EP3095998B1 - Fuel injector - Google Patents

Fuel injector Download PDF

Info

Publication number
EP3095998B1
EP3095998B1 EP16166329.9A EP16166329A EP3095998B1 EP 3095998 B1 EP3095998 B1 EP 3095998B1 EP 16166329 A EP16166329 A EP 16166329A EP 3095998 B1 EP3095998 B1 EP 3095998B1
Authority
EP
European Patent Office
Prior art keywords
armature
damper element
spring
fuel injector
stop surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16166329.9A
Other languages
German (de)
French (fr)
Other versions
EP3095998A1 (en
Inventor
Michael Kurz
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3095998A1 publication Critical patent/EP3095998A1/en
Application granted granted Critical
Publication of EP3095998B1 publication Critical patent/EP3095998B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/306Fuel-injection apparatus having mechanical parts, the movement of which is damped using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/708Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with hydraulic chambers formed by a movable sleeve

Definitions

  • the invention relates to a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine having the features of the preamble of claim 1.
  • a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine which comprises a magnetic actuator for direct control of a preferably needle-shaped injection valve member, via the lifting movement at least one injection valve opening of the fuel injector is releasable or closable.
  • the magnetic actuator cooperates with a lifting armature element for controlling the control pressure in a control volume which is limited in the axial direction by a first hydraulic active surface formed on the injection valve member.
  • a second hydraulic active surface is formed, which is opposite to the hydraulic active surface of the injection valve member on the control volume.
  • a third hydraulic active surface is formed on a hydraulic booster, which limits the control space together with the injection valve member and the anchor element.
  • the area ratio of the hydraulic active surfaces is designed such that during a first stage when opening a force gain and during a second stage, a path gain is achieved. In this way, an adjustment of the actuator force to the changing with the stroke of the injection valve member required opening force.
  • the closing force required for closing is provided by a spring which is supported on the anchor element and the anchor element in the direction of the injection valve member loaded. The spring force causes the armature element strikes on its return to the injection valve member and this returns to its sealing seat.
  • Another fuel injector is out of the DE 10 2013 221 534 A1 known in which a magnet armature acts on a coupling piston attached thereto to a coupler space for controlling the nozzle needle.
  • the closing forces are comparatively low. This has the consequence that the anchor tends to bounce when closing. This means that it swings back after striking the injection valve member and the contact with the injection valve member is lost, so that it is not completely reset. This in turn leads to quantity deviations, which must be avoided.
  • the bouncing of the armature is particularly disadvantageous in the case of multiple injections, that is to say in the case of injections which follow one another at different time intervals.
  • the present invention has the object to provide a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine, which has over the prior art, a more stable closing behavior and thus a higher injection accuracy.
  • the fuel injector proposed for injecting fuel into a combustion chamber of an internal combustion engine comprises a nozzle needle, which is received in a liftable manner for releasing and closing at least one injection opening in a high-pressure bore of a nozzle body. Furthermore, the fuel injector comprises an annular magnetic coil for acting on a liftable armature, which is hydraulically coupled via an armature shaft with the nozzle needle. According to the invention, a fixedly connected to the armature shaft spring plate or mechanically coupled to the spring plate hubbewegliches damper element on a nozzle needle facing end face, which with a lower stroke stop for the anchor and / or the Damper element serving stop surface cooperating forming a nip.
  • the nip is formed during closing, and shortly before reaching the serving as a lower stroke stop surface.
  • the formation of the nip leads to a damping of the armature movement, since energy must be expended for displacing the fluid from the nip.
  • the energy expended for displacing the fluid is lost to the kinetic energy, so that the movement of the armature is decelerated.
  • the impact on serving as a lower stroke stop surface occurs with reduced energy, so that the anchor is less prone to bounce.
  • This in particular has the advantage of multiple injections, since the armature has already returned to its starting position before initiating a subsequent injection.
  • a coupler plate serving as a lower stroke stop for the armature and / or the damper element stop surface is formed on a coupler plate.
  • the coupler plate is part of a hydraulic coupling device, via which the armature or the armature shaft with the nozzle needle is preferably hydraulically coupled in such a way that a force transmission or displacement reduction is achieved.
  • the coupler plate is axially biased by the spring force of a coupler spring against the nozzle body. In this way, a position fixation of the coupler plate is effected in the axial direction. In the radial direction, alignment of the coupler plate remains possible.
  • the coupler plate can also be clamped between two body components of the fuel injector.
  • the coupler plate together with the armature shaft, the nozzle needle and a sealing sleeve surrounding the nozzle needle, delimit a coupler space of a hydraulic coupling device for force transmission or travel reduction. In this way, an increase in the actuator force can be effected, so that the opening of the nozzle needle can be achieved with a comparatively small actuator.
  • the coupler plate serves as a lower stroke stop for the armature and / or the damper element, the stop surface on the side facing away from the nozzle needle of the Coupler plate formed. This means that the stop surface is outside the coupler space.
  • the abutment surface can be formed by an end face of the coupler plate, which can be designed in particular stepped to adjust the size of the abutment surface to the size of the end face of the spring plate or the damper element, which faces the abutment surface on the nip.
  • the stop surface formed on the nozzle body preferably cooperates with an end face of a liftable damper element that can be mechanically coupled to the spring plate to form a nip gap.
  • the damper element may in particular be a coupler plate of a hydraulic coupler plate accommodated in a liftable manner in the housing. Since the armature shaft passes through the coupler plate in order to effect the hydraulic coupling of the armature with the nozzle needle, the spring plate can be placed so that it comes to rest on the lifting coupler plate when closing and entrains it to serving as a lower stroke stop surface. A separate damper element is therefore dispensable, whereby the number of components can be reduced.
  • serving as a lower stroke stop for the armature and / or the damper element abutment surface is frusto-conical or spherical.
  • the end face of the spring plate or of the damper element cooperating with the stop face can also be frusto-conical or spherical.
  • the frusto-conical or spherical configuration of at least one surface involved in the formation of the nip has the consequence that the common contact region is limited to a substantially annular contact line.
  • the limitation or minimization of the common contact region has the advantage that hydraulic adhesive effects can be largely avoided, which has a favorable effect on the opening behavior of the fuel injector.
  • the nip remains without appreciable influence on the required opening force, so that the energy requirement also remains largely the same.
  • the stop surface serving as the lower stroke stop for the armature and / or the damper element and / or the end face cooperating with the stop surface have a hollow cylindrical projection for forming an annular contact surface with the respective other surface.
  • the hollow cylindrical projection can be designed, in particular, as a collar set radially on the inside of the end face of the spring plate or of the damper element, which contacts the stop surface serving as a lower stroke stop when closing.
  • the hollow cylindrical projection may be formed as a radially inner collar, which is attached to the serving as a lower stroke stop surface.
  • the hollow cylindrical projection on at least one surface involved in the formation of the nip has the consequence that the common contact area is limited to a circular contact surface. Hydraulic adhesive effects are largely avoided in this way, which has a favorable effect on the opening behavior of the fuel injector. In particular, the nip remains without appreciable influence on the required opening force and thus on the energy requirement of the fuel injector.
  • the liftable damper element is axially biased in the direction of serving as an upper stroke stop for the damper element stop surface.
  • the axial preload can be effected in particular by the spring force of a spring, so that it is ensured by the axial prestress that the closing movable over the spring plate carried hubbewegliche damper element is returned to its original position during the subsequent opening.
  • the axial bias is effected by the spring force of an existing spring, such as the coupler spring.
  • a nozzle needle facing away from the end face of the damper element is frusto-conical or spherical, so that a common contact area is limited to serving as the upper stroke stop surface to a substantially annular contact line.
  • the reduction of the common contact area to an annular Contact line facilitates release of the liftable damper element from the upper travel stop. This ensures that the closing of the fuel injector is not delayed by hydraulic adhesive effects.
  • the liftable damper element is plate-shaped or cup-shaped.
  • the hubbewegliche damper element surrounds the armature shaft of the armature partially.
  • the damper element against the armature shaft axially displaceable. The stroke of the damper element can therefore be selected smaller than the stroke of the armature.
  • the damper element is preferably received in a high-pressure chamber, which is hydraulically connected to the high-pressure bore.
  • the hydraulic connection can be produced, for example, via at least one flow opening formed in the coupler plate.
  • the high-pressure bore can be supplied with high-pressure fuel.
  • the anchor is designed as a plunger anchor.
  • An abutment surface forming the upper stroke stop for the armature is preferably formed on an inner pole body in this case.
  • This embodiment has the advantage that the annular magnet coil can be arranged radially on the outside, so that the magnetic circuit extends over the entire outer diameter of the fuel injector. It can be achieved in this way higher magnetic forces. At the same time you get a compact fuel injector.
  • not inventive fuel injector comprises a nozzle body 5 with a high-pressure bore 4, in which a nozzle needle 2 for releasing and closing a plurality of injection openings 3 is received in a liftable manner.
  • a nozzle needle 2 for releasing and closing a plurality of injection openings 3 is received in a liftable manner.
  • the injection openings 3 are released, so that fuel under high pressure is injected into a combustion chamber 1.
  • the magnet coil 6 cooperates with an armature 7, which can be coupled hydraulically via an armature shaft 8 to the nozzle needle 2.
  • the nozzle needle 2 facing the end of the armature shaft 8 is guided for this purpose by a supported on the nozzle body 5 coupler plate 16 which defines a coupler space 19 together with the armature shaft 8, the nozzle needle 2 and the nozzle needle 2 end surrounding sealing sleeve.
  • the coupler plate 16 is acted upon in the direction of the nozzle body 5 by the spring force of a coupler spring 17.
  • the sealing sleeve 18 is in turn axially biased by the spring force of a nozzle spring 24 against the coupler plate 16.
  • the coupler plate 16 passing through the end of the armature shaft 8 has an outer diameter D 1 , which is chosen to be significantly smaller than the outer diameter D 2 of the nozzle needle 2. Accordingly, the area ratio of the hydraulic active surfaces lying opposite to the coupler space 19 is selected such that the force transmission is accompanied by a force amplification.
  • the armature 7 moves maximally up to a stop surface 29 which is formed on the inner pole body 30 and serves as an upper stroke stop for the armature 7.
  • the nozzle needle 2 follows the movement of the armature 7, wherein a path reduction is effected by the predetermined area ratio of the formed on the armature shaft 8 and on the nozzle needle 2 hydraulic active surfaces.
  • the armature stroke A H is thus greater than the desired nozzle needle stroke DN H.
  • the inflow of fuel takes place via a centrally formed inflow channel 36, which is formed in the inner pole body 30 and opens into an armature space 37.
  • the armature space 37 is connected via a laterally arranged connecting channel 38 with a high-pressure chamber 27, in which the coupler plate 16 is received.
  • Via at least one through-flow opening 28 provided in the coupler plate 16 a connection of the high-pressure chamber 27 to the high-pressure bore 4 of the nozzle body 5 is produced, in which the injection openings 3 are formed.
  • the energization of the solenoid 6 is terminated, so that the magnetic force F M is reduced.
  • the force acting in the closing direction spring force F A of the armature spring 32 is in the sequence the armature 7 back to its original position.
  • the armature shaft 8 immersed again deeper into the coupler space 19 and reduces the volume, resulting in a pressure increase in the coupler space 19. If the spring force of the nozzle spring 24 acting in the closing direction on the nozzle needle 2 exceeds the resulting hydraulic opening force, the closing movement of the nozzle needle 2 begins.
  • the starting position of the armature 7 is reached when the provided for supporting the armature spring 32 spring plate 9, which is in the present case pressed onto the armature shaft 8, passes over its end face 11 for abutment with a serving as a lower stroke stop surface 13 on the coupler plate 16. Due to the frusto-conical configuration of the stop surface 13 is formed before reaching the lower stroke stop between the end face 11 of the spring plate 9 and the stop surface 13 of the coupler plate 16 from a nip 15, which causes a damping of the movement of the armature 7. Thus, a bouncing of the armature 7 is counteracted. At the same time, the frusto-conical configuration of the stop surface 13 ensures that the common contact region 20 is limited to an annular contact line in order to counteract hydraulic adhesive effects when reopening.
  • the spring force of the armature spring 32 can be influenced via a Einstellin33, via which the armature spring 32 is indirectly supported on a body member 34 of the fuel injector.
  • the body member 34 also forms the high-pressure chamber 27 and the armature chamber 37, which are hydraulically connected via the connecting channel 38.
  • a guide bore 35 is further formed, in which the armature shaft 8 of the armature 7 is received in a liftable manner.
  • a further preferred embodiment of a fuel injector according to the invention is in the Fig. 2a , This is different from the one of Fig. 1 essentially by the fact that not the pressed onto the armature shaft 8 spring plate 9, but with the spring plate 9 mechanically coupled hubbewegliches damper element 10 cooperating with the formed on the coupler plate 16 abutment surface 13 a nip 15 cooperating (see Fig. 2b ).
  • the damper element 10 has an end face 12 facing the coupler plate 16.
  • the end face 12 is flat.
  • the stop surface 13 has the shape of a truncated cone, so that the common contact area 20 is again limited to a circular contact line.
  • the damper element 10 is present cup-shaped and surrounds the spring plate 9; the armature spring 32 and the shim 33.
  • the armature shaft 8 of the armature 7 is guided by the damper element 10, so that the damper element 10 with respect to the armature shaft 8 is liftable.
  • the stroke of the damper element 10 is limited by serving as a lower stroke stop surface 13 of the coupler plate 16, which thus forms the lower stroke stop for both the armature 7 and the damper element 10.
  • the upper stroke stop for limiting the stroke of the damper element 10 is formed by a stop surface 23 of the body member 34.
  • the damper element 10 has a stop face 23 facing the end face 25 is formed on the truncated cone. This leads to a common contact region 26, which is limited to an annular contact line.
  • a modified damping device is in the Fig. 2c shown. This is an alternative to the damping device of Fig. 2b in the fuel injector the Fig. 2a used.
  • the stop surface 13 is not frustoconical, but formed on a hollow cylindrical projection 21 of the coupler plate 16. This measure also serves to form the nip 15 when closing and to reduce hydraulic adhesive effects when opening the injector.
  • a further preferred embodiment of a fuel injector according to the invention is in the Fig. 3 shown.
  • the coupler plate 16 at the same time forms the hubbewegliche damper element 10.
  • the stroke K H of the coupler plate 16 and the damper element 10 is limited on the one hand by a serving as a lower stroke stop surface 14 on the nozzle body 5 and on the other hand by serving as an upper stroke stop surface 23 which is formed by a shoulder of the body member 34.
  • the coupler plate 16 - indirectly axially biased by the spring force of the nozzle spring 24 - indirectly via the intermediate sealing sleeve 18.
  • a coupler spring 17 is therefore dispensable.
  • the common contact region 26 of the coupler plate 16 or of the damper element 10 with the stop surface 23 is reduced to an annular contact surface.
  • the end face 12 of the coupler plate 16 or of the damper element 10 which cooperates with the stop surface 14 serving as the lower stroke stop is designed in the shape of a truncated cone and thus has an annular contact line as a common contact region with the stop surface 14.
  • this results in the formation of a squeezing gap 15 which damps the movement of the armature 7.
  • the reduced common contact area counteracts hydraulic adhesive effects.
  • the spring force of the nozzle spring 24 serving to return the damper element 10 is larger than that of the armature spring 32, so that the return is already made upon completion of an injection operation.

Description

Die Erfindung betrifft einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine mit den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine having the features of the preamble of claim 1.

Stand der TechnikState of the art

Aus der Offenlegungsschrift DE 10 2010 028 835 A1 geht ein Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine hervor, der einen Magnetaktor zur direkten Steuerung eines vorzugsweise nadelförmigen Einspritzventilgliedes umfasst, über dessen Hubbewegung wenigstens eine Einspritzventilöffnung des Kraftstoffinjektors freigebbar oder verschließbar ist. Der Magnetaktor wirkt dabei mit einem hubbeweglichen Ankerelement zur Steuerung des Steuerdrucks in einem Steuervolumen zusammen, das in axialer Richtung von einer am Einspritzventilglied ausgebildeten ersten hydraulischen Wirkfläche begrenzt wird. Am Ankerelement ist eine zweite hydraulische Wirkfläche ausgebildet, die der hydraulischen Wirkfläche des Einspritzventilglieds am Steuervolumen gegenüber liegt. Eine dritte hydraulische Wirkfläche ist an einem hydraulischen Übersetzer ausgebildet, der gemeinsam mit dem Einspritzventilglied und dem Ankerelement den Steuerraum begrenzt. Das Flächenverhältnis der hydraulischen Wirkflächen ist derart ausgelegt, dass während einer ersten Stufe beim Öffnen eine Kraftverstärkung und während einer zweiten Stufe eine Wegverstärkung erzielt wird. Auf diese Weise erfolgt eine Anpassung der Aktorkraft an die sich mit dem Hub des Einspritzventilglieds ändernde erforderliche Öffnungskraft. Die zum Schließen erforderliche Schließkraft wird von einer Feder bereit gestellt, die am Ankerelement abgestützt ist und das Ankerelement in Richtung des Einspritzventilglieds belastet. Die Federkraft bewirkt, dass das Ankerelement bei seiner Rückstellung am Einspritzventilglied anschlägt und dieses in seinen Dichtsitz zurückstellt.From the publication DE 10 2010 028 835 A1 a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine, which comprises a magnetic actuator for direct control of a preferably needle-shaped injection valve member, via the lifting movement at least one injection valve opening of the fuel injector is releasable or closable. The magnetic actuator cooperates with a lifting armature element for controlling the control pressure in a control volume which is limited in the axial direction by a first hydraulic active surface formed on the injection valve member. At the anchor element, a second hydraulic active surface is formed, which is opposite to the hydraulic active surface of the injection valve member on the control volume. A third hydraulic active surface is formed on a hydraulic booster, which limits the control space together with the injection valve member and the anchor element. The area ratio of the hydraulic active surfaces is designed such that during a first stage when opening a force gain and during a second stage, a path gain is achieved. In this way, an adjustment of the actuator force to the changing with the stroke of the injection valve member required opening force. The closing force required for closing is provided by a spring which is supported on the anchor element and the anchor element in the direction of the injection valve member loaded. The spring force causes the armature element strikes on its return to the injection valve member and this returns to its sealing seat.

Ein weiterer Kraftstoffinjektor ist aus der DE 10 2013 221 534 A1 bekannt, bei dem ein Magnetanker über einen daran befestigten Kopplerkolben auf einen Kopplerraum zur Steuerung der Düsennadel einwirkt.Another fuel injector is out of the DE 10 2013 221 534 A1 known in which a magnet armature acts on a coupling piston attached thereto to a coupler space for controlling the nozzle needle.

Bei Kraftstoffinjektoren der vorstehend genannten Art sind die Schließkräfte vergleichsweise gering. Dies hat zur Folge, dass der Anker beim Schließen zum Prellen neigt. Das heißt, dass er nach dem Anschlagen an dem Einspritzventilglied zurückschwingt und der Kontakt zum Einspritzventilglied verloren geht, so dass dieses nicht vollständig zurückgestellt wird. Dies wiederum führt zu Mengenabweichungen, die es zu vermeiden gilt. Besonders nachteilig wirkt sich das Prellen des Ankers bei Mehrfacheinspritzungen aus, das heißt bei Einspritzungen, die in unterschiedlichen Zeitabständen aufeinander folgen.In fuel injectors of the type mentioned above, the closing forces are comparatively low. This has the consequence that the anchor tends to bounce when closing. This means that it swings back after striking the injection valve member and the contact with the injection valve member is lost, so that it is not completely reset. This in turn leads to quantity deviations, which must be avoided. The bouncing of the armature is particularly disadvantageous in the case of multiple injections, that is to say in the case of injections which follow one another at different time intervals.

Ausgehend von dem vorstehend genannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine anzugeben, der gegenüber dem Stand der Technik ein stabileres Schließverhalten und somit eine höhere Einspritzgenauigkeit besitzt.Based on the above-mentioned prior art, the present invention has the object to provide a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine, which has over the prior art, a more stable closing behavior and thus a higher injection accuracy.

Zur Lösung der Aufgabe wird der Kraftstoffinjektor mit den Merkmalen des Anspruchs 1 angegeben. Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.To achieve the object of the fuel injector with the features of claim 1 is given. Advantageous developments of the invention can be found in the dependent claims.

Offenbarung der ErfindungDisclosure of the invention

Der zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine vorgeschlagene Kraftstoffinjektor umfasst eine Düsennadel, die zum Freigeben und Verschließen mindestens einer Einspritzöffnung in einer Hochdruckbohrung eines Düsenkörpers hubbeweglich aufgenommen ist. Ferner umfasst der Kraftstoffinjektor eine ringförmige Magnetspule zur Einwirkung auf einen hubbeweglichen Anker, der über einen Ankerschaft mit der Düsennadel hydraulisch koppelbar ist. Erfindungsgemäß weist ein fest mit dem Ankerschaft verbundener Federteller oder ein mit dem Federteller mechanisch koppelbares hubbewegliches Dämpferelement eine der Düsennadel zugewandte Stirnfläche auf, die mit einer als unterer Hubanschlag für den Anker und/oder das Dämpferelement dienenden Anschlagfläche einen Quetschspalt ausbildend zusammenwirkt.The fuel injector proposed for injecting fuel into a combustion chamber of an internal combustion engine comprises a nozzle needle, which is received in a liftable manner for releasing and closing at least one injection opening in a high-pressure bore of a nozzle body. Furthermore, the fuel injector comprises an annular magnetic coil for acting on a liftable armature, which is hydraulically coupled via an armature shaft with the nozzle needle. According to the invention, a fixedly connected to the armature shaft spring plate or mechanically coupled to the spring plate hubbewegliches damper element on a nozzle needle facing end face, which with a lower stroke stop for the anchor and / or the Damper element serving stop surface cooperating forming a nip.

Der Quetschspalt wird während des Schließens ausgebildet und zwar kurz vor Erreichen der als unterer Hubanschlag dienenden Anschlagfläche. Die Ausbildung des Quetschspalts führt zu einer Dämpfung der Ankerbewegung, da zum Verdrängen des Fluids aus dem Quetschspalt Energie aufgewendet werden muss. Die zum Verdrängen des Fluids aufgewendete Energie geht der Bewegungsenergie verloren, so dass die Bewegung des Ankers abgebremst wird. Das Aufschlagen auf die als unterer Hubanschlag dienende Anschlagfläche erfolgt mit verringerter Energie, so dass der Anker weniger zum Prellen neigt. Dies wirkt sich insbesondere als Vorteil bei Mehrfacheinspritzungen aus, da der Anker bereits vor Einleitung einer nachfolgenden Einspritzung wieder seine Ausgangslage eingenommen hat.The nip is formed during closing, and shortly before reaching the serving as a lower stroke stop surface. The formation of the nip leads to a damping of the armature movement, since energy must be expended for displacing the fluid from the nip. The energy expended for displacing the fluid is lost to the kinetic energy, so that the movement of the armature is decelerated. The impact on serving as a lower stroke stop surface occurs with reduced energy, so that the anchor is less prone to bounce. This in particular has the advantage of multiple injections, since the armature has already returned to its starting position before initiating a subsequent injection.

Gemäß einer bevorzugten Ausführungsform der Erfindung ist die als unterer Hubanschlag für den Anker und/oder das Dämpferelement dienende Anschlagfläche an einer Kopplerplatte ausgebildet. Die Kopplerplatte ist Teil einer hydraulischen Kopplungseinrichtung, über welche der Anker bzw. der Ankerschaft mit der Düsennadel bevorzugt in der Weise hydraulisch koppelbar ist, dass eine Kraftübersetzung bzw. Weguntersetzung erreicht wird. Vorzugsweise ist die Kopplerplatte durch die Federkraft einer Kopplerfeder gegen den Düsenkörper axial vorgespannt ist. Auf diese Weise wird eine Lagefixierung der Kopplerplatte in axialer Richtung bewirkt. In radialer Richtung bleibt ein Ausrichten der Kopplerplatte weiterhin möglich. Alternativ kann die Kopplerplatte auch zwischen zwei Körperbauteilen des Kraftstoffinjektors eingespannt werden.According to a preferred embodiment of the invention serving as a lower stroke stop for the armature and / or the damper element stop surface is formed on a coupler plate. The coupler plate is part of a hydraulic coupling device, via which the armature or the armature shaft with the nozzle needle is preferably hydraulically coupled in such a way that a force transmission or displacement reduction is achieved. Preferably, the coupler plate is axially biased by the spring force of a coupler spring against the nozzle body. In this way, a position fixation of the coupler plate is effected in the axial direction. In the radial direction, alignment of the coupler plate remains possible. Alternatively, the coupler plate can also be clamped between two body components of the fuel injector.

Alternativ oder ergänzend wird ferner vorgeschlagen, dass die Kopplerplatte gemeinsam mit dem Ankerschaft, der Düsennadel und einer die Düsennadel endseitig umgebenden Dichthülse einen Kopplerraum einer hydraulischen Kopplungseinrichtung zur Kraftübersetzung bzw. Weguntersetzung begrenzt. Auf diese Weise kann eine Verstärkung der Aktorkraft bewirkt werden, so dass das Öffnen der Düsennadel mit vergleichsweise kleinem Aktor erreicht werden kann.Alternatively or additionally, it is also proposed that the coupler plate, together with the armature shaft, the nozzle needle and a sealing sleeve surrounding the nozzle needle, delimit a coupler space of a hydraulic coupling device for force transmission or travel reduction. In this way, an increase in the actuator force can be effected, so that the opening of the nozzle needle can be achieved with a comparatively small actuator.

Sofern die Kopplerplatte als unterer Hubanschlag für den Anker und/oder das Dämpferelement dient, ist die Anschlagfläche auf der der Düsennadel abgewandten Seite der Kopplerplatte ausgebildet. Das heißt, dass die Anschlagfläche außerhalb des Kopplerraums liegt. Die Anschlagfläche kann durch eine Stirnfläche der Kopplerplatte gebildet werden, die insbesondere gestuft ausgeführt sein kann, um die Größe der Anschlagfläche an die Größe der Stirnfläche des Federtellers bzw. des Dämpferelements anzupassen, die der Anschlagfläche am Quetschspalt gegenüberliegt.If the coupler plate serves as a lower stroke stop for the armature and / or the damper element, the stop surface on the side facing away from the nozzle needle of the Coupler plate formed. This means that the stop surface is outside the coupler space. The abutment surface can be formed by an end face of the coupler plate, which can be designed in particular stepped to adjust the size of the abutment surface to the size of the end face of the spring plate or the damper element, which faces the abutment surface on the nip.

Gemäß einer alternativen bevorzugten Ausführungsform der Erfindung ist die als unterer Hubanschlag für den Anker und/oder das Dämpferelement dienende Anschlagfläche am Düsenkörper ausgebildet. In diesem Fall wirkt vorzugsweise die am Düsenkörper ausgebildete Anschlagfläche mit einer Stirnfläche eines mit dem Federteller mechanisch koppelbaren hubbeweglichen Dämpferelements einen Quetschspalt ausbildend zusammen. Bei dem Dämpferelement kann es sich insbesondere um eine hubbeweglich im Gehäuse aufgenommene Kopplerplatte einer hydraulischen Kopplerplatte handeln. Da der Ankerschaft die Kopplerplatte durchsetzt, um die hydraulische Kopplung des Ankers mit der Düsennadel zu bewirken, kann der Federteller derart platziert werden, dass er beim Schließen zur Anlage an der hubbeweglichen Kopplerplatte gelangt und diese bis zur als unterer Hubanschlag dienenden Anschlagfläche mitführt. Ein separates Dämpferelement ist demnach verzichtbar, wodurch die Anzahl der Bauteile reduziert werden kann.According to an alternative preferred embodiment of the invention serving as a lower stroke stop for the armature and / or the damper element abutment surface is formed on the nozzle body. In this case, the stop surface formed on the nozzle body preferably cooperates with an end face of a liftable damper element that can be mechanically coupled to the spring plate to form a nip gap. The damper element may in particular be a coupler plate of a hydraulic coupler plate accommodated in a liftable manner in the housing. Since the armature shaft passes through the coupler plate in order to effect the hydraulic coupling of the armature with the nozzle needle, the spring plate can be placed so that it comes to rest on the lifting coupler plate when closing and entrains it to serving as a lower stroke stop surface. A separate damper element is therefore dispensable, whereby the number of components can be reduced.

Vorteilhafterweise ist die als unterer Hubanschlag für den Anker und/oder das Dämpferelement dienende Anschlagfläche kegelstumpfförmig oder ballig ausgebildet. Alternativ oder ergänzend kann auch die mit der Anschlagfläche zusammenwirkende Stirnfläche des Federtellers bzw. des Dämpferelements kegelstumpfförmig oder ballig ausgebildet sein. Die kegelstumpfförmige oder ballige Ausgestaltung mindestens einer an der Ausbildung des Quetschspalts beteiligten Fläche hat zur Folge, dass der gemeinsame Kontaktbereich auf eine im Wesentlichen kreisringförmige Kontaktlinie begrenzt ist. Die Begrenzung bzw. Minimierung des gemeinsamen Kontaktbereichs besitzt den Vorteil, dass hydraulische Klebeeffekte weitgehend vermieden werden können, was sich günstig auf das Öffnungsverhalten des Kraftstoffinjektors auswirkt. Insbesondere bleibt der Quetschspalt ohne nennenswerten Einfluss auf die erforderliche Öffnungskraft, so dass der Energiebedarf ebenfalls weitgehend gleich bleibt.Advantageously, serving as a lower stroke stop for the armature and / or the damper element abutment surface is frusto-conical or spherical. Alternatively or additionally, the end face of the spring plate or of the damper element cooperating with the stop face can also be frusto-conical or spherical. The frusto-conical or spherical configuration of at least one surface involved in the formation of the nip has the consequence that the common contact region is limited to a substantially annular contact line. The limitation or minimization of the common contact region has the advantage that hydraulic adhesive effects can be largely avoided, which has a favorable effect on the opening behavior of the fuel injector. In particular, the nip remains without appreciable influence on the required opening force, so that the energy requirement also remains largely the same.

Alternativ oder ergänzend wird vorgeschlagen, dass die als unterer Hubanschlag für den Anker und/oder das Dämpferelement dienende Anschlagfläche und/oder die mit der Anschlagfläche zusammenwirkende Stirnfläche einen hohlzylinderförmigen Ansatz zur Ausbildung einer kreisringförmigen Kontaktfläche mit der jeweils anderen Fläche aufweist. Der hohlzylinderförmige Ansatz kann insbesondere als radial innen an die Stirnfläche des Federtellers oder des Dämpferelements angesetzter Kragen ausgebildet sein, der beim Schließen die als unterer Hubanschlag dienende Anschlagfläche kontaktiert. Darüber hinaus kann der hohlzylinderförmige Ansatz als radial innen liegender Kragen ausgebildet sein, der an die als unterer Hubanschlag dienende Anschlagfläche angesetzt ist. Der hohlzylinderförmige Ansatz an mindestens einer an der Ausbildung des Quetschspalts beteiligten Fläche hat zur Folge, dass der gemeinsame Kontaktbereich auf eine kreisringförmige Kontaktfläche begrenzt ist. Hydraulische Klebeeffekte werden auf diese Weise weitgehend vermieden, was sich günstig auf das Öffnungsverhalten des Kraftstoffinjektors auswirkt. Insbesondere bleibt der Quetschspalt ohne nennenswerten Einfluss auf die erforderliche Öffnungskraft und damit auf den Energiebedarf des Kraftstoffinjektors.Alternatively or additionally, it is proposed that the stop surface serving as the lower stroke stop for the armature and / or the damper element and / or the end face cooperating with the stop surface have a hollow cylindrical projection for forming an annular contact surface with the respective other surface. The hollow cylindrical projection can be designed, in particular, as a collar set radially on the inside of the end face of the spring plate or of the damper element, which contacts the stop surface serving as a lower stroke stop when closing. In addition, the hollow cylindrical projection may be formed as a radially inner collar, which is attached to the serving as a lower stroke stop surface. The hollow cylindrical projection on at least one surface involved in the formation of the nip has the consequence that the common contact area is limited to a circular contact surface. Hydraulic adhesive effects are largely avoided in this way, which has a favorable effect on the opening behavior of the fuel injector. In particular, the nip remains without appreciable influence on the required opening force and thus on the energy requirement of the fuel injector.

In Weiterbildung der Erfindung wird vorgeschlagen, dass das hubbewegliche Dämpferelement in Richtung einer als oberer Hubanschlag für das Dämpferelement dienenden Anschlagfläche axial vorgespannt ist. Die axiale Vorspannung kann insbesondere durch die Federkraft einer Feder bewirkt werden, so dass über die axiale Vorspannung sichergestellt ist, dass das beim Schließen über den Federteller mitgeführte hubbewegliche Dämpferelement beim anschließenden Öffnen wieder in seine Ausgangslage zurückgestellt wird. Vorzugsweise wird die axiale Vorspannung durch die Federkraft einer bereits vorhandenen Feder, beispielsweise der Kopplerfeder, bewirkt. Alternativ kann zur axialen Vorspannung auch eine an der Düsennadel abgestützte Düsenfeder eingesetzt werden, die regelmäßig zur Rückstellung der Düsennadel vorgesehen ist. Dadurch kann die Anzahl der Bauteile gering gehalten werden.In a further development of the invention it is proposed that the liftable damper element is axially biased in the direction of serving as an upper stroke stop for the damper element stop surface. The axial preload can be effected in particular by the spring force of a spring, so that it is ensured by the axial prestress that the closing movable over the spring plate carried hubbewegliche damper element is returned to its original position during the subsequent opening. Preferably, the axial bias is effected by the spring force of an existing spring, such as the coupler spring. Alternatively, it is also possible to use a nozzle spring which is supported on the nozzle needle for axial prestressing and which is regularly provided for returning the nozzle needle. As a result, the number of components can be kept low.

Darüber hinaus wird als weiterbildende Maßnahme vorgeschlagen, dass eine der Düsennadel abgewandte Stirnfläche des Dämpferelements kegelstumpfförmig oder ballig ausgebildet ist, so dass ein gemeinsamer Kontaktbereich mit der als oberer Hubanschlag dienenden Anschlagfläche auf eine im Wesentlichen kreisringförmige Kontaktlinie begrenzt ist. Die Reduzierung des gemeinsamen Kontaktbereichs auf eine kreisringförmige Kontaktlinie erleichtert das Lösen des hubbeweglichen Dämpferelements vom oberen Hubanschlag. Dadurch ist sichergestellt, dass das Schließen des Kraftstoffinjektors nicht durch hydraulische Klebeeffekte verzögert wird.In addition, it is proposed as a further development measure that a nozzle needle facing away from the end face of the damper element is frusto-conical or spherical, so that a common contact area is limited to serving as the upper stroke stop surface to a substantially annular contact line. The reduction of the common contact area to an annular Contact line facilitates release of the liftable damper element from the upper travel stop. This ensures that the closing of the fuel injector is not delayed by hydraulic adhesive effects.

In einer bevorzugten Ausgestaltung der Erfindung ist das hubbewegliche Dämpferelement platten- oder topfförmig ausgebildet. Das hubbewegliche Dämpferelement umgibt den Ankerschaft des Ankers bereichsweise. Im Unterschied zum Federteller, der ebenfalls den Ankerschaft bereichsweise umgibt und mit diesem fest verbunden ist, ist das Dämpferelement jedoch gegenüber dem Ankerschaft axial verschiebbar. Der Hub des Dämpferelements kann demnach kleiner als der Hub des Ankers gewählt werden.In a preferred embodiment of the invention, the liftable damper element is plate-shaped or cup-shaped. The hubbewegliche damper element surrounds the armature shaft of the armature partially. In contrast to the spring plate, which also surrounds the armature shaft partially and is firmly connected to this, the damper element, however, against the armature shaft axially displaceable. The stroke of the damper element can therefore be selected smaller than the stroke of the armature.

Das Dämpferelement ist vorzugsweise in einem Hochdruckraum aufgenommen, der mit der Hochdruckbohrung hydraulisch verbunden ist. Die hydraulische Verbindung kann beispielsweise über mindestens eine in der Kopplerplatte ausgebildete Durchströmöffnung hergestellt werden. Über den Hochdruckraum kann die Hochdruckbohrung mit unter hohem Druck stehenden Kraftstoff versorgt werden.The damper element is preferably received in a high-pressure chamber, which is hydraulically connected to the high-pressure bore. The hydraulic connection can be produced, for example, via at least one flow opening formed in the coupler plate. About the high-pressure chamber, the high-pressure bore can be supplied with high-pressure fuel.

Vorteilhafterweise ist der Anker als Tauchanker ausgeführt. Eine den oberen Hubanschlag für den Anker ausbildende Anschlagfläche ist in diesem Fall bevorzugt an einem Innenpolkörper ausgebildet. Diese Ausgestaltung besitzt den Vorteil, dass die ringförmige Magnetspule radial außen angeordnet werden kann, so dass sich der Magnetkreis über den gesamten Außendurchmesser des Kraftstoffinjektors erstreckt. Es können auf diese Weise höhere Magnetkräfte erzielt werden. Zugleich erhält man einen kompaktbauenden Kraftstoffinjektor.Advantageously, the anchor is designed as a plunger anchor. An abutment surface forming the upper stroke stop for the armature is preferably formed on an inner pole body in this case. This embodiment has the advantage that the annular magnet coil can be arranged radially on the outside, so that the magnetic circuit extends over the entire outer diameter of the fuel injector. It can be achieved in this way higher magnetic forces. At the same time you get a compact fuel injector.

Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Diese zeigen:

  • Fig. 1 einen schematischen Längsschnitt durch einen nicht erfindungsgemäßen Kraftstoffinjektor in Schließstellung,
  • Fig. 2a einen schematischen Längsschnitt durch einen erfindungsgemäßen Kraftstoffinjektor gemäß einer ersten bevorzugten Ausführungsform beim Öffnen,
  • Fig. 2b eine vergrößerte Darstellung der Dämpfungseinrichtung des Kraftstoffinjektors der Fig. 2a,
  • Fig. 2c eine vergrößerte Darstellung einer modifizierten Dämpfungseinrichtung für den Kraftstoffinjektor der Fig. 2a und
  • Fig. 3 einen schematischen Längsschnitt durch einen erfindungsgemäßen Kraftstoffinjektor gemäß einer zweiten bevorzugten Ausführungsform in Schließstellung.
Preferred embodiments of the invention are explained below with reference to the accompanying drawings. These show:
  • Fig. 1 a schematic longitudinal section through a non-inventive fuel injector in the closed position,
  • Fig. 2a a schematic longitudinal section through a fuel injector according to the invention according to a first preferred embodiment when opening,
  • Fig. 2b an enlarged view of the damping device of the fuel injector of Fig. 2a .
  • Fig. 2c an enlarged view of a modified damping device for the fuel injector of Fig. 2a and
  • Fig. 3 a schematic longitudinal section through a fuel injector according to the invention according to a second preferred embodiment in the closed position.

Ausführliche Beschreibung der ZeichnungenDetailed description of the drawings

Der in den Fig. 1 im Längsschnitt dargestellte, nicht erfindungsgemäße Kraftstoffinjektor umfasst einen Düsenkörper 5 mit einer Hochdruckbohrung 4, in welcher eine Düsennadel 2 zum Freigeben und Verschließen mehrerer Einspritzöffnungen 3 hubbeweglich aufgenommen ist. Bei angehobener Düsennadel 2 werden die Einspritzöffnungen 3 freigegeben, so dass unter hohem Druck stehender Kraftstoff in einen Brennraum 1 eingespritzt wird.The in the Fig. 1 shown in longitudinal section, not inventive fuel injector comprises a nozzle body 5 with a high-pressure bore 4, in which a nozzle needle 2 for releasing and closing a plurality of injection openings 3 is received in a liftable manner. When the nozzle needle 2 is raised, the injection openings 3 are released, so that fuel under high pressure is injected into a combustion chamber 1.

Die Betätigung der Düsennadel 2 erfolgt über einen Magnetaktor, der eine Magnetspule 6 umfasst. Die Magnetspule 6 wirkt hierbei mit einem Anker 7 zusammen, der über einen Ankerschaft 8 mit der Düsennadel 2 hydraulisch koppelbar ist. Das der Düsennadel 2 zugewandte Ende des Ankerschafts 8 ist hierzu durch eine am Düsenkörper 5 abgestützte Kopplerplatte 16 geführt, die gemeinsam mit dem Ankerschaft 8, der Düsennadel 2 und einer die Düsennadel 2 endseitig umgebenden Dichthülse 18 einen Kopplerraum 19 begrenzt. Zur Abdichtung des Kopplerraums 19 gegenüber der Hochdruckbohrung 4 ist die Kopplerplatte 16 in Richtung des Düsenkörpers 5 von der Federkraft einer Kopplerfeder 17 beaufschlagt. Die Dichthülse 18 ist wiederum durch die Federkraft einer Düsenfeder 24 gegen die Kopplerplatte 16 axial vorgespannt.The actuation of the nozzle needle 2 via a magnetic actuator comprising a magnetic coil 6. In this case, the magnet coil 6 cooperates with an armature 7, which can be coupled hydraulically via an armature shaft 8 to the nozzle needle 2. The nozzle needle 2 facing the end of the armature shaft 8 is guided for this purpose by a supported on the nozzle body 5 coupler plate 16 which defines a coupler space 19 together with the armature shaft 8, the nozzle needle 2 and the nozzle needle 2 end surrounding sealing sleeve. To seal the coupler space 19 with respect to the high-pressure bore 4, the coupler plate 16 is acted upon in the direction of the nozzle body 5 by the spring force of a coupler spring 17. The sealing sleeve 18 is in turn axially biased by the spring force of a nozzle spring 24 against the coupler plate 16.

Das die Kopplerplatte 16 durchsetzende Ende des Ankerschafts 8 besitzt einen Außendurchmesser D1, der deutlich kleiner als der Außendurchmesser D2 der Düsennadel 2 gewählt ist. Das Flächenverhältnis der sich am Kopplerraum 19 gegenüber liegenden hydraulischen Wirkflächen ist demnach derart gewählt, dass die Kraftübertragung mit einer Kraftverstärkung einhergeht.The coupler plate 16 passing through the end of the armature shaft 8 has an outer diameter D 1 , which is chosen to be significantly smaller than the outer diameter D 2 of the nozzle needle 2. Accordingly, the area ratio of the hydraulic active surfaces lying opposite to the coupler space 19 is selected such that the force transmission is accompanied by a force amplification.

Wird die Magnetspule 6 des Magnetaktors bestromt, bildet sich ein Magnetfeld aus, dessen Magnetkraft FM den Anker 7 - entgegen der Federkraft FA einer Ankerfeder 32, die an einem auf den Ankerschaft 8 aufgepressten Federteller 9 abgestützt ist - in Richtung eines Innenpolkörpers 30 zieht. Der Ankerschaft 8 zieht sich dabei aus dem Kopplerraum 19 zurück, so dass sich das Volumen im Kopplerraum 19 vergrößert. Die Volumenvergrößerung wiederum bewirkt einen Druckabfall im Kopplerraum 19. Je weiter der Anker 7 in Richtung des Innenpolkörpers 30 verfährt, desto weiter baut sich der Druck im Kopplerraum 19 ab, und zwar soweit bis sich die Düsennadel 2 entgegen der Federkraft der Düsenfeder 24 und der resultierenden hydraulischen Schließkraft aus ihrem Sitz 31 bewegt. Der Anker 7 verfährt maximal bis zu einer Anschlagfläche 29, die am Innenpolkörper 30 ausgebildet ist und als oberer Hubanschlag für den Anker 7 dient. Die Düsennadel 2 folgt der Bewegung des Ankers 7, wobei durch das vorgegebene Flächenverhältnis der am Ankerschaft 8 und an der Düsennadel 2 ausgebildeten hydraulischen Wirkflächen eine Weguntersetzung bewirkt wird. Der Ankerhub AH ist somit größer als der angestrebte Düsennadelhub DNH. Die Einspritzung von Kraftstoff in den Brennraum 1 über die Einspritzöffnungen 3 beginnt.When the magnet coil 6 of the magnet actuator is energized, a magnetic field is formed whose magnetic force F M pulls the armature 7 in the direction of an inner pole body 30, counter to the spring force F A of an armature spring 32 which is supported on a spring plate 9 pressed onto the armature shaft 8 , The armature shaft 8 retracts from the coupler space 19, so that the volume in the coupler space 19 increases. The increase in volume in turn causes a pressure drop in the coupler space 19. The further the armature 7 moves in the direction of the Innenpolkörpers 30, the more the pressure in the coupler chamber 19 decreases, and as far as the nozzle needle 2 against the spring force of the nozzle spring 24 and the resulting hydraulic closing force moves out of its seat 31. The armature 7 moves maximally up to a stop surface 29 which is formed on the inner pole body 30 and serves as an upper stroke stop for the armature 7. The nozzle needle 2 follows the movement of the armature 7, wherein a path reduction is effected by the predetermined area ratio of the formed on the armature shaft 8 and on the nozzle needle 2 hydraulic active surfaces. The armature stroke A H is thus greater than the desired nozzle needle stroke DN H. The injection of fuel into the combustion chamber 1 via the injection openings 3 begins.

Der Zulauf von Kraftstoff erfolgt über einen zentral ausgebildeten Zuströmkanal 36, der im Innenpolkörper 30 ausgebildet ist und in einen Ankerraum 37 mündet. Der Ankerraum 37 ist über einen seitlich angeordneten Verbindungskanal 38 mit einem Hochdruckraum 27 verbunden, in dem die Kopplerplatte 16 aufgenommen ist. Über mindestens eine in der Kopplerplatte 16 vorgesehene Durchströmöffnung 28 ist eine Verbindung des Hochdruckraums 27 mit der Hochdruckbohrung 4 des Düsenkörpers 5 hergestellt, in dem die Einspritzöffnungen 3 ausgebildet sind.The inflow of fuel takes place via a centrally formed inflow channel 36, which is formed in the inner pole body 30 and opens into an armature space 37. The armature space 37 is connected via a laterally arranged connecting channel 38 with a high-pressure chamber 27, in which the coupler plate 16 is received. Via at least one through-flow opening 28 provided in the coupler plate 16, a connection of the high-pressure chamber 27 to the high-pressure bore 4 of the nozzle body 5 is produced, in which the injection openings 3 are formed.

Zum Beenden der Einspritzung wird die Bestromung der Magnetspule 6 beendet, so dass die Magnetkraft FM abgebaut wird. Die in Schließrichtung wirkende Federkraft FA der Ankerfeder 32 stellt in der Folge den Anker 7 in seine Ausgangsposition zurück. Dabei taucht der Ankerschaft 8 wieder tiefer in den Kopplerraum 19 ein und verkleinert das Volumen, was zu einem Druckanstieg im Kopplerraum 19 führt. Übersteigt die in Schließrichtung auf die Düsennadel 2 wirkende Federkraft der Düsenfeder 24 die resultierende hydraulische Öffnungskraft beginnt die Schließbewegung der Düsennadel 2. Die Ausgangslage des Ankers 7 ist erreicht, wenn der zur Abstützung der Ankerfeder 32 vorgesehene Federteller 9, der vorliegend auf den Ankerschaft 8 aufgepresst ist, über seine Stirnfläche 11 zur Anlage an einer als unterer Hubanschlag dienenden Anschlagfläche 13 an der Kopplerplatte 16 gelangt. Aufgrund der kegelstumpfförmigen Ausgestaltung der Anschlagfläche 13 bildet sich vor Erreichen des unteren Hubanschlags zwischen der Stirnfläche 11 des Federtellers 9 und der Anschlagfläche 13 der Kopplerplatte 16 ein Quetschspalt 15 aus, der eine Dämpfung der Bewegung des Ankers 7 bewirkt. Somit wird einem Prellen des Ankers 7 entgegen gewirkt. Zugleich stellt die kegelstumpfförmige Ausgestaltung der Anschlagfläche 13 sicher, dass der gemeinsame Kontaktbereich 20 auf eine kreisringförmige Kontaktlinie beschränkt ist, um hydraulischen Klebeeffekten beim erneuten Öffnen entgegen zu wirken.To end the injection, the energization of the solenoid 6 is terminated, so that the magnetic force F M is reduced. The force acting in the closing direction spring force F A of the armature spring 32 is in the sequence the armature 7 back to its original position. In this case, the armature shaft 8 immersed again deeper into the coupler space 19 and reduces the volume, resulting in a pressure increase in the coupler space 19. If the spring force of the nozzle spring 24 acting in the closing direction on the nozzle needle 2 exceeds the resulting hydraulic opening force, the closing movement of the nozzle needle 2 begins. The starting position of the armature 7 is reached when the provided for supporting the armature spring 32 spring plate 9, which is in the present case pressed onto the armature shaft 8, passes over its end face 11 for abutment with a serving as a lower stroke stop surface 13 on the coupler plate 16. Due to the frusto-conical configuration of the stop surface 13 is formed before reaching the lower stroke stop between the end face 11 of the spring plate 9 and the stop surface 13 of the coupler plate 16 from a nip 15, which causes a damping of the movement of the armature 7. Thus, a bouncing of the armature 7 is counteracted. At the same time, the frusto-conical configuration of the stop surface 13 ensures that the common contact region 20 is limited to an annular contact line in order to counteract hydraulic adhesive effects when reopening.

Die Federkraft der Ankerfeder 32 ist über eine Einstellscheibe33 beeinflussbar, über welche die Ankerfeder 32 mittelbar an einem Körperbauteil 34 des Kraftstoffinjektors abgestützt ist. Das Körperbauteil 34 bildet auch den Hochdruckraum 27 und den Ankerraum 37 aus, welche über den Verbindungskanal 38 hydraulisch verbunden sind. Im Körperbauteil 34 ist ferner eine Führungsbohrung 35 ausgebildet, in welcher der Ankerschaft 8 des Ankers 7 hubbeweglich aufgenommen ist.The spring force of the armature spring 32 can be influenced via a Einstellscheibe33, via which the armature spring 32 is indirectly supported on a body member 34 of the fuel injector. The body member 34 also forms the high-pressure chamber 27 and the armature chamber 37, which are hydraulically connected via the connecting channel 38. In the body member 34, a guide bore 35 is further formed, in which the armature shaft 8 of the armature 7 is received in a liftable manner.

Eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffinjektors ist in der Fig. 2a. Diese unterscheidet sich von der der Fig. 1 im Wesentlichen dadurch, dass nicht der auf den Ankerschaft 8 aufgepresste Federteller 9, sondern ein mit dem Federteller 9 mechanisch koppelbares hubbewegliches Dämpferelement 10 mit der an der Kopplerplatte 16 ausgebildeten Anschlagfläche 13 einen Quetschspalt 15 ausbildend zusammenwirkt (siehe Fig. 2b). Das Dämpferelement 10 weist hierzu eine der Kopplerplatte 16 zugewandte Stirnfläche 12 auf. Die Stirnfläche 12 ist eben ausgeführt. Demgegenüber besitzt die Anschlagfläche 13 die Form eines Kegelstumpfes, so dass der gemeinsame Kontaktbereich 20 wiederum auf eine kreisringförmige Kontaktlinie beschränkt wird. Dadurch ist zum Einen sichergestellt, dass es zur Ausbildung eines Quetschspalts 15 kommt, zum Anderen, dass hydraulische Klebeeffekte möglichst keinen Einfluss auf das Öffnungsverhalten des Kraftstoffinjektors haben. Ist zudem die Federkraft der Kopplerfeder 17 größer als die der Ankerfeder 32 gewählt, wird das Dämpferelement 10 unmittelbar nach Beendigung einer Einspritzung zurückgestellt, so dass es ebenfalls nicht zu einer Verzögerung beim nachfolgenden Öffnen aufgrund des Quetschspalts 15 kommt.A further preferred embodiment of a fuel injector according to the invention is in the Fig. 2a , This is different from the one of Fig. 1 essentially by the fact that not the pressed onto the armature shaft 8 spring plate 9, but with the spring plate 9 mechanically coupled hubbewegliches damper element 10 cooperating with the formed on the coupler plate 16 abutment surface 13 a nip 15 cooperating (see Fig. 2b ). For this purpose, the damper element 10 has an end face 12 facing the coupler plate 16. The end face 12 is flat. In contrast, the stop surface 13 has the shape of a truncated cone, so that the common contact area 20 is again limited to a circular contact line. This ensures, on the one hand, that there is the formation of a nip 15 and, on the other hand, that hydraulic adhesive effects have as little influence as possible on the opening behavior of the fuel injector. In addition, if the spring force of the coupler spring 17 is greater than that of the armature spring 32 selected, the damper element 10 is reset immediately after completion of an injection, so that there is likewise no delay in the subsequent opening due to the nip 15.

Das Dämpferelement 10 ist vorliegend topfförmig ausgebildet und umgibt den Federteller 9; die Ankerfeder 32 und die Einstellscheibe 33. Der Ankerschaft 8 des Ankers 7 ist durch das Dämpferelement 10 geführt, so dass das Dämpferelement 10 gegenüber dem Ankerschaft 8 hubbeweglich ist. Der Hub des Dämpferelements 10 wird durch die als unterer Hubanschlag dienende Anschlagfläche 13 der Kopplerplatte 16 begrenzt, die somit den unteren Hubanschlag sowohl für den Anker 7 als auch für das Dämpferelement 10 bildet. Der obere Hubanschlag zur Begrenzung des Hubs des Dämpferelements 10 wird durch eine Anschlagfläche 23 des Körperbauteils 34 gebildet. Um hydraulischen Klebeeffekten am oberen Hubanschlag entgegen zu wirken, weist das Dämpferelement 10 eine der Anschlagfläche 23 zugewandte Stirnfläche 25 auf die kegelstumpfförmig ausgebildet ist. Dies führt zu einem gemeinsamen Kontaktbereich 26, der auf eine kreisringförmige Kontaktlinie beschränkt ist.The damper element 10 is present cup-shaped and surrounds the spring plate 9; the armature spring 32 and the shim 33. The armature shaft 8 of the armature 7 is guided by the damper element 10, so that the damper element 10 with respect to the armature shaft 8 is liftable. The stroke of the damper element 10 is limited by serving as a lower stroke stop surface 13 of the coupler plate 16, which thus forms the lower stroke stop for both the armature 7 and the damper element 10. The upper stroke stop for limiting the stroke of the damper element 10 is formed by a stop surface 23 of the body member 34. In order to counteract hydraulic adhesive effects on the upper stroke stop, the damper element 10 has a stop face 23 facing the end face 25 is formed on the truncated cone. This leads to a common contact region 26, which is limited to an annular contact line.

Beim Schließen bewegt sich der Anker 7 einschließlich des auf den Ankerschaft 8 aufgepressten Federtellers 9 in Richtung der Düsennadel 2. Das Volumen im Kopplerraum 19 verkleinert sich, während der Druck steigt und die Düsennadel 2 zurück in den Sitz 31 gestellt wird. Der Anker 7 verfährt weiter nach unten, wobei der Federteller 9 über eine an einem hohlzylinderförmigen Ansatz 21 ausgebildete Kontaktfläche 22 zur Anlage an dem Dämpferelement 10 gelangt und dieses mitführt. Kurz vor Erreichen des unteren Hubanschlags, der durch die Anschlagfläche 13 gebildet wird, muss Fluid aus dem Quetschspalt 15 zwischen der Anschlagfläche 13 und der Stirnfläche 12 des Dämpferelements 10 verdrängt werden. Die hierbei eingesetzte Energie verringert die Bewegungsenergie des Ankers 7, so dass der Aufschlag der Stirnfläche 12 des Dämpferelements 10 auf der Anschlagfläche 13 gedämpft wird.When closing the armature 7 moves including the pressed onto the armature shaft 8 spring plate 9 in the direction of the nozzle needle 2. The volume in the coupler chamber 19 decreases as the pressure rises and the nozzle needle 2 is placed back in the seat 31. The armature 7 moves further down, wherein the spring plate 9 passes through a formed on a hollow cylindrical projection 21 contact surface 22 to rest on the damper element 10 and this carries. Shortly before reaching the lower stroke stop, which is formed by the stop surface 13, fluid must be displaced from the nip 15 between the stop surface 13 and the end face 12 of the damper element 10. The energy used in this case reduces the kinetic energy of the armature 7, so that the impact of the end face 12 of the damper element 10 is damped on the stop surface 13.

Eine modifizierte Dämpfungseinrichtung ist in der Fig. 2c dargestellt. Diese ist alternativ zur Dämpfungseinrichtung der Fig. 2b in den Kraftstoffinjektor der Fig. 2a einsetzbar. Hier ist die Anschlagfläche 13 nicht kegelstumpfförmig, sondern an einem hohlzylinderförmigen Ansatz 21 der Kopplerplatte 16 ausgebildet. Auch diese Maßnahme dient der Ausbildung des Quetschspalts 15 beim Schließen sowie der Reduzierung hydraulischer Klebeeffekte beim Öffnen des Injektors.A modified damping device is in the Fig. 2c shown. This is an alternative to the damping device of Fig. 2b in the fuel injector the Fig. 2a used. Here, the stop surface 13 is not frustoconical, but formed on a hollow cylindrical projection 21 of the coupler plate 16. This measure also serves to form the nip 15 when closing and to reduce hydraulic adhesive effects when opening the injector.

Abweichend von der in den Fig. 2a-2c dargestellten Ausführungsform der Kopplerplatte 16 kann diese auch entsprechend der Ausführungsform der Fig. 1 ausgebildet sein. Das heißt, dass die Kopplerplatte 16 nicht zwingend zwischen dem Düsenkörper 5 und dem Körperbauteil 34 eingespannt sein muss. Die Kopplerfeder 17 dient dann nicht nur der Rückstellung des hubbeweglichen Dämpferelements 10, sondern ferner der axialen Vorspannung der Kopplerplatte 16 gegen den Düsenkörper 5, um diese in ihrer axialen Lage zu fixieren.Deviating from the in the Fig. 2a-2c illustrated embodiment of the coupler plate 16, this can also according to the embodiment of Fig. 1 be educated. That is, the coupler plate 16 need not necessarily be clamped between the nozzle body 5 and the body member 34. The coupler spring 17 then serves not only the provision of the hubbeweglichen damper element 10, but also the axial bias of the coupler plate 16 against the nozzle body 5 in order to fix them in their axial position.

Eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffinjektors ist in der Fig. 3 dargestellt. Hier bildet die Kopplerplatte 16 zugleich das hubbewegliche Dämpferelement 10 aus. Der Hub KH der Kopplerplatte 16 bzw. des Dämpferelements 10 wird einerseits durch eine als unterer Hubanschlag dienende Anschlagfläche 14 am Düsenkörper 5 und andererseits durch eine als oberer Hubanschlag dienende Anschlagfläche 23 begrenzt, die durch einen Absatz des Körperbauteils 34 ausgebildet wird. In Richtung der Anschlagfläche 23 ist die Kopplerplatte 16 - mittelbar über die zwischenliegende Dichthülse 18 - durch die Federkraft der Düsenfeder 24 axial vorgespannt. Eine Kopplerfeder 17 ist demnach verzichtbar.A further preferred embodiment of a fuel injector according to the invention is in the Fig. 3 shown. Here, the coupler plate 16 at the same time forms the hubbewegliche damper element 10. The stroke K H of the coupler plate 16 and the damper element 10 is limited on the one hand by a serving as a lower stroke stop surface 14 on the nozzle body 5 and on the other hand by serving as an upper stroke stop surface 23 which is formed by a shoulder of the body member 34. In the direction of the abutment surface 23, the coupler plate 16 - indirectly axially biased by the spring force of the nozzle spring 24 - indirectly via the intermediate sealing sleeve 18. A coupler spring 17 is therefore dispensable.

Der gemeinsame Kontaktbereich 26 der Kopplerplatte 16 bzw. des Dämpferelements 10 mit der Anschlagfläche 23 ist auf eine kreisringförmige Kontaktfläche reduziert. Somit kann das Lösen der Kopplerplatte 16 bzw. des Dämpferelements 10 vom oberen Hubanschlag mit geringer Kraft bewirkt werden.The common contact region 26 of the coupler plate 16 or of the damper element 10 with the stop surface 23 is reduced to an annular contact surface. Thus, the release of the coupler plate 16 and the damper element 10 can be effected by the upper stroke stop with little force.

Die mit der als unterer Hubanschlag dienenden Anschlagfläche 14 zusammenwirkende Stirnfläche 12 der Kopplerplatte 16 bzw. des Dämpferelements 10 ist kegelstumpfförmig ausgeführt und weist somit eine kreisringförmige Kontaktlinie als gemeinsamen Kontaktbereich mit der Anschlagfläche 14 auf. Dies führt beim Schließen zur Ausbildung eines die Bewegung des Ankers 7 dämpfenden Quetschspalts 15. Beim Öffnen wirkt der reduzierte gemeinsame Kontaktbereich hydraulischen Klebeeffekten entgegen. Ferner ist die der Rückstellung des Dämpferelements 10 dienende Federkraft der Düsenfeder 24 größer als die der Ankerfeder 32 gewählt, so dass die Rückstellung bereits mit Beendigung eines Einspritzvorgangs erfolgt.The end face 12 of the coupler plate 16 or of the damper element 10 which cooperates with the stop surface 14 serving as the lower stroke stop is designed in the shape of a truncated cone and thus has an annular contact line as a common contact region with the stop surface 14. When closing, this results in the formation of a squeezing gap 15 which damps the movement of the armature 7. During opening, the reduced common contact area counteracts hydraulic adhesive effects. Further, the spring force of the nozzle spring 24 serving to return the damper element 10 is larger than that of the armature spring 32, so that the return is already made upon completion of an injection operation.

Claims (9)

  1. Fuel injector for injecting fuel into a combustion chamber (1) of an internal combustion engine, comprising a nozzle needle (2) which, in order to open and close at least one injection opening (3), is accommodated such that it can be lifted in a high-pressure bore (4) of a nozzle body (5), further comprising an annular magnetic coil (6) for acting on an armature (7) that can be lifted counter to the force of an armature spring (32), wherein the armature (7) can be coupled hydraulically to the nozzle needle (2) via an armature shaft (8), and wherein a damper element (10) that can be coupled mechanically to a spring plate (9) such that it can be lifted has an end face (12) facing the nozzle needle (2), the armature spring (32) being supported on the spring plate (9) and the spring plate (9) being connected to the armature shaft (8),
    characterized in that the end face (12) of the damper element (10) interacts with a stop surface (13, 14) serving as a lower stroke stop for the damper element (10) and forming a nip (15) which effects damping of the movement of the armature (7), wherein the damper element (10) that can be lifted is preloaded axially in the direction of a stop surface (23) serving as an upper stroke stop for the damper element (10), wherein the axial preload is preferably effected by the spring force of a coupler spring (17) or a nozzle spring (24), which is supported on the nozzle needle (2).
  2. Fuel injector according to Claim 1,
    characterized in that the stop surface (13) serving as a lower stroke stop for the armature (7) and/or the damper element (10) is formed on a coupler plate (16), which is preferably preloaded axially against the nozzle body (5) by the spring force of a coupler spring (17) and/or together with the armature shaft (8), the nozzle needle (2) and a sealing sleeve (18) surrounding the nozzle needle (2) at the end side, delimits a coupler chamber (19).
  3. Fuel injector according to Claim 1,
    characterized in that the stop surface (14) serving as a lower stroke stop for the armature (7) and/or the damper element (10) is formed on the nozzle body (5).
  4. Fuel injector according to one of the preceding claims,
    characterized in that the stop surface (13, 14) serving as a lower stroke stop for the armature (7) and/or the damper element (10) and/or the end face (11, 12) interacting with the stop surface (13, 14) is or are formed in the shape of a truncated cone or a sphere, so that the common contact region (20) is limited to a substantially circularly annular contact line.
  5. Fuel injector according to one of the preceding claims,
    characterized in that the stop surface (13, 14) serving as a lower stroke stop for the armature (7) and/or the damper element (10) and/or the end face (11, 12) interacting with the stop surface (13, 14) has a hollow cylindrical projection (21) for forming a circularly annular contact surface (22) .
  6. Fuel injector according to one of the preceding claims,
    characterized in that an end face (25) of the damper element (10) that faces away from the nozzle needle (2) is formed in the shape of a truncated cone or a sphere, so that a common contact region (26) with the stop surface (23) serving as an upper stroke stop is limited to a substantially circularly annular contact line.
  7. Fuel injector according to one of the preceding claims,
    characterized in that the damper element (10) is formed in the shape of a plate or a pot and partly surrounds the armature shaft (8) of the armature (7), wherein the damper element (10) can be displaced axially with respect to the armature shaft (8).
  8. Fuel injector according to one of the preceding claims,
    characterized in that the damper element (10) is accommodated in a high-pressure chamber (27) which is connected hydraulically to the high-pressure bore (4), preferably via at least one passage opening (28) formed in the coupler plate (16).
  9. Fuel injector according to one of the preceding claims,
    characterized in that the armature (7) is designed as a plunger armature, and a stop surface (29) forming the upper stroke stop for the armature (7) is formed on an inner pole body (30).
EP16166329.9A 2015-05-22 2016-04-21 Fuel injector Active EP3095998B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015209395.6A DE102015209395A1 (en) 2015-05-22 2015-05-22 fuel injector

Publications (2)

Publication Number Publication Date
EP3095998A1 EP3095998A1 (en) 2016-11-23
EP3095998B1 true EP3095998B1 (en) 2019-06-12

Family

ID=55802286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16166329.9A Active EP3095998B1 (en) 2015-05-22 2016-04-21 Fuel injector

Country Status (2)

Country Link
EP (1) EP3095998B1 (en)
DE (1) DE102015209395A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017222501A1 (en) * 2017-12-12 2019-06-13 Robert Bosch Gmbh Valve for metering a fluid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123907A (en) * 1999-10-26 2001-05-08 Aisan Ind Co Ltd Fuel injection valve
EP2336544A1 (en) * 2009-12-14 2011-06-22 Delphi Technologies, Inc. Anti-bounce mechanism for fuel injectors
DE102010028835A1 (en) 2010-05-11 2011-11-17 Robert Bosch Gmbh fuel injector
DE102012217322A1 (en) * 2012-09-25 2014-06-12 Robert Bosch Gmbh Injector
DE102013221534A1 (en) * 2013-10-23 2015-04-23 Robert Bosch Gmbh fuel injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015209395A1 (en) 2016-11-24
EP3095998A1 (en) 2016-11-23

Similar Documents

Publication Publication Date Title
EP1266135B1 (en) Electrovalve for controlling an injection valve in an internal combustion engine
EP2220360B1 (en) Switching valve for injectors
EP2634413B1 (en) Injector
WO2010000517A1 (en) Air gap boundary for solenoid valve
EP2454467B1 (en) Valve arrangement
EP2743493B1 (en) Fuel injector
WO2002033246A1 (en) Magnetic valve for controlling an injection valve of an internal combustion engine
WO2007141094A1 (en) Fuel injection device for an internal combustion engine
WO2016034402A1 (en) Proportional valve that can be actuated electromagnetically
EP3095998B1 (en) Fuel injector
EP2458194B1 (en) Fuel injector valve for combustion engines
EP2314860B1 (en) Fuel injector
EP2276922A1 (en) Fuel injector with solenoid valve
EP2547895B1 (en) Fuel injector
DE102008040068B4 (en) Concave air gap limitation with solenoid valve
DE102012201413A1 (en) Magnetic valve i.e. fast-switching magnetic valve, for common-rail injector for injecting fuel into combustion chamber of internal combustion engine, has damping chamber engaged with locating surface for creating excess stroke impact
EP3098433B1 (en) Fuel injector
EP2957760B1 (en) Nozzle assembly for a fuel injector and fuel injector
EP2229527B1 (en) On-off valve for injectors
EP1179675A2 (en) Solenoid valve controlling the injection valve of an internal combustion engine and electromagnet for it
WO2017202540A1 (en) Control valve for a fuel injection valve
DE102012224247A1 (en) Fuel injector i.e. common-rail injector, for use with self-ignition engine, has magnet armature indirectly connected with coupler, which delimits adjusting element over coupling element by spring element
WO2016062594A1 (en) Fuel injector
DE102013225376A1 (en) Solenoid valve for a fuel injector
EP3303817B1 (en) Common-rail-injector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170523

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1142867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004981

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191014

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191012

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004981

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

26N No opposition filed

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200421

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200421

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1142867

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220627

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016004981

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103