la goulotte lorsque le capot et le couvercle sont emboîtés. La réalisation d'un tel joint d'étanchéité au moyen d'un matériau pulvérulent est possible car les capots et couvercles s'étendent horizontalement de sorte que le matériau pulvérulent reste réparti avec une hauteur homogène sur toute la longueur de la goulotte. Le matériau pulvérulent sert de moyen d'étanchéité en formant une barrière qui empêche les gaz de cuve de s'échapper.
Le matériau pulvérulent peut notamment comporter de l'alumine ou du bain d'électrolyse concassé qui comporte de l'alumine. Ces matériaux présentent l'avantage d'être disponibles dans une aluminerie et sont en outre introduits dans les cuves d'électrolyse de sorte qu'ils ne risquent pas de polluer la cuve d'électrolyse en cas de déversement accidentel dans la cuve d'électrolyse. En outre, l'alumine est un très bon adsorbant pour le HF et le S02 dégagé par la cuve d'électrolyse de sorte qu'une éventuelle infiltration de gaz de cuve à travers le matériau pulvérulent aura un impact environnemental moindre.
Sur la figure 7bis, le capot comporte en outre sur sa face supérieure des volets 32 pivotant agencés pour fermer l'ouverture de la goulotte lorsque le capot et le couvercle sont emboîtés. Ces volets ont pour but de retenir le matériau pulvérulent dans la goulotte. Des volets peuvent alternativement être disposés sur le couvercle et être fixes.
Les capots 2 présentent une face 16 inférieure, visible notamment sur la figure 8.
La face 16 inférieure peut être pourvue d'au moins une nervure 18 de renfort destinée à limiter la flexion des capots 2. Selon l'exemple de la figure 8, les capots 2 peuvent comprendre deux nervures 18 croisées. Par ailleurs, la face 16 inférieure peut être pourvue de moyens d'isolation thermique. Les moyens d'isolation thermique comprennent par exemple de la laine de roche, avantageusement maintenu et protéger par une plaque d'acier.
Selon le mode de réalisation illustré sur les figures 6 à 8, les capots 2 et les couvercles 8 d'obturation comprennent un corps 20 principal en forme de plaque sensiblement plane. Ce corps 20 est destiné à s'étendre longitudinalement selon une direction transversale Y de la cuve 100 d'électrolyse.
Le corps 20 peut être tubulaire. Ainsi, le corps 20 délimite avantageusement une cavité à l'intérieur de laquelle peut être agencé un matériau thermiquement isolant, comme de la laine de roche.
Le corps 20 peut alternativement être plein, si bien que la masse des capots 2 est plus importante. Cela permet une compression ou un pincement d'un joint 22 d'étanchéité, visible sur la figure 5 et sur la figure 1 1 , s'étendant entre des bords 4 d'appui des capots 2 et la partie de la cuve 100 d'électrolyse sur laquelle ces bords 4 d'appui reposent, en vue d'améliorer l'étanchéité.
Bien que cela ne soit pas représenté, la face 16 inférieure des capots 2 peut être pourvue de moyens de déflexion, destinés à dévier un écoulement de gaz de cuve vers des trous 120 d'un système de captation des gaz de cuve pouvant équiper la cuve 100 d'électrolyse, comme cela sera décrit plus en détails ci-après.
Les couvercles 8 d'obturation comprennent avantageusement des moyens de préhension, comme une anse 24. Les moyens de préhension sont conçus pour permettre un soulèvement sensiblement vertical de chaque couvercle 8 d'obturation par une machine de service d'électrolyse, comme un pont de manutention, et ce sans devoir déplacer des capots 2 ou d'autres couvercles 8 d'obturation.
La face 16 inférieure peut par ailleurs être conçue pour permettre aux capots 2 de reposer de façon stable sur l'un des couvercles 8 d'obturation, afin de permettre l'empilement de capots 2 sur des couvercles 8 d'obturation.
Par exemple, la surface 16 inférieure peut présenter un logement (non représenté) adapté pour recevoir les moyens de préhension des couvercles 8 d'obturation.
Cela est utile lorsque l'un des capots 2 est retiré de son emplacement, puisqu'il est possible de poser ce capot 2 sur l'un des couvercles 8 d'obturation adjacents.
Les couvercles 8 d'obturation peuvent également présenter une face 26 inférieure conçue pour permettre aux couvercles 8 d'obturation de reposer de façon stable sur l'un des capots 2, ou sur un autre couvercle 8 d'obturation. De même, la surface 26 inférieure peut présenter un logement (non représenté) adapté pour recevoir des moyens de préhension des capots 2, ces moyens de préhension étant destinés à permettre un soulèvement des capots 2 par une machine de service d'électrolyse.
Ainsi, lorsque l'un des couvercles 8 d'obturation est retiré de son emplacement, ce couvercle 8 d'obturation peut être posé sur l'un des capots 2 adjacents.
La face 26 inférieure des couvercles 8 d'obturation peut être aussi pourvue de moyens d'isolation thermique et/ou de moyens de déflexion des gaz de cuve.
On notera que les capots 2 ont avantageusement une raideur à la flexion supérieure à celle des couvercles 8 d'obturation. Autrement dit, les capots 2 sont plus rigides que les couvercles 8 d'obturation.
Comme on peut le voir sur la figure 4, la fenêtre 6 d'intervention présente une largeur inférieure à celle des capots 2 qu'elle sépare.
Les couvercles 8 d'obturation peuvent aussi présenter une largeur inférieure à la largeur des capots 2.
Ainsi, l'ouverture ménagée par le retrait d'un couvercle 8 d'obturation est de petites dimensions, la fonction des couvercles 8 d'obturation étant de pouvoir ménager un accès à l'intérieur de la cuve 100 d'électrolyse avec une surface ouverte minimale.
L'invention concerne également la cuve 100 d'électrolyse comprenant le système 1 de capotage.
Cette cuve 100 d'électrolyse comprend avantageusement des moyens d'étanchéité interposés entre les bords 4 d'appui des capots 2 et les côtés de la cuve 101 d'électrolyse sur lesquels les bords 4 d'appui reposent.
Ces moyens d'étanchéité comprennent par exemple le joint 22 d'étanchéité, qui s'étend le long des côtés 101 longitudinaux, c'est-à-dire selon une direction longitudinale X de la cuve d'électrolyse.
De plus, la cuve 100 d'électrolyse comprend avantageusement des moyens de pincement de ce joint 22 d'étanchéité. Les moyens de pincement peuvent comprendre une vis pressant les bords 4 d'appui des capots 2 contre le bord supérieur des côtés 101 longitudinaux, où se situe le joint 22 d'étanchéité. Les moyens de pincement peuvent comprendre un leste équipant les capots 2 et/ou les couvercles 8 d'obturation, le poids des capots 2 et/ou des couvercles 8 d'obturation comprimant le joint 22 d'étanchéité. Comme on peut le voir par exemple sur la figure 5, chaque couvercle 8 d'obturation s'étend avantageusement au-dessus et tout le long d'un espace 11 1 inter-anodes subjacent. Cet espace inter-anodes sépare deux ensembles 109 anodiques adjacents de la cuve 100 d'électrolyse.
Chaque capot 2 s'étend quant à lui au-dessus et tout le long d'un ensemble 109 anodique subjacent de la cuve 100 d'électrolyse.
La cuve 100 d'électrolyse peut comprendre des moyens d'indexation adaptés pour indiquer une position prédéterminée des capots 2, cette position prédéterminée étant telle que les capots 2 s'étendent au droit des ensembles 109 anodiques, c'est-à-dire au- dessus des ensembles 109 et parallèlement à ces ensembles 109 anodiques. Les moyens d'indexation comprennent par exemple des ergots, pions ou créneaux.
Selon le mode de réalisation des figures 1 à 4 et 9 à 1 1 la cuve 100 d'électrolyse comprend des moyens de captation des gaz de cuve. Ces moyens de captation des gaz de cuve sont conçus pour capter et collecter les gaz de cuve émis pendant la réaction d'électrolyse.
Les moyens de captation comprennent ici des trous 120 d'aspiration, représentés sur les figures 10 et 11 , agencés sous les capots 2 et les couvercles 8 d'obturation.
Les trous 120 d'aspiration permettent une communication d'air entre l'intérieur de la cuve 100 d'électrolyse et une gaine 122 de captation qui est destinée à conduire les gaz de cuve aspirés vers un collecteur où ces gaz de cuve seront traités. Comme on peut le voir sur les figures 2 et 10, la gaine 122 s'étend le long des côtés 101 longitudinaux de la cuve 100 d'électrolyse. La gaine 122 peut aussi longer les côtés 103 transversaux.
Les moyens de captation peuvent aussi comprendre un diaphragme (non représenté), agencé par exemple au niveau de la connexion entre la gaine de captation et le collecteur. Le diaphragme est destiné à modifier une section de passage d'air en vue de modifier un débit de captation des gaz de cuve.
Comme cela est visible notamment sur la figure 5, la largeur I de chaque capot 2 est inférieure à la largeur Γ de l'ensemble 109 anodique sous-jacent.
A titre d'exemple, la fenêtre 6 d'intervention peut présenter une largeur I" de l'ordre de 350 - 480 mm, notamment 360 mm, et chaque capot comprend une largeur I inférieure à une largeur comprise entre 700 mm et 2000mm.
L'invention concerne également un procédé de changement d'un ensemble 130 anodique usé d'une cuve d'électrolyse, notamment de la cuve 100 d'électrolyse décrite ci-dessus, par un ensemble anodique neuf. Le procédé comprend une étape de déplacement d'un premier couvercle 8a d'obturation parmi les couvercles 8 d'obturation d'un système 1 de capotage tel que décrit précédemment, de la position d'obturation à la position d'intervention, comme cela est représenté sur la figure 12.
Cette étape est réalisée sans déplacer les capots 2 et les autres couvercles 8 d'obturation. Ainsi, un passage est libéré à travers le système 1 de capotage via l'une des fenêtres 6 d'intervention.
Le procédé comprend avantageusement une étape de pose du premier couvercle 8a d'obturation sur l'un des capots 2 adjacents à ce premier couvercle 8a d'obturation, comme cela est représenté sur la figure 13.
Le procédé comprend aussi une étape de cassage ou de sciage d'une croûte formée en surface du bain 110 électrolytique, par insertion d'un outil adapté pour casser ou scier la croûte à travers le passage libéré précédemment.
Selon le mode de réalisation des figures 12 à 14 le procédé comprend une étape de déplacement d'un second couvercle 8b d'obturation, de la position d'obturation à la position d'intervention, et ce sans déplacer les capots 2 et les autres couvercles 8 d'obturation.
Toujours selon l'exemple de réalisation des figures 12 à 14, le second couvercle 8b d'obturation est initialement agencé de l'autre côté de l'un des capots 2, notamment le capot 2 où n'est pas posé le cas échéant le premier couvercle 8a d'obturation, à côté desquels était agencé le premier couvercle 8a d'obturation, si bien qu'un deuxième passage est libéré de l'autre côté de ce capot 2.
De plus, le procédé comprend une étape de cassage ou de sciage de la croûte formée en surface du bain 110 électrolytique, par insertion d'un outil adapté pour casser ou scier la croûte à travers ce deuxième passage.
Toujours selon l'exemple de réalisation des figures 12 à 14, le procédé peut comprendre une étape de pose du second couvercle 8b d'obturation sur le premier couvercle 8a d'obturation, comme cela est plus particulièrement visible sur la figure 13.
Comme cela est visibles sur la figure 14, le procédé comprend en outre une étape de retrait de l'un des capots 2 agencé initialement à côté du premier 8a couvercle d'obturation, notamment le capot 2 où n'est pas posé le cas échéant le premier couvercle 8a d'obturation.
Le procédé peut comprendre une étape additionnelle d'empilement de ce capot sur le second couvercle 8b d'obturation. On notera que le premier et le cas échéant le deuxième couvercle 8a, 8b d'obturation et le capot 2 sont empilés au-dessus d'un ensemble 109 anodique inchangé.
Le procédé peut ensuite comprendre une étape d'extraction de l'ensemble 130 anodique usé, sous-jacent au capot 2 préalablement retiré, puis une étape d'insertion de l'ensemble anodique neuf à l'intérieur de la cuve d'électrolyse.
Ces étapes peuvent être réalisées par translation sensiblement verticale ascendante ou descendante, respectivement de l'ensemble 130 anodique usé et de l'ensemble anodique neuf.
Enfin, le procédé peut comprendre une étape de repositionnement du capot 2 préalablement retiré, puis du premier et du deuxième couvercle 8a, 8b d'obturation.
On notera que le déplacement du premier couvercle 8a d'obturation et du second couvercle 8b d'obturation, ainsi que du capot 2, est réalisé au moyen d'une machine de service d'électrolyse, comme un pont de manutention, apte à accoster ces couvercles 8 d'obturation et le capot par leurs moyens de préhension.
Bien entendu, l'invention n'est nullement limitée au mode de réalisation décrit ci-dessus, ce mode de réalisation n'ayant été donné qu'à titre d'exemple. Des modifications sont possibles, notamment du point de vue de la constitution des divers éléments ou par la substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.

Claims

REVENDICATIONS
1. Système (1 ) de capotage destiné à obturer une ouverture (1 16) délimitée par des côtés d'une cuve d'électrolyse, le système (1) de capotage comprenant une pluralité de capots (2), caractérisé en ce que
chaque capot (2) comprend deux bords (4) d'appui opposés destinés à reposer sur deux côtés opposés de la cuve d'électrolyse parmi les côtés de la cuve d'électrolyse délimitant l'ouverture (116), de sorte que chaque capot (2) s'étende d'un côté à l'autre de la cuve d'électrolyse, au-dessus de l'ouverture (1 6), en ce que
le système (1) de capotage est conçu pour présenter, de façon sensiblement parallèle aux capots (2), des fenêtres (6) d'intervention longitudinales, permettant de libérer un passage prédéterminé à travers la pluralité de capots (2), en ce que
le système (1) de capotage comprend en outre des couvercles (8) d'obturation, chaque couvercle (8) d'obturation étant mobile par rapport aux capots (2) entre une position d'obturation, dans laquelle chaque couvercle (8) d'obturation obture l'une des fenêtres (6) d'intervention, et une position d'intervention, dans laquelle chaque couvercle (8) d'obturation libère un passage à travers le système (1) de capotage via l'une des fenêtres (6) d'intervention, les couvercles (8) d'obturation étant destinés à reposer au moins en partie sur les capots (2), et en ce que
les couvercles (8) d'obturation sont conçus pour être déplacés de la position d'obturation à la position d'intervention, indépendamment les uns des autres, sans déplacer les capots (2) sur lesquels les couvercles (8) d'obturation reposent.
2. Système (1) selon la revendication 1 , dans lequel les couvercles (8) d'obturation présentent des bords longitudinaux qui sont destinés à reposer chacun sur un des capots (2).
3. Système (1) selon l'une quelconque des revendications 1 et 2, dans lequel les couvercles (8) d'obturation présentent une section transversale en T délimitant deux retours (10) longitudinaux, les capots (2) présentent une section transversale en T inversé délimitant deux retours (12) longitudinaux, chaque retour (10) de l'un des couvercles (8) d'obturation reposant sur l'un des retours (12) d'un capot (2) adjacent, de sorte que le système (1) de capotage présente une alternance de capots (2) et de couvercles (8) d'obturation emboîtés.
4. Système (1 ) selon la revendication 3, dans lequel les retours (10, 12) des capots (2) et des couvercles (8) d'obturation présentent une section en L, de sorte que l'emboîtement d'un capot (2) et d'un couvercle (8) d'obturation forme une chicane d'étanchéité.
5. Système (1 ) selon la revendication 3 ou 4, dans lequel le système (1) de capotage comprend des moyens d'étanchéité interposés entre les retours (10) de chaque couvercle (8) d'obturation et les retours (12) des capots (2) adjacents sur lesquels chaque couvercle (8) d'obturation repose.
6. Système (1 ) selon l'une quelconque des revendications 3 à 5, dans lequel les capots (2) et couvercles (8) s'étendent horizontalement et dans lequel les retours (12) longitudinaux des capots (2) comportent des goulottes contenant un matériau pulvérulent (31) et présentant une ouverture supérieure, les retours (10) longitudinaux des couvercles (8) présentant une section en L, de sorte qu'une portion d'extrémité de la section en L du couvercle (8) soit enfoncée dans le matériau pulvérulent via l'ouverture supérieure dans la goulotte lorsque le capot (2) et le couvercle (8) sont emboîtés.
7. Système (1) selon la revendication 6, dans lequel le matériau pulvérulent (31) contient de l'alumine.
8. Système (1) selon l'une des revendications 6 et 7, dans lequel les capots et/ou les couvercles comportent un volet (32) agencé pour fermer l'ouverture de la goulotte lorsque le capot (2) et le couvercle (8) sont emboîtés.
9. Système (1) selon la revendication 5, dans lequel les moyens d'étanchéité comprennent des joints (14) d'étanchéité élastiques destinés à compenser une différence de déformation relative entre deux capots (2) consécutifs du système (1 ) de capotage entre lesquels est destiné à s'étendre un couvercle (8) d'obturation en position d'obturation.
10. Système (1 ) selon l'une des revendications 1 à 9, dans lequel les capots (2) comprennent une face (16) pourvue d'au moins une nervure (18) de renfort destinée à limiter la flexion des capots (2).
11. Système (1 ) selon l'une des revendications 1 à 10, dans lequel les capots (2) comprennent une face (16) pourvue de moyens d'isolation thermique.
12. Système (1) selon l'une des revendications 1 à 11 , dans lequel les capots (2) comprennent un corps (20) tubulaire sensiblement longitudinal, le corps (20) tubulaire délimitant une cavité à l'intérieur de laquelle est agencé un matériau thermiquement isolant.
13. Système (1) selon l'une des revendications 1 à 12, dans lequel les capots (2) comprennent une face (16) inférieure pourvue de moyens de déflexion destinés à dévier
5 un écoulement de gaz de cuve.
14. Système (1) selon l'une des revendications 1 à 13, dans lequel les couvercles (8) d'obturation comprennent des moyens de préhension conçus pour permettre un soulèvement sensiblement vertical de chaque couvercle (8) d'obturation sans déplacer les capots et indépendamment des autres couvercles d'obturation. m
15. Système (1) selon l'une des revendications 1 à 14, dans lequel les couvercles (8) d'obturation comprennent une face (26) inférieure d'appui conçue pour permettre aux couvercles (8) d'obturation de reposer de façon stable sur l'un des capots (2) ou sur un autre couvercle (8) d'obturation.
16. Système (1 ) selon l'une des revendications 1 à 15, dans lequel les capots (2) 15 comprennent une face (16) inférieure d'appui conçue pour permettre aux capots (2) de reposer de façon stable sur l'un des couvercles (8) d'obturation.
17. Système (1) selon l'une des revendications 1 à 16, dans lequel les capots (2) et les couvercles (8) d'obturation s'étendent dans un plan sensiblement horizontal.
18. Système (1) selon l'une des revendications 1 à 17, dans lequel la fenêtre (6) 0 d'inte vention présente une largeur inférieure à celle des capots (2) que la fenêtre (6) d'intervention sépare.
19. Système (1) selon l'une des revendications 1 à 18, dans lequel chaque couvercle (8) d'obturation présente une largeur inférieure à la largeur des capots (2).
20. Système (1) selon l'une des revendications 1 à 19, dans lequel les capots (2) ont une 5 raideur à la flexion supérieure à celle des couvercles (8) d'obturation.
21. Cuve (100) d'électrolyse comprenant une pluralité d'ensembles (109) anodiques, des côtés (101 , 103) délimitant une ouverture (116) par laquelle sont destinés à être mis en place ou retirés les ensembles (109) anodiques selon un mouvement de translation verticale respectivement descendant ou ascendant, et un système (1) de capotage selon 0 l'une des revendications 1 à 20, le système (1) de capotage s'étendant au-dessus des ensembles (109) anodiques afin de recouvrir ladite ouverture (1 16).
22. Cuve (100) d'électrolyse selon la revendication 21 , dans laquelle la cuve (100) d'électrolyse comprend des moyens d'étanchéité (22) interposés entre les bords (4) d'appui des capots (2) et les côtés de la cuve (100) d'électrolyse sur lesquels les bords (4) d'appui reposent.
5 23. Cuve (100) d'électrolyse selon la revendication 22, dans laquelle les moyens d'étanchéité, interposés entre les bords (4) d'appui des capots (2) et les côtés de la cuve (100) sur lesquels reposent les bords (4) d'appui, comprennent un joint (22) d'étanchéité, et la cuve (100) d'électrolyse comprend des moyens de pincement du joint (22) d'étanchéité. m
24. Cuve (100) d'électrolyse selon l'une des revendications 21 à 23, dans laquelle chaque couvercle (8) d'obturation s'étend au-dessus et tout le long d'un espace (1 1 1) inter-anodes subjacent séparant deux ensembles (109) anodiques adjacents de la cuve (100) d'électrolyse.
25. Cuve (100) d'électrolyse selon l'une des revendications 21 à 24, dans laquelle 15 chaque capot (2) s'étend au-dessus et le long d'un ensemble (109) anodique subjacent de la cuve (100) d'électrolyse.
26. Cuve (100) d'électrolyse selon l'une des revendications 21 à 25, dans laquelle la cuve (100) d'électrolyse comprend des moyens d'indexation adaptés pour indiquer une position prédéterminée des capots (2) telle que les capots (2) s'étendent au droit des ensembles 0 ( 09) anodiques.
27. Cuve (100) d'électrolyse selon l'une des revendications 21 à 26, dans laquelle la largeur (I) de chaque capot (2) est inférieure à la largeur ( ) d'un ensemble (109) anodique de la cuve (100) d'électrolyse.
28. Procédé de changement d'un ensemble (130) anodique usé d'une cuve d'électrolyse 5 par un ensemble anodique neuf, le procédé comprenant :
une étape de déplacement d'un premier couvercle (8a) d'obturation parmi les couvercles (8) d'obturation d'un système (1) de capotage selon l'une des revendications 1 à 20, de la position d'obturation à la position d'intervention, sans déplacer les capots (2) du système (1 ) de capotage et les autres couvercles (8) 0 d'obturation, en vue de libérer un passage à travers le système (1) de capotage via l'une des fenêtres (6) d'intervention, et une étape de cassage ou de sciage d'une croûte formée en surface d'un bain (110) électrolytique, par insertion d'un outil adapté pour casser ou scier la croûte à travers le passage libéré à l'étape précédente.
29. Procédé selon la revendication 28, le procédé comprend une étape de pose du premier couvercle (8a) d'obturation sur l'un des capots (2) adjacents au premier couvercle
(8a) d'obturation.
30. Procédé selon la revendication 28 ou 29, dans lequel le procédé comprend une étape de déplacement d'un second couvercle (8b) d'obturation, de la position d'obturation à la position d'intervention, sans déplacer les capots (2) du système (1 ) de capotage et les autres couvercles (8) d'obturation, le second couvercle (8b) d'obturation étant agencé de l'autre côté de l'un des capots (2) à côté desquels était agencé le premier couvercle (8a) d'obturation, de manière à libérer un deuxième passage de l'autre côté de ce capot (2), et une étape de cassage ou de sciage d'une croûte formée en surface d'un bain (1 0) électrolytique, par insertion d'un outil adapté pour casser ou scier la croûte à travers ce deuxième passage.
31. Procédé selon la revendication 30, dans lequel le procédé comprend une étape de pose du second couvercle (8b) d'obturation sur le premier couvercle (8a) d'obturation.
32. Procédé selon l'une des revendications 28 à 31 , dans lequel le procédé comprend une étape de retrait d'un capot (2) initialement adjacent au premier couvercle (8a) d'obturation.
33. Procédé selon la revendication 32, dans lequel le procédé comprend une étape d'empilement dudit capot (2) sur le premier couvercle (8a) d'obturation ou le cas échéant sur le second couvercle (8b) d'obturation.
EP15740112.6A 2014-01-27 2015-01-23 Système de capotage pour cuve d'électrolyse Active EP3099841B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1400177A FR3016890B1 (fr) 2014-01-27 2014-01-27 Systeme de capotage pour cuve d'electrolyse
PCT/IB2015/000070 WO2015110903A1 (fr) 2014-01-27 2015-01-23 Système de capotage pour cuve d'électrolyse

Publications (3)

Publication Number Publication Date
EP3099841A1 true EP3099841A1 (fr) 2016-12-07
EP3099841A4 EP3099841A4 (fr) 2017-11-08
EP3099841B1 EP3099841B1 (fr) 2019-07-24

Family

ID=50489286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15740112.6A Active EP3099841B1 (fr) 2014-01-27 2015-01-23 Système de capotage pour cuve d'électrolyse

Country Status (9)

Country Link
EP (1) EP3099841B1 (fr)
CN (1) CN105934537B (fr)
AU (1) AU2015208857B2 (fr)
BR (1) BR112016015587B1 (fr)
CA (1) CA2935478C (fr)
DK (1) DK179126B1 (fr)
FR (1) FR3016890B1 (fr)
RU (1) RU2682498C2 (fr)
WO (1) WO2015110903A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107099821B (zh) * 2017-06-23 2023-07-25 重庆科技学院 一种预焙阳极铝电解槽上部全密封装置
EP4174216A1 (fr) * 2021-10-27 2023-05-03 Dubai Aluminium PJSC Dispositif de protection pour les anodes d'une cellule électrolytique, comprenant des panneaux mobiles et son procédé de mise en uvre
CN114318366B (zh) * 2021-12-02 2024-01-30 珠海格力电器股份有限公司 电解发生装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822328A (en) * 1953-07-20 1958-02-04 Henry J Kaiser Company Bifurcated self-baking anode and gas collection means
US3935090A (en) * 1974-03-15 1976-01-27 Dmitry Pavlovich Petrusenko Covering of an aluminum-producing electrolysis cell
US4043892A (en) * 1975-12-15 1977-08-23 Reynolds Metals Company Aluminum reduction cell having a lateral enclosure system
DE2841459A1 (de) * 1978-08-24 1980-03-06 Alusuisse Abdeckung einer schmelzflusselektrolysezelle
NO168542C (no) * 1989-05-24 1992-03-04 Elkem Aluminium Anordning for gassoppsamling i ovner for smelteelektrolytisk fremstilling av aluminium.
NO172250C (no) * 1990-05-07 1993-06-23 Elkem Aluminium Anordning for lukking av anodetoppen paa en soederberganodei en elektrolysecelle for fremstilling av aluminium
DE4118304A1 (de) * 1991-06-04 1992-12-24 Vaw Ver Aluminium Werke Ag Elektrolysezelle zur aluminiumgewinnung
CN2114667U (zh) * 1992-02-15 1992-09-02 贾石明 安全密封铝电解槽罩门
NO179415C (no) * 1994-02-21 1996-10-02 Elkem Aluminium Fremgangsmåte og anordning for lukking og kjöling av toppen av anodemantelen på en Söderberganode i en elektrolysecelle for fremstilling av aluminium
NO310730B1 (no) * 1999-11-17 2001-08-20 Norsk Hydro As Fremgangsmåte og anordning for drift av elektrolysecelle
US6723221B2 (en) * 2000-07-19 2004-04-20 Alcoa Inc. Insulation assemblies for metal production cells
RU2294407C1 (ru) * 2005-06-08 2007-02-27 Открытое акционерное общество "Всероссийский алюминиево-магниевый институт" Укрытие алюминиевого электролизера с обожженными анодами
NO328467B1 (no) * 2005-12-09 2010-02-22 Norsk Hydro As Fremgangsmate og anordning for innkapsling av en elektrolysecelle
RU2385974C2 (ru) * 2007-10-19 2010-04-10 РУСАЛ АйПи ХОЛДИНГ ЛИМИТЕД Укрытие алюминиевого электролизера с обожженными анодами
FR2953223B1 (fr) * 2009-12-02 2012-01-27 Alcan Int Ltd Procede de changement d'une anode usee et support et systeme pour le stockage temporaire d'une telle anode usee

Also Published As

Publication number Publication date
CN105934537A (zh) 2016-09-07
BR112016015587A2 (fr) 2017-08-08
FR3016890A1 (fr) 2015-07-31
WO2015110903A1 (fr) 2015-07-30
AU2015208857B2 (en) 2018-08-16
CA2935478C (fr) 2021-11-23
CN105934537B (zh) 2018-01-05
EP3099841A4 (fr) 2017-11-08
DK179126B1 (en) 2017-11-20
EP3099841B1 (fr) 2019-07-24
RU2016134372A (ru) 2018-03-02
FR3016890B1 (fr) 2016-01-15
BR112016015587B1 (pt) 2022-01-25
CA2935478A1 (fr) 2015-07-30
RU2682498C2 (ru) 2019-03-19
RU2016134372A3 (fr) 2018-10-04
AU2015208857A1 (en) 2016-07-28
DK201670545A1 (en) 2016-09-05

Similar Documents

Publication Publication Date Title
EP2459777B1 (fr) Anode rainuree de cuve d'electrolyse
EP3099841B1 (fr) Système de capotage pour cuve d'électrolyse
EP3099844B1 (fr) Cuve d'electrolyse comportant un ensemble anodique contenu dans une enceinte de confinement
WO2009066025A2 (fr) Anode rainuree de cuve d'εlectrolyse
WO2016103020A1 (fr) Systeme de confinement pour un ensemble anodique
FR3012473A1 (fr) Dispositif d'etancheite pour capot de cellule d'electrolyse
EP3099843B1 (fr) Dispositif de stockage d'une charge au-dessus d'une cuve d'électrolyse
EP3099842B1 (fr) Caisson de cuve d'électrolyse
FR3016892A1 (fr) Dispositif de prechauffage d'un ensemble anodique.
FR3016893A1 (fr) Cuve d'electrolyse comprenant une paroi de cloisonnement
FR3032457A1 (fr) Module de service pour l'exploitation d'une installation de production d'aluminium
WO2015110907A1 (fr) Dispositif de perçage d'une croûte de bain cryolithaire apte à être positionné en périphérie d'une cuve d'électrolyse
FR3032456B1 (fr) Machine de service pour l'exploitation d'une installation de production d'aluminium
FR3032454A1 (fr) Systeme d'etancheite pour une cuve d'electrolyse
FR3016901A1 (fr) Cuve d'electrolyse pour la production d'aluminium comprenant un dispositif de collecte de gaz.
BE458281A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20171010

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/22 20060101AFI20171004BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015034311

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25C0003080000

Ipc: C25C0003220000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/22 20060101AFI20190301BHEP

INTG Intention to grant announced

Effective date: 20190325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015034311

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1158306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190724

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190724

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1158306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191025

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015034311

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015034311

Country of ref document: DE

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200123

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20240108

Year of fee payment: 10