EP3099438B1 - Moule chemisé pour coulée centrifuge - Google Patents

Moule chemisé pour coulée centrifuge Download PDF

Info

Publication number
EP3099438B1
EP3099438B1 EP15708562.2A EP15708562A EP3099438B1 EP 3099438 B1 EP3099438 B1 EP 3099438B1 EP 15708562 A EP15708562 A EP 15708562A EP 3099438 B1 EP3099438 B1 EP 3099438B1
Authority
EP
European Patent Office
Prior art keywords
exoskeleton
liner
mold
mold according
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15708562.2A
Other languages
German (de)
English (en)
Other versions
EP3099438A1 (fr
Inventor
Sébastien Digard Brou de Cuissart
Valéry PIATON
Marc SOISSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3099438A1 publication Critical patent/EP3099438A1/fr
Application granted granted Critical
Publication of EP3099438B1 publication Critical patent/EP3099438B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/101Moulds
    • B22D13/102Linings for moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/101Moulds

Definitions

  • the present invention relates to a mold for manufacturing by centrifugal casting of metal parts, in particular turbomachine blades. More specifically, the turbine wheel vanes of a turbojet or an airplane turbo-prop.
  • turbomachine blades by machining a blank obtained by casting by casting of a metal alloy.
  • the blank is typically a rod of generally elongated solid shape and is machined in the mass to achieve the final geometry of the blades.
  • a (first) problem to be solved concerns the control of the cooling rate to promote the production of a controlled microstructure, such as a level of homogeneous aluminum in the part, especially if the alloy is based on TiAl.
  • the present invention overcomes at least some of the aforementioned drawbacks simply, efficiently and economically.
  • the shirts can be changed at a lower cost, while the rest of the mold structure, particularly the exoskeleton (s), can be preserved.
  • the exoskeleton (s) and the shirts be designed so that the mold is permanent, the shirts thus having to hold several castings in succession (for example approximately 25).
  • the mold jackets be made of steel, metal alloy and / or ceramic, and are therefore suitable for spinning centrifugally molten TiAl alloy .
  • At least one thermally insulating structure extends peripherally between each liner and the surrounding exoskeleton.
  • each exoskeleton may have a very simple shape, not or little worked for this desired control of thermal inertia, and all the more so if said thermally insulating structure is alveolar.
  • thermal inertia if said thermally insulating structure is alveolar.
  • such a solution by its structure in boxes, typically will promote the resistance to mechanical forces, and in particular the retention of shirts during centrifugation.
  • the structure in question defines at least part of said centering means which therefore position the shirt in relation to the exoskeleton.
  • the modular nature of the molds will be favored, so that the jacket, the honeycomb and / or thermally insulating structure surrounding it and the exoskeleton surrounding said structure are three separable elements between them, the jacket and the thermally insulating structure being engaged in the exoskeleton, concentrically.
  • individually the jackets having an inner surface which delimits the / a central casting duct of the alloy, a radially outer end portion of this conduit is supported.
  • Figure 1 we see a rod 11 made of metal foundry and in which are intended to be machined at least one blade, here two blades, 12 turbine of a turbomachine.
  • the bar 11 may have a cylindrical shape and is full. It is obtained by casting a metal alloy in a mold.
  • the figure 2 represents a conventional device for producing bars or blanks 11, by successive operations of casting, casting and molding.
  • the device 10 comprises a closed and sealed enclosure 120 in which a partial vacuum is applied.
  • An ingot 16 of metal alloy in this case containing aluminum, and more precisely in the TiAl-based example, is first melted in a crucible 14. In fusion, it is poured into a metal mold 13 permanent.
  • the mold 13 is used to cast the alloy by centrifugation, in order to obtain bars 11. For this, it is rotated about a vertical axis A.
  • the mold 13 comprises a plurality of housings 17, for example cylindrical of circular section, which extend radially (axes B1, B2; figures 2,3 ) around the axis A, preferably via a motor 18. These cavities are preferably regularly spaced angularly about the axis A which is vertical here.
  • the centrifugal forces generated by the rotation of the mold force the molten alloy into these dwellings and fill them.
  • the casting alloy brought to the center of the mold, is distributed to the cavities.
  • the mold 13 is disassembled and the molded bars 11 are extracted.
  • the walls of the mold surrounding the recess 17 of the metal have significant thicknesses to withstand centrifugal forces, typically more than 10 g.
  • the invention makes it possible to provide a solution to the cited problem of segregations and, if necessary, to meet the requirements of resistance to centrifugal forces and rapid and frequent change of at least part of the mold.
  • FIGS. 4 to 15 represent embodiments of a mold 130 according to the invention, it being specified that the figures 5 and following schematize variants of shirts and exoskeletons likely to replace those shown figure 4 around the central block 131.
  • the figures 5 and following schematize variants of shirts and exoskeletons likely to replace those shown figure 4 around the central block 131.
  • they have not been illustrated or systematically taken up in all the variants described below, so as not to overload the figures or to render tedious the following. Nevertheless, the particularities of these embodiments can be combined and applied from one mode to another.
  • the mold 130 differs from the mold 13 in the realization of some of its structural means, in particular its radial receiving housing of the alloy.
  • the bent inner ducts 132 from which the alloy is caused to be distributed radially around the central vertical axis A, are regularly spaced shirts 135 (or for example 135a, 135b figure 4 ) which together define the aforementioned dwellings.
  • the ducts 132 open respectively into radial ducts 133 which receive the alloy through an opening 133a and each extend inside one of the jackets, in a radial direction B.
  • the opening 133a of each jacket is thus located in the radially inner end portion 134a of the duct concerned.
  • the shirts which are thus hollow, are arranged in at least one exoskeleton 137, and preferably in as many exoskeletons as there are shirts, each exoskeleton then containing a jacket 135 defining one of said housings.
  • the exoskeleton (s) retain the jackets with respect to the centrifugal forces generated by the rotation of the mold. Preferably, they will promote (or at least do not hinder) a limitation of the thermal inertia.
  • the central axis A of rotation of the mold is vertical and both the shirts 135 and the exoskeletons 137 each extend along a horizontal longitudinal axis (axis B).
  • each duct 133 has a solid bottom 135c.
  • each exoskeleton 137 has, at its radially inner end, an opening 137a through which, for example, a liner 135 can pass and, at its radially outer end, a bottom 137b which can participate in the radial retention of the liner. .
  • Removable fasteners such as 141a, 141b, are provided between each jacket (and / or the surrounding exoskeleton, references 142a, 142b) and the central block 131.
  • the removable fasteners established between shirts and exoskeleton (s) and / or between the central block 131 and shirts and / or exoskeleton (s) may form thermal break zones.
  • the exoskeleton (s) is / are made of mild steel, steels or alloys that are more or less refractory and the sheaths are made of mild steel, steels or alloys that are more or less refractory and / or ceramic.
  • peripheral wall is referenced 135d and there is seen in the center, the molded bar (blank) 110 from the casting.
  • the figure 8 illustrates a solution where the schematized exoskeleton 137a is provided with a movable door 143a which, in the open position, releases an opening 145 for passing through it (here laterally with respect to the radial axis B) the shirt considered here 135a.
  • Hinges such as that identified 147a, may facilitate the operation of each mobile door and thus for example the extraction from its exoskeleton of a used sleeve and the introduction of another, in better condition, replacing.
  • a void space 155 exists peripherally (around the axis B) between each jacket, such as 135a, and the exoskeleton, such as 137a, which surrounds it.
  • Centering means 157 position, in a fixed manner during the centrifugation, the sleeve considered with respect to the exoskeleton, for casting (see FIG. figure 5 ).
  • FIGS 9,10 illustrate yet another solution where the shirts are individually formed of several shells, such as 150a, 150b for the shirt 135a schematically.
  • the respective inner surfaces of the shells define at least the major part of the cast bar 110.
  • these shells open and close along a joint surface of the shells, such as the joint plane 152.
  • one of these shells can constitute a movable or removable door vis-à-vis the other, to unmold the piece.
  • a separable attachment 153 such as a latch, is established between the shells for, once the shells are separated, to be able to pull the bar 110 from the inside of the liner, here 135a, considered, through the opening 154 released.
  • a honeycomb structure 159 which extends peripherally between each liner, such as 135a, and the surrounding exoskeleton, such as 137a, plays this role and therefore defines at least a part of said centering means 157 above.
  • the honeycomb structure 159 may be annular. It can occupy a space between the bottom 135c of the shirts and that 137b of the exoskeleton considered ( Figure12 ).
  • the figure 13 shows that the considered liner and the honeycomb structure, such as 159, are in contact by discrete zones, such as 159a, 159b,
  • each jacket such as 135a
  • said structure 159 which surrounds it
  • the exoskeleton such as 137a
  • this structure in three distinct elements, dissociable between them, the jacket and the structure being engaged in the exoskeleton, concentrically, thus following a radial B to the axis A.
  • the transverse surface 165 will preferably be an internal shoulder of the exoskeleton.
  • the radially outer end 134b can be opened, the exoskeleton then resembling a structure traversed from one side to the other by at least one passage, where the / each relevant sleeve is received.
  • An attached plug 167 (which may be removable) will then plug this radially outer end 134b, in the manner of the aforementioned bottom 135a.
  • the / each plug 167 will not penetrate the exoskeleton beyond the transverse surface 165.
  • the shirt will not come to bear against it, which is preferable during centrifugation.
  • the outer structure, in particular that in exoskeleton (s), of the mold may be cylindrical tubular (structure). It will favorably be made of mild steel. Y will thus be slipped axially an insert (the aforementioned folder) of metallic material or ceramic more or less refractory, which may include shells (such as two half-shells) as mentioned above.
  • a slope of a minimum degree will preferably be provided between the structure and the insert. This will allow the shirt to come in / out along the exoskeleton, along the B axis, while concentrating them coaxially, in contact with each other.
  • a detachable fastener will be made (by tightening) between the jacket and the surrounding exoskeleton.
  • the interior volume of the shirts 135 can be of simple geometry (cylinder, rectangle, cone or combination) or complex. In general, any demoldable shape according to the closure plane of the half-shells is a priori acceptable.
  • the shirts each have at least one thickness which varies along said radial direction (length L) and which is, at least globally, smaller towards at least one of the radially inner and outer ends, 134a, 134b, than in the intermediate portion, as shown Figures 14 ,; see also thicknesses e1, e2 and e3.
  • the figure14 show the interest in having a mold where, individually, the radially open inner end 133a of the central duct 133 for casting the alloy of all or part of the shirts 135 would have a shape 169 thus narrowing in section towards the center of the jacket, along the radial direction, B, according to which the corresponding jacket extends.
  • the form 169 can thus be single or double funnel (head to tail).
  • a truncated cone might be suitable.
  • this funnel / chute shape will not necessarily have a symmetry of revolution.
  • the funnel / chute shape may correspond to the heel area of this blade and the end portion 133b enlarged to the zone of the blade. extended foot.
  • individually all or part of the shirts 135 may have, transversely to the radial direction B along which they extend, a radial peripheral surface 170 at least locally (or partially) machined, as schematized figure 15 .
  • longitudinal reinforcements 171 may be provided to ensure the rigidity, centering and / or guiding of the liner 135 concerned in the peripheral structure 137.
  • the reinforcements are radially protruding relative to the rest of the concerned shirt.
  • a positioning of the reinforcements 171 towards the radial ends 134a, 134b will make it possible to disengage the intermediate zones along the length of the mold, where the presence of at least one (empty) space 155 is favorable to the control of constraints, including thermal ones.
  • the reinforcements 171 are radial to the axis of the schematized sleeve and define therebetween several free spaces, or secondary cavities, such as 155a, 155b.
  • each liner 135, 135 a. length L or axial dimension (axis B) of between 10 and 50 cm, an outer section (such as an outer diameter) between 5 and 20 cm, an inner section (such as an inner diameter) between 4 and 10 cm and a radial thickness e, e 1. .. between 1 and 10cm, on average at the location of a given section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

  • La présente invention concerne un moule de fabrication par coulée centrifuge de pièces métalliques en particulier d'aubes de turbomachine. Sont plus particulièrement visées les aubes de roue de turbine d'un turboréacteur ou d'un turbopropulseur d'avion.
  • Il est connu de réaliser des aubes de turbomachine par usinage d'une ébauche obtenue de fonderie par coulée d'un alliage métallique. L'ébauche est typiquement un barreau en général de forme allongée pleine et elle est usinée dans la masse pour réaliser la géométrie finale des aubes.
  • Une des techniques d'obtention de l'ébauche consiste, comme dans EP992305 , à utiliser un moule rotatif autour d'un axe (A), pour la fabrication par coulée centrifuge, d'un alliage, le moule comprenant :
    • plusieurs chemises, chacune définissant un logement de réception de l'alliage s'étendant radialement autour dudit axe (A)
    • au moins un exosquelette dans lequel sont disposées les chemises, ledit au moins un exosquelette retenant ces chemises vis-à-vis d'une force centrifuge.
  • Un (premier) problème à résoudre concerne le contrôle de la vitesse de refroidissement pour favoriser l'obtention d'une microstructure maitrisée, telle un taux d'aluminium homogène dans la pièce, notamment si l'alliage est à base de TiAl.
  • Concernant la fabrication par coulée de barreaux dans un moule permanent centrifugé, on note en outre que les conditions de coulées conduisent à un second problème, à savoir, l'usure rapide des moules, ce qui impose d'en changer souvent, ce qui est cher et impacte les conditions de fabrication, notamment les cadences. Ceci a également un impact sur les formes données aux moules, donc aux pièces moulées.
  • La présente invention permet de remédier à au moins une partie des inconvénients précités de façon simple, efficace et économique.
  • A cet effet, elle propose que, transversalement à la direction radiale (B) suivant laquelle chaque chemise s'étend, un espace existe périphériquement entre ladite chemise et l'exosquelette qui l'entoure.
  • Ainsi, non seulement on va pouvoir dissocier les caractéristiques physiques du ou des exosquelettes de caractéristiques physiques des chemises qui pourront en particulier être de faible épaisseur et/ou dans un matériau différent de celui du/des exosquelettes, mais aussi gérer favorablement l'inertie thermique, en vue de favoriser un refroidissement homogène de la forme de l'alliage coulé. Prévoir que l'espace entre ladite chemise et l'exosquelette est défini au sein d'une structure alvéolaire s'étendant périphériquement entre chaque chemise et l'exosquelette qui l'entoure permettra typiquement de tendre vers les deux buts ci-avant, y compris, par cette structure en caissons, de favoriser la tenue recherchée aux efforts mécaniques, et en particulier la retenue des chemises lors de la centrifugation.
  • Réaliser le ou les exosquelettes à claire-voie favorisera aussi cette tenue mécanique aux efforts liés à la centrifugation. Il y a là également un avantage vis-à-vis de l'inertie thermique qui sera alors plus faible que si le ou les même(s) exosquelette(s) étai(en)t à paroi pleine.
  • Par ailleurs et de préférence :
    • une fixation, qui peut être amovible, sera établie entre chaque chemise et l'exosquelette qui l'entoure et/ou,
    • le moule comprendra un bloc central présentant des conduits par lesquels l'alliage coulera et qui communiqueront avec l'intérieur des chemises, une fixation amovible étant alors établie entre chaque chemise et/ou l'exosquelette qui l'entoure et le bloc central.
  • Ainsi, notamment quand l'usure le demande, on pourra assurer un remplacement des chemises (par exemple toutes les 25 coulées environ), tout en assurant le maintien de ces chemises entretemps.
  • Les chemises pourront être changées à moindre coût, alors que le reste de la structure du moule, en particulier le ou les exosquelettes, pourra être conservé.
  • Dans ce contexte, on conseille donc que le ou les exosquelettes et les chemises soient conçus pour que le moule soit permanent, les chemises devant donc tenir plusieurs coulées de suite (par exemple 25 environ).
  • Concernant de nouveau la maîtrise de l'inertie thermique permettant un refroidissement homogène de la forme en métal issue du moule, et en particulier une maitrise de la vitesse de refroidissement, primordiale pour obtenir un taux d'aluminium homogène dans une pièce en alliage métallique à base de TiAl et donc une microstructure maitrisée, il est par ailleurs recommandé que les chemises du moule soient en acier, alliage métallique et/ou en céramique, et soient donc adaptées pour qu'y soit coulé de façon centrifugée un alliage de TiAl en fusion.
  • Il est aussi recommandé qu'au moins une structure thermiquement isolante s'étende périphériquement entre chaque chemise et l'exosquelette qui l'entoure.
  • Ainsi le ou chaque exosquelette pourra présenter une forme très simple, pas ou peu travaillée pour cette maîtrise recherchée de l'inertie thermique, et cela d'autant plus si ladite structure thermiquement isolante est alvéolaire. A noter par ailleurs qu'une telle solution, de par sa structure en caissons, permettra typiquement de favoriser la tenue aux efforts mécaniques, et en particulier la retenue des chemises lors de la centrifugation.
  • Tel est d'ailleurs un effet attendu si, comme conseillé, la chemise considérée et la structure alvéolaire, qui comprend des parois séparant des cavités, sont en appui l'une contre l'autre ou se rejoignent par des zones discrètes, ceci étant par ailleurs bénéfique à une maîtrise de l'inertie thermique.
  • On pourra obtenir une bonne tenue mécanique, par transfert d'efforts via lesdites parois de séparation des cavités, mais également assurer si nécessaire une isolation thermique de la chemise vis-à-vis du/des exosquelettes, via un matériau et des formes adapté(e)s.
  • Pour encore favoriser cette tenue aux efforts, on recommande que la structure considérée définisse une partie au moins desdits moyens de centrage qui positionnent donc la chemise considérée par rapport à l'exosquelette.
  • Pour par ailleurs encore favoriser davantage le remplacement des chemises en termes de facilité de manipulation et/ou de temps passé, et de coûts, on privilégiera le caractère modulaire des moules, de telle sorte que la chemise, la structure alvéolaire et/ou thermiquement isolante qui l'entoure et l'exosquelette qui entoure ladite structure soient trois éléments dissociables entre eux, la chemise et la structure thermiquement isolante étant engagés dans l'exosquelette, concentriquement.
    Y compris pour favoriser la prise en compte des questions de: maîtrise d'une part des efforts et d'autre part des contraintes thermiques, il est en outre proposé
    qu'individuellement les chemises présentant une surface interne qui délimite le/un conduit central de coulée de l'alliage,
    une partie extrême radialement extérieure de ce conduit est épaulée.
  • D'autres avantages et caractéristiques de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif et en référence aux dessins annexés dans lesquels :
    • la figure 1 est une vue schématique de face d'un barreau cylindrique plein de la technique antérieure, dans lequel sont destinées à être usinées des aubes de turbomachine,
    • la figure 2 est une vue schématique d'un moule de la technique antérieure,
    • la figure 3 est une vue schématique de dessus d'un moule à chemises et exosquelettes, dans lequel seront moulés des barreaux ayant moins de ségrégation,
    • les figures 4,5,6,7,8,9,10,11,12,13,14,15 schématisent des chemises et exosquelettes suivant divers modes de réalisation, en vue de face (figures 4,6), coupes schématiques longitudinales (l'un des axes radiaux B ; figures 12, 14,) ou transversale (figure 7, coupe VII-VII, figure 11, coupe XV-XV, figure15,), et vues de côté (figure 5 -vue suivant V- et figures 8,9,10), la figure 13 étant un détail d'une variante de réalisation de zones identiques à celle référencée XIII figure 12.
  • Figure 1 on voit un barreau 11 métallique réalisé de fonderie et dans lequel sont destinées à être usinées au moins une aube, ici deux aubes, 12 de turbine d'une turbomachine.
  • Le barreau 11 peut avoir une forme cylindrique et est plein. Il est obtenu par coulée d'un alliage métallique dans un moule.
  • La figure 2 représente un dispositif 10 conventionnel de fabrication des barreaux ou ébauches 11, par des opérations successives de fonte, coulée et moulage.
  • Le dispositif 10 comprend une enceinte 120 fermée et étanche dans laquelle est appliqué un vide partiel. Un lingot 16 en alliage métallique, en l'espèce contenant de l'aluminium, et plus précisément dans l'exemple à base de TiAl, est d'abord fondu dans un creuset 14. En fusion, il est versé dans un moule 13 métallique permanent.
  • Le moule 13 permet de couler l'alliage par centrifugation, afin d'obtenir des barreaux 11. Pour cela, il est mis en rotation autour d'un axe A vertical. Le moule 13 comprend plusieurs logements 17, par exemple cylindriques de section circulaire, qui s'étendent radialement (axes B1,B2 ; figures 2,3) autour de l'axe A, de préférence par l'intermédiaire d'un moteur 18. Ces cavités sont de préférence régulièrement espacées angulairement autour de l'axe A qui est ici vertical. Les forces centrifuges générées par la rotation du moule forcent l'alliage en fusion à pénétrer dans ces logements et à les remplir. Ainsi, l'alliage à couler, apporté vers le centre du moule, se répartit vers les cavités.
  • Après refroidissement, le moule 13 est démonté et les barreaux moulés 11 sont extraits. Les parois du moule qui entourent les logements 17 de recueillement du métal ont des épaisseurs importantes pour résister aux efforts centrifuges, typiquement plus de 10 g.
  • Ces épaisseurs peuvent conduire à une inertie thermique forte et créer des gradients thermiques importants lors du refroidissement du métal coulé, générateurs d'une différence dans la microstructure du barreau au voisinage de son centre par rapport à celle vers sa périphérie. Les pièces issues des barreaux 11 peuvent donc présenter des différences de microstructures (ségrégations).
  • Par ailleurs, en cas d'usure, il faut changer la partie du moule entourant le logement radial 17 concerné.
  • L'invention permet d'apporter une solution au problème cité de ségrégations et, si nécessaire, de satisfaire aux exigences de résistance aux efforts centrifuges et de changement rapide et fréquent d'une partie au moins du moule.
  • Les figures 4 à 15 représentent des modes de réalisation d'un moule 130 selon l'invention, étant précisé que les figures 5 et suivantes schématisent des variantes de chemises et exosquelettes susceptibles de remplacer ceux montrés figure 4 autour du bloc central 131. Quant à tous les moyens fonctionnels dont sont de préférence pourvues ces réalisations de moule, ils n'ont pas été illustrés, ni systématiquement repris dans toutes les variantes décrites ci-après, pour ne pas surcharger les figures ni rendre fastidieux ce qui suit. Il n'en demeure pas moins que les particularités de ces modes de réalisation peuvent se combiner et s'appliquer d'un mode à l'autre.
  • Le moule 130 diffère du moule 13 dans la réalisation de certains de ses moyens structuraux, en particulier de ses logements radiaux de réception de l'alliage.
  • Spécifiquement, autour du bloc central 131, par les conduits internes coudés 132 duquel l'alliage est amené à se répartir radialement autour de l'axe central vertical A, sont régulièrement espacés des chemises 135 (ou par exemple 135a,135b figure 4) qui définissent toutes ensemble les logements précités. Les conduits 132 débouchent respectivement dans des conduits radiaux 133 qui reçoivent l'alliage par une ouverture 133a et s'étendent chacun à l'intérieur d'une des chemises, suivant une direction radiale B. L'ouverture 133a de chaque chemise est ainsi située dans la partie extrême radialement intérieure 134a du conduit concerné.
  • Les chemises, qui sont donc creuses, sont disposées dans au moins un exosquelette 137, et de préférence dans autant d'exosquelettes qu'il y a de chemises, chaque exosquelette contenant alors une chemise 135 définissant l'un desdits logements.
  • Le ou les exosquelettes retiennent les chemises vis-à-vis des forces centrifuges générées par la rotation du moule. De préférence, ils favoriseront (ou du moins ne feront pas obstacle à) une limitation de l'inertie thermique.
  • Dans la réalisation préférée illustrée figure 4, l'axe central A de rotation du moule est vertical et tant les chemises 135 que les exosquelettes 137 s'étendent chacun suivant un axe longitudinal horizontal (axe B).
  • Pour un équilibre lors de la rotation, on conseille une disposition concentrique (axe B) de chaque couple chemise 135 et exosquelette 137 périphérique.
  • A son extrémité radialement extérieure (partie extrême 134b), chaque conduit 133 présente un fond plein 135c.
  • De manière comparable, chaque exosquelette 137 présente, à son extrémité radialement intérieure, une ouverture 137a par où, par exemple, une chemise 135 peut passer et, à son extrémité radialement extérieure, un fond 137b qui peut participer à la retenue radiale de la chemise.
  • Figure 6, on remarque en 139a,139b des fixations, ici amovibles, établies entre la chemise illustrée, ici 135a, et l'exosquelette, ici 137a, qui l'entoure, de façon à permettre un remplacement de la chemise. Des fixations vissées peuvent convenir.
  • On constate également figure 4 que sont prévues des fixations amovibles, telles 141a, 141b entre chaque chemise (et/ou l'exosquelette qui l'entoure, références 142a,142b) et le bloc central 131.
  • Ainsi il va être possible de séparer les chemises des exosquelettes et du bloc central 131, notamment pour remplacer ces chemises. De nouveau, des fixations vissées peuvent convenir.
  • Les fixations amovibles établies entre chemises et exosquelette(s) et/ou entre le bloc central 131 et chemises et/ou exosquelette(s) pourront former des zones de ruptures de ponts thermiques.
  • Quoi qu'il en soit, pour limiter l'inertie thermique, comme recherché, il est conseillé que le comportement thermique des chemises soit prépondérant par rapport à celui du/des exosquelette(s).
  • Dans un mode préféré de réalisation, le ou les exosquelettes est/sont en acier doux, aciers ou alliages plus ou moins réfractaires et les chemises sont en acier doux, aciers ou alliages plus ou moins réfractaires et/ou céramique.
  • Figure 7, la paroi périphérique est référencée 135d et on y aperçoit, au centre, le barreau moulé (ébauche) 110 issu de la coulée.
  • La figure 8 illustre une solution où l'exosquelette 137a schématisé est pourvu d'une porte mobile 143a qui, en position ouverte, libère une ouverture 145 permettant de passer à travers elle (ici latéralement vis-à-vis de l'axe radial B) la chemise considérée, ici 135a. Des charnières, telle celle repérée 147a, pourront faciliter la manoeuvre de chaque porte mobile et donc par exemple l'extraction hors de son exosquelette d'une chemise usagée puis l'introduction d'une autre, en meilleur état, en remplacement.
  • Sur les figures 4 à 8, il sera encore remarqué que les exosquelettes est/sont à claire-voie.
  • Ils se présentent ainsi comme des cages en quelque sorte grillagées.
  • Pour favoriser une faible inertie thermique, on prévoit ici qu'un espace vide 155 existe périphériquement (autour de l'axe B) entre chaque chemise, telle 135a, et l'exosquelette, tel 137a, qui l'entoure.
  • Des moyens de centrage 157 positionnent, de façon fixe au moins pendant la centrifugation, la chemise considérée par rapport à l'exosquelette, pour la coulée (voir figure 5).
  • Les figures 9,10 illustrent encore une autre solution où les chemises sont formées individuellement de plusieurs coquilles, telles 150a,150b pour la chemise 135a schématisée.
  • Les surfaces intérieures respectives réunies des coquilles définissent au moins la majeure partie du barreau moulé 110.
  • Ces coquilles s'ouvrent et se ferment suivant une surface de joint des coquilles, tel le plan de joint 152. Ainsi, L'une de ces coquilles (telle 135a) peut constituer une porte mobile ou amovible vis-à-vis de l'autre, permettant de démouler la pièce.
  • En outre, une fixation séparable 153, telle un verrou, est établie entre les coquilles pour, une fois les coquilles séparées, pouvoir sortir le barreau 110 de l'intérieur de la chemise, ici 135a, considérée, par l'ouverture 154 libérée.
  • Dans la solution des figures 11,12, une structure alvéolaire 159, qui s'étend périphériquement entre chaque chemise, telle 135a, et l'exosquelette qui l'entoure, tel 137a, joue ce rôle et définit donc une partie au moins desdits moyens de centrage 157 précités.
  • La structure alvéolaire 159 peut être annulaire. Elle peut occuper un espace entre le fond 135c des chemises et celui 137b de l'exosquelette considéré (figure12).
  • Y compris pour les transferts thermiques recherchés, la figure 13 montre que la chemise considérée et la structure alvéolaire, telle 159, sont en contact par des zones discrètes, telles 159a,159b,
  • Plutôt qu'en des pièces distinctes, on pourrait prévoir de réaliser la chemise et la structure alvéolaire en une seule pièce (figure 13), de sorte qu'elles se rejoignent par ces zones discrètes situées à l'extrémité radialement intérieure des parois 161 séparant deux à deux les cavités 163 des alvéoles, équivalentes, dans leur ensemble, à l'espace 155 précité.
  • En alternative, il sera possible de réaliser chaque chemise, telle 135a, ladite structure 159 qui l'entoure et l'exosquelette, tel 137a, qui entoure cette structure, en trois éléments distincts, dissociables entre eux, la chemise et la structure étant engagés dans l'exosquelette, concentriquement, suivant donc une radiale B à l'axe A.
  • Figures 14,15, mais ceci peut s'appliquer aux cas précédents, le/les exosquelette(s), tels 137a, comprend(nent) individuellement une extrémité radialement extérieure 134b (figures 14,) vers où la chemise 135 est radialement en appui contre une surface transversale 165 de l'exosquelette.
  • La surface transversale 165 sera de préférence un épaulement interne de l'exosquelette.
  • L'extrémité radialement extérieure 134b pourra être ouverte, l'exosquelette ressemblant alors à une structure traversée de part en part par au moins un passage, où la/chaque chemise concernée est reçue.
  • Un bouchon rapporté 167 (qui peut être amovible) bouchera alors cette extrémité radialement extérieure 134b, à la manière du fond 135a précité.
  • Favorablement, le/chaque bouchon 167 ne pénétrera pas dans l'exosquelette au-delà de la surface transversale 165. Ainsi, la chemise ne viendra pas en appui contre lui, ce qui est préférable lors de la centrifugation.
  • Au moins dans le cas des figures 14,15, la structure extérieure, en particulier celle en exosquelette(s), du moule pourra être cylindrique tubulaire (structure). Elle sera favorablement en acier doux. Y sera donc glissé axialement un insert (la chemise précitée) en matériau métallique ou céramique plus ou moins réfractaire, pouvant comprendre des coquilles (telles deux demi-coquilles) comme évoqué ci-avant.
  • On aura compris que ceci permet :
    • que l'insert assure l'obtention de la géométrie souhaitée pour la pièce coulée et permette d'en contrôler la solidification, par maîtrise des contraintes thermiques,
    • et que la structure extérieure assure le positionnement du moule sur le montage de coulée centrifuge ainsi que la résistance mécanique de l'ensemble.
  • Pour les montages/démontages axiaux, une pente de un degré minimum sera de préférence ménagée entre structure et insert. Ceci permettra de rentrer/sortir la chemise le long de l'exosquelette, suivant l'axe B, tout en les centrant de façon coaxiale, au contact l'un de l'autre. Une fixation amovible sera en outre, de fait (par serrage), établie entre la chemise et l'exosquelette qui l'entoure. Le volume intérieur des chemises 135 peut être de géométrie simple (cylindre, rectangle, cône ou combinaison) ou complexe. De façon générale toute forme démoulable suivant le plan de fermeture des demi-coquilles est a priori acceptable.
  • Pour persévérer dans la maîtrise des contraintes thermiques, de préférence en combinaison avec celle des efforts, il est conseillé que, transversalement à la direction radiale suivant laquelle elles s'étendent (axe B de la chemise considérée), les chemises présentent chacune au moins une épaisseur qui varie le long de ladite direction radiale (longueur L) et qui est, au moins globalement, plus faible vers l'une au moins des extrémités radialement intérieure et extérieure, 134a, 134b, qu'en partie intermédiaire, comme montré figures,14,; voir également épaisseurs e1,e2 et e3. En d'autres termes, on peut alors trouver, le long d'un axe B, une forme 133 allant d'abord en rétrécissant de section depuis l'extrémité 133a, vers une zone intermédiaire, puis éventuellement (figures 14,) en s'élargissant vers l'extrémité opposée 133b.
  • Si nécessaire en liaison avec cet aspect (mais ce pourrait être une forme de pièce moulée à privilégier), la figure14, montrent l'intérêt à disposer d'un moule où, individuellement, l'extrémité radialement intérieure ouverte 133a du conduit central 133 de coulée de l'alliage de tout ou partie des chemises 135 présenterait une forme 169 allant donc en rétrécissant de section vers le centre de la chemise, le long de la direction radiale, B, suivant laquelle la chemise correspondante s'étend. Il est à noter que la forme 169 peut ainsi être en simple ou double entonnoir (tête-bêche). Un tronc de cône pourrait convenir. Toutefois, cette forme en entonnoir/goulotte n'aura pas forcément une symétrie de révolution.
  • Quant à la partie extrême radialement extérieure de ce conduit, près de l'extrémité 134b (figure 14), elle pourra être épaulée, pour présenter une partie terminale 133b élargie.
  • Typiquement si au moins une aube, par exemple BP (basse pression), est plus tard usinée dans le barreau coulé, la forme en entonnoir/goulotte pourra correspondre à la zone de talon de cette aube et la partie terminale 133b élargie à la zone du pied élargi.
  • Toujours à fins de maîtrise des efforts et de gain de masse, en liaison avec l'évolutivité contrôlée de l'épaisseur de paroi de la chemise, voire de maîtrise des contraintes thermiques, il est encore précisé qu'individuellement tout ou partie des chemises 135 pourront présenter, transversalement à la direction radiale B suivant laquelle elles s'étendent, une surface périphérique radiale 170 au moins localement (ou partiellement) usinée, comme schématisé figure 15.
  • Sur cette figure, on constate par ailleurs que des renforts longitudinaux 171 peuvent être prévus pour assurer la rigidité, le centrage et/ou le guidage de la chemise 135 concernée dans la structure périphérique 137. Les renforts sont radialement saillants par rapport au reste de la chemise concernée.
  • Un positionnement des renforts 171 vers les extrémités radiales 134a, 134b permettra de dégager les zones intermédiaires sur la longueur du moule, là où la présence d'au moins un espace (vide) 155 est favorable à la maîtrise des contraintes, y compris thermiques.
  • Figure 15, les renforts 171 sont radiaux à l'axe de la chemise schématisée et définissent entre eux plusieurs espaces libres, ou cavités secondaires, tels 155a, 155b.
  • Pour une utilisation sous vide du moule, ce(s) espace(s) libre(s) ou cavités secondaires 155a, 155b établi(es) entre la structure périphérique 137 et la face extérieure de la chemise 135 considérée, y compris s'il s'agit des surfaces extérieures des (demi-)coquilles usinées, il est recommandé une "mise à l'air" extérieur de l'espace 155.
  • Pour cela, il est proposé que cet espace 155 soit en communication fluide avec l'environnement extérieur du moule par l'intermédiaire d'au moins un orifice 175. Dans un exemple particulier de réalisation, chaque chemise 135,135a... pourra avoir une longueur L ou dimension axiale (axe B) comprise entre 10 et 50cm, une section (tel un diamètre) externe compris entre 5 et 20cm, une section (tel un diamètre) interne compris entre 4 et 10cm et une épaisseur radiale e,e1... comprise entre 1 et 10cm, en moyenne à l'endroit d'une section donnée.

Claims (10)

  1. Moule rotatif autour d'un axe (A), pour une coulée centrifuge d'un alliage, le moule comprenant :
    - plusieurs chemises (135), chacune définissant un logement (17) de réception de l'alliage s'étendant radialement autour dudit axe (A)
    - au moins un exosquelette (137) dans lequel sont disposées les chemises (135) et qui retient lesdites chemises vis-à-vis d'une force centrifuge,
    caractérisé en ce que, transversalement à la direction radiale (B) suivant laquelle chaque chemise s'étend, un espace (155,159,163) existe périphériquement entre ladite chemise et l'exosquelette qui l'entoure.
  2. Moule selon la revendication 1, caractérisé en ce qu'il comprend un bloc central (131) présentant des conduits (132) par lesquels l'alliage coule et qui communiquent avec l'intérieur (133) des chemises, et une fixation amovible (141a,142a) est établie entre le bloc central et l'un au moins parmi chaque chemise et l'exosquelette qui entoure ladite chemise.
  3. Moule selon l'une des revendications précédentes, caractérisé en ce que l'un au moins parmi ledit au moins un exosquelette et les chemises est individuellement pourvu d'une porte mobile (143a,150a) qui, en position ouverte, libère une ouverture (145,154) permettant de passer à travers elle la chemise (135) considérée et une pièce moulée (110) issue de l'alliage coulé solidifié, respectivement.
  4. Moule selon l'une des revendications précédentes, caractérisé en ce que l'espace (155) est vide et des zones (157,159,171) de centrage positionnent de façon fixe la chemise considérée par rapport audit au moins un exosquelette, pour la coulée.
  5. Moule selon l'une des revendications précédentes, caractérisé en ce que ledit au moins un exosquelette (137) est à claire-voie.
  6. Moule selon l'une des revendications précédentes, caractérisé en ce que l'espace (155,163) est défini au sein d'une structure alvéolaire (159) s'étendant périphériquement entre chaque chemise et l'exosquelette qui l'entoure.
  7. Moule selon la revendication 6, caractérisé en ce que la chemise considérée et la structure alvéolaire (159), qui comprend des parois séparant des cavités, sont en appui l'une contre l'autre.
  8. Moule selon la revendication 6, caractérisé en ce que la chemise considérée et la structure alvéolaire (159), qui comprend des parois séparant des cavités, se rejoignent par des zones discrètes.
  9. Moule selon l'une des revendications 6 à 8, caractérisé en ce que la chemise, ladite structure alvéolaire (159) et l'exosquelette qui entoure cette structure alvéolaire sont trois éléments dissociables entre eux, la chemise et la structure alvéolaire étant engagés dans l'exosquelette, concentriquement.
  10. Moule selon l'une des revendications précédentes, caractérisé en ce que les chemises (135) sont en acier, alliage métallique et/ou en céramique adapté(e) pour que soit coulé dans lesdites chemises et de façon centrifugée un alliage métallique de TiAl en fusion.
EP15708562.2A 2014-01-31 2015-01-29 Moule chemisé pour coulée centrifuge Active EP3099438B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1450799A FR3017061B1 (fr) 2014-01-31 2014-01-31 Moule chemise pour coulee centrifuge
PCT/FR2015/050208 WO2015114262A1 (fr) 2014-01-31 2015-01-29 Moule chemisé pour coulée centrifuge

Publications (2)

Publication Number Publication Date
EP3099438A1 EP3099438A1 (fr) 2016-12-07
EP3099438B1 true EP3099438B1 (fr) 2018-04-11

Family

ID=51063535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15708562.2A Active EP3099438B1 (fr) 2014-01-31 2015-01-29 Moule chemisé pour coulée centrifuge

Country Status (9)

Country Link
US (1) US9764381B2 (fr)
EP (1) EP3099438B1 (fr)
JP (1) JP6495308B2 (fr)
CN (1) CN106132591B (fr)
BR (1) BR112016017708B1 (fr)
CA (1) CA2938286C (fr)
FR (1) FR3017061B1 (fr)
RU (1) RU2687320C2 (fr)
WO (1) WO2015114262A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3017062B1 (fr) * 2014-01-31 2023-03-17 Snecma Moule centrifuge chemise a inertie thermique controlee
CA3094276A1 (fr) * 2018-03-21 2019-09-26 Schubert & Salzer Feinguss Lobenstein Gmbh Procede pour produire un moule servant a couler des matieres en fusion ainsi que moule
CN112916815B (zh) * 2021-01-28 2022-05-03 济宁国弘机械科技有限公司 一种耐腐蚀且密封性能好的离心铸造机
CN113618052B (zh) * 2021-10-13 2021-12-14 江苏利润友机械科技有限公司 一种船舶螺旋桨一体式铸造生产设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378042A (en) * 1942-05-23 1945-06-12 Ford Motor Co Multiple centrifugal casting
FR946998A (fr) * 1945-08-14 1949-06-20 Thos Firth & John Brown Ltd Perfectionnements aux machines à couler les métaux
FR2104940B1 (fr) * 1970-09-09 1974-09-20 Pont A Mousson Fond
US4031947A (en) * 1975-10-08 1977-06-28 Walter W. Nichols Method and apparatus for slug casting
SU605677A1 (ru) * 1976-10-15 1978-05-05 Предприятие П/Я В-8889 Устройство дл лить трубных заготовок
SU996081A1 (ru) * 1980-07-16 1983-02-15 Всесоюзный Научно-Исследовательский Проектно-Технологический Институт Горного Машиностроения Центробежна литейна установка
SU925538A1 (ru) * 1980-09-29 1982-05-07 Ижевский Завод Тяжелых Бумагоделательных Машин Изложница дл центробежного лить
JPS6027464A (ja) * 1983-07-25 1985-02-12 Kubota Ltd 竪型遠心力鋳造用鋳型
JPS62124060A (ja) * 1985-11-22 1987-06-05 Kubota Ltd 遠心鋳造機のコアセツタ
CN87207819U (zh) * 1987-05-07 1988-10-05 机械委郑州机械研究所 封闭式离心铸造机
JPH09141409A (ja) * 1995-11-15 1997-06-03 Kubota Corp 遠心鋳造用金型
CN1070396C (zh) * 1997-12-09 2001-09-05 秦升益 组合式离心铸造铸型及制造该铸型的方法
DE19846781C2 (de) * 1998-10-10 2000-07-20 Ald Vacuum Techn Ag Verfahren und Vorrichtung zum Herstellen von Präzisionsgußteilen durch Schleudergießen
CN2413821Y (zh) * 2000-01-11 2001-01-10 邱玉珮 离心管道浇铸机
US6755239B2 (en) * 2001-06-11 2004-06-29 Santoku America, Inc. Centrifugal casting of titanium alloys with improved surface quality, structural integrity and mechanical properties in isotropic graphite molds under vacuum
US6932143B2 (en) * 2002-11-25 2005-08-23 Charles H. Noble Method and apparatus for centrifugal casting of metal
CN2691745Y (zh) * 2004-02-17 2005-04-13 王一诚 砂型离心铸造装置
CN101116903A (zh) * 2006-08-05 2008-02-06 大连宝锋轧辊有限公司 一种离心铸造带凸台辊套的方法及模具
KR100834142B1 (ko) * 2006-09-20 2008-06-02 이태원 파이프 연결용 플랜지 제작방법 및 몰드 구조
CN103286292B (zh) * 2012-02-24 2015-02-25 常州市姚氏铸造材料有限公司 汽缸套毛坯离心铸造成型模具
FR3017062B1 (fr) * 2014-01-31 2023-03-17 Snecma Moule centrifuge chemise a inertie thermique controlee

Also Published As

Publication number Publication date
US9764381B2 (en) 2017-09-19
CN106132591B (zh) 2021-05-28
JP2017507028A (ja) 2017-03-16
WO2015114262A1 (fr) 2015-08-06
JP6495308B2 (ja) 2019-04-03
US20160339511A1 (en) 2016-11-24
RU2687320C2 (ru) 2019-05-13
FR3017061A1 (fr) 2015-08-07
FR3017061B1 (fr) 2019-06-07
CA2938286A1 (fr) 2015-08-06
EP3099438A1 (fr) 2016-12-07
RU2016131338A3 (fr) 2018-10-22
CN106132591A (zh) 2016-11-16
CA2938286C (fr) 2022-05-10
RU2016131338A (ru) 2018-03-05
BR112016017708B1 (pt) 2021-02-23
BR112016017708A2 (pt) 2017-08-08

Similar Documents

Publication Publication Date Title
EP3099438B1 (fr) Moule chemisé pour coulée centrifuge
EP3544754B1 (fr) Modèle en forme de grappe et carapace pour obtention d'un accessoire de manutention indépendant de pièces formées et procédé associé
CA2885896A1 (fr) Moule carapace a ecran thermique
WO2020208325A1 (fr) Procede de fabrication d'une pluralite de secteurs de distributeur par fonderie
CA3025331C (fr) Moule pour la fabrication d'une aube monocristalline par fonderie, installation et procede de fabrication le mettant en oeuvre
EP3250336B1 (fr) Procédé et machine de décochage pour grappe de pièces de fonderie à modèle perdu
CA2887335C (fr) Procede de fabrication d'au moins une piece metallique de turbomachine
EP3119544B1 (fr) Moule centrifuge chemisé à inertie thermique contrôlée
EP3706934B1 (fr) Dispositif et procédé de fabrication d'une ébauche en alliage métallique par coulée centrifuge
FR3042725B1 (fr) Moule pour la fabrication d'une piece par coulee de metal et croissance epitaxiale, et procede correspondant
FR2988022A1 (fr) Procede de fabrication d'un secteur de stator a aubes creuses pour turbine a gaz.
EP3083134B1 (fr) Procédé de fabrication de pièces de turbomachine, ébauche à pièces superposées et moule obtenus
EP3083133B1 (fr) Procédé de fabrication d'une pièce de turbomachine, ébauche intermédiaire et moule obtenus
EP3083132B1 (fr) Procédé de fabrication de pièces de turbomachine, ébauche et moule obtenus
EP3969202A1 (fr) Moule pour la fabrication d'une piece par coulee de metal et croissance epitaxiale et procede de fabrication associe
FR3106849A1 (fr) Procédé de formation d’une aube de turbine, et aube associée.
FR3108539A1 (fr) Procede de solidification dirigee pour alliages metalliques et modele en materiau eliminable pour le procede

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 987455

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015009853

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180411

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180712

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 987455

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015009853

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

26N No opposition filed

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231219

Year of fee payment: 10

Ref country code: FR

Payment date: 20231219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240102

Year of fee payment: 10