EP2743493B1 - Fuel injector - Google Patents

Fuel injector Download PDF

Info

Publication number
EP2743493B1
EP2743493B1 EP13189766.2A EP13189766A EP2743493B1 EP 2743493 B1 EP2743493 B1 EP 2743493B1 EP 13189766 A EP13189766 A EP 13189766A EP 2743493 B1 EP2743493 B1 EP 2743493B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
valve element
control
fuel injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13189766.2A
Other languages
German (de)
French (fr)
Other versions
EP2743493A3 (en
EP2743493A2 (en
Inventor
Henning Kreschel
Christian Grimminger
Holger Rapp
Marco Beier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2743493A2 publication Critical patent/EP2743493A2/en
Publication of EP2743493A3 publication Critical patent/EP2743493A3/en
Application granted granted Critical
Publication of EP2743493B1 publication Critical patent/EP2743493B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0005Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • F02M63/008Hollow valve members, e.g. members internally guided
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/008Means for influencing the flow rate out of or into a control chamber, e.g. depending on the position of the needle

Definitions

  • the invention relates to a fuel injector for a fuel injection system, in particular a common rail injection system, having the features of the preamble of claim 1.
  • an injector for injecting fuel into a combustion chamber of an internal combustion engine which has an injector housing in which a control valve for actuating an injection valve member which opens or closes at least one injection opening, is accommodated.
  • the fuel injector is supplied at its fuel inlet from a pressure accumulator with fuel under high pressure.
  • the pressure at this injector input will be referred to as "high pressure" below.
  • the control valve comprises a control valve element, by means of which a connection from a control chamber into a fuel return can be opened or closed. If the connection is released, the control chamber is relieved and the concomitant pressure drop in the control chamber causes an opening of the nozzle needle.
  • the connection to the fuel return is closed again.
  • fuel flows from at least one throttle element from a high-pressure fuel volume in the control chamber, with the result that the nozzle needle is displaced again in the direction of its rest position and closes.
  • a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine which has a control device for controlling an axial movement of the injection valve member for releasing or blocking of at least one injection port, wherein the injection opening facing away from the side of the injection valve member delimits a control chamber, which Can be filled with fuel via an inlet throttle and can be relieved via an outlet throttle.
  • a control chamber which Can be filled with fuel via an inlet throttle and can be relieved via an outlet throttle.
  • the JP 2011 208554 A describes a similar device for blocking or releasing a control chamber with a high pressure area.
  • a device is described which can open and close the hydraulic connection between the control chamber and a high pressure area.
  • Object of the present invention is to provide a fuel injector of the aforementioned type, in which also to reduce the fuel return supplied amount of fuel from the inflow from the high-pressure fuel volume is interrupted in the control room.
  • the proposed fuel injector comprises a control valve for controlling the lifting movement of a liftable nozzle needle for releasing and closing at least one injection opening, wherein the end of the nozzle needle facing away from the injection opening delimits a control space.
  • the control chamber can be filled to influence a control chamber pressure acting on the nozzle needle via an inlet throttle with high-pressure fuel and can be relieved in the open position of the control valve via an outlet throttle.
  • Upstream of the inlet throttle is a pressure-actuatable further valve with a displaceable valve element for releasing and closing a hydraulic connection of the inlet throttle formed with a high-pressure region. Due to the further valve formed upstream of the inlet throttle, the inflow from a high-pressure fuel volume into the control chamber can be interrupted.
  • the control valve is opened and the control chamber is relieved via the outlet throttle.
  • the control chamber is relieved faster because no additional amount of fuel flows into the control chamber, on the other hand, the return flow reduces and thus increases the efficiency of the fuel injection system.
  • the outlet throttle can be designed with a considerably reduced throttle cross-section.
  • the valve element has a radially or obliquely to a longitudinal axis A of the valve element extending inlet bore, which connects the control chamber with a pressure chamber.
  • the inlet throttle is formed in the inlet bore.
  • the radially or obliquely extending inlet bore opens on the one hand into the control chamber upstream of the outlet throttle, on the other hand into a pressure chamber, which is connectable in dependence on the switching position of the other valve with the high-pressure region of the fuel injector.
  • the sealing seat of the further valve, via which the connection is switched to the high-pressure region of the injector, is located upstream of the inlet throttle.
  • the valve element of the pressure-actuated further valve has a first control surface, which abuts the pressure prevailing in the control chamber, and at least one further control surface, at which the downstream of the outlet throttle between the outlet throttle and a valve seat of the control valve and / or the upstream of the inlet throttle between the other valve and the inlet throttle ruling pressure prevails.
  • the first control surface therefore preferably limits - together with the nozzle needle - the control chamber in the axial direction.
  • the at least one further control surface preferably defines a further pressure chamber, which is formed downstream of the outlet throttle in front of the valve seat of the control valve and / or upstream, preferably immediately upstream, of the inlet throttle.
  • the further valve Since in the outlet channel downstream of the outlet throttle and / or immediately upstream of the inlet throttle prevails at least temporarily different from the control chamber pressure pressure or prevail, can on the pressure difference or the pressure differences between the control chamber pressure and the pressure or the pressures in at least one further pressure chamber, the further valve are actuated.
  • the control chamber pressure preferably causes a force acting on the valve element in the closing direction, while the pressure in at least one further pressure chamber causes a force acting on the valve element in the opening direction. If, for example, the control valve is opened, the pressure drops sharply in at least one further pressure space, preferably between the outlet throttle and the valve seat of the control valve. The pressure difference causes the other valve closes and there is no connection of the control chamber via the inlet throttle with the high-pressure region of the fuel injector. This means that no fuel can flow into the control chamber via the inlet throttle. As a result, the amount of fuel flowing out via the outlet throttle is significantly reduced. Only the amount of fuel displaced from the control chamber by the nozzle needle in the course of its opening movement must still escape via the outlet throttle from the control chamber.
  • the outlet throttle can be designed in the episode with a much smaller throttle cross-section, without thereby reducing the opening speed of the nozzle needle or delayed the beginning of the injection.
  • valve element of the pressure-actuatable further valve is acted upon in the closing direction by the spring force of a spring.
  • the spring serves to return the valve element of the further valve after the end of an injection.
  • the spring is supported either directly or indirectly on the one hand on the valve element and on the other hand on the nozzle needle. In this way, the spring can be used in addition to the loading of the nozzle needle with a force independent of the high pressure closing force.
  • the valve element limits the control chamber in the axial and / or radial direction. This simplifies the formation of a first control surface to which control chamber pressure is applied.
  • the valve element may be designed to be piston-shaped and / or have a section designed as a hollow piston.
  • the valve element has a preferably axially extending bore in which the outlet throttle is formed.
  • the bore preferably opens on the one hand into the control chamber and on the other hand into a further pressure chamber, which is delimited by a further control surface of the valve element.
  • the bore thus connects the control room with the further pressure chamber.
  • This further pressure chamber is preferably formed between the outlet throttle and the valve seat of the control valve.
  • the valve element is at least partially axially slidably received in a guide bore of a valve member, wherein the guide bore is designed to form at least one pressure chamber and / or cooperating with the valve element annular sealing edge stepped.
  • the annular sealing edge seals the at least one further pressure chamber with respect to the high-pressure region of the fuel injector when the valve element bears against the sealing edge.
  • the annular sealing edge can also be arranged on the valve element and interact with a sealing surface on the valve piece.
  • valve element delimit the at least one pressure chamber formed in the guide bore in the radial and / or axial direction.
  • the surfaces defining a pressure chamber in the axial direction preferably also serve as control surfaces, via which the valve element of the further valve can be acted upon by a pressure force.
  • the valve element defines at least two pressure chambers, which are arranged at an axial distance from one another and are hydraulically connected via the inlet throttle.
  • the inlet throttle is preferably formed in the valve piece and not in the valve element.
  • the valve element is acted upon in the opening direction of the spring force of a spring - alternatively or in addition to acting in the closing direction spring force of the aforementioned spring.
  • the spring force of the further, acting in the opening direction spring is preferably selected to be greater than the spring force of the spring acting in the closing direction. This applies in particular when the spring acting in the closing direction also serves to return the nozzle needle.
  • the spring force of the other spring causes the other valve in the idle state assumes an open position.
  • the valve element has a cooperating with a stroke stop radially extending stop surface.
  • the opening stroke of the valve element is limited in this way.
  • the stroke stop can be formed by a body of the fuel injector, in particular a nozzle body or a holding body, or by a separate, preferably disk-shaped component.
  • the disc-shaped component is used in the high-pressure region of the fuel injector and preferably has at least one through-flow opening in order to ensure a connection of the pressure chambers located on this side and beyond the disk-shaped component.
  • the injection opening facing away from the end of the nozzle needle is surrounded by a sealing sleeve.
  • the sealing sleeve defines the control space formed between the nozzle needle and the valve element of the further valve in the radial direction.
  • the sealing sleeve is preferably supported on the valve element and / or axially prestressed in the direction of the valve element for sealing the control chamber with respect to the high-pressure region via the spring force of the spring.
  • the sealing sleeve allows the compensation of any axial offset between the nozzle needle and the valve element. At the same time, the formation of the valve element is simplified.
  • the Indian FIG. 1 schematically illustrated fuel injector according to the invention comprises a liftable nozzle needle 2 for releasing and closing a plurality of injection openings 3.
  • the movement of the nozzle needle 2 is controlled by a control valve 1, which in the present case designed as a ball valve and a solenoid actuator 27 can be actuated.
  • a spherical control valve element 28 of the control valve 1 When the solenoid actuator 27 is deactivated, a spherical control valve element 28 of the control valve 1 is pressed against a valve seat 30 by the pressure force of a spring 29.
  • pressure transmitting member is an anchor member 31 which is disposed between the spring 29 and the control valve member 28.
  • the armature element 31 When activated solenoid actuator 27, the armature element 31 is pulled against the spring force of the spring 29 in the direction of the magnetic actuator 27, wherein the control valve 1 opens.
  • the control valve 1 When the control valve 1 is open, there is a connection of a control chamber 4 via an outlet throttle 7 with a return 32, so that a relief of the control chamber 4 is effected.
  • the pressure drop in the control chamber 4 has the consequence that the nozzle needle 2, which limits the control chamber 4 with one end, opens and the injection openings 3 releases. High-pressure fuel from a high-pressure region 11 is then injected into the combustion chamber of an internal combustion engine (not shown) via the injection openings 3. To close the nozzle needle 2, the activation of the solenoid actuator 27 is terminated, so that the spring force of the spring 29 causes the return of the anchor member 31, wherein the spherical control valve member 28 is placed back in the valve seat 30 and the control valve 1 closes.
  • the fuel flowing through an inlet throttle 8 from a volume of high-pressure fuel into the control chamber 4 causes a reversal of direction of the nozzle needle movement and, consequently, a continuous closing movement of the nozzle needle 2.
  • the nozzle needle 2 returns to its original position spent and the injection ends.
  • a pressure-actuatable further valve 9 is arranged upstream of the inlet throttle 8, which interrupts the supply of high-pressure fuel to the inlet throttle 8 and then into the control chamber 4 in the closed position.
  • the pressure-actuable further valve 9 has a displaceable valve element 10 with a first control surface 12 and a second control surface 13.
  • the first control surface 12 limits the control chamber 4, so that here control chamber pressure is applied.
  • the pressure prevails downstream of the outlet throttle 7 between the outlet throttle 7 and the valve seat 30 of the control valve 1. With the opening of the control valve 1, the pressure drops downstream of the outlet throttle 7 more than in the control chamber 4.
  • the pressure difference causes the valve element 10 of the further valve 9 is acted upon by a force acting on the first control surface 12 closing force which is greater than a force acting on the second control surface 13 opening force resulting from the hydraulic pressure applied thereto and the spring force of a spring 14.
  • This has the consequence that the further valve 9 closes and, for lack of connection to a high-pressure accumulator 33, no fuel flows via the inlet throttle 8 into the control chamber 4.
  • the pressure conditions on the valve element 10 of the other valve 9 are equalized, which has an opening of the other valve 9 and thus a rapid refilling of the control chamber 4 via the inlet throttle 8 result.
  • FIG. 2 an alternative embodiment of a fuel injector according to the invention is shown, wherein the representation has been limited to the hydraulic circuit diagram.
  • the downstream of the outlet throttle 7 between outlet throttle 7 and the valve seat 30 of the control valve 1 prevailing pressure on the second control surface 13 of the valve element 10 of the other valve, but also the pressure immediately upstream of the inlet throttle. 8 between the other valve 9 and the inlet throttle 8 prevails.
  • the switching movement of the valve element 10 can be significantly accelerated in this way.
  • the high-pressure fuel from a high-pressure volume 11 of the injector in front of the sealing seat of the other valve 9 may act on a part of the second control surface 13, which favors the immediate initiation of the opening operation of the further valve 9 after closing the control valve 1.
  • FIGS. 3 to 5 is an embodiment of a fuel injector, not part of the invention, can be seen, wherein the representation is limited to the range of the other valve 9.
  • the further valve 9 has a displaceable valve element 10, which is designed as a stepped hollow piston for forming the control chamber 4.
  • the injection openings 3 facing away from the end of the nozzle needle 2 is added, which thus limits the control chamber 4 axially.
  • the outlet throttle 7 is formed, via which the control chamber 4 - with the control valve 1 open - with the return 32 (see FIG. 1 ) is connectable.
  • the second section is used here at the same time as a guide portion which is received in a guide bore 15 of a valve member 16.
  • the guide bore 15 has sections with different inner diameters, so that a plurality of pressure chambers 17, 18, 19 are formed in the guide region between the valve piece 16 and the valve element 10.
  • a first pressure chamber 17 is formed between a radially extending shoulder of the guide bore 15 and an end face of the valve element 10, which is part of the second control surface 13.
  • This first pressure chamber 17 thus comprises the fuel volume between the outlet throttle 7 and the valve seat 30 of the control valve 1.
  • An annular second pressure chamber 18 is formed by a circumferential groove in the guide bore 15.
  • This second pressure chamber 18 is connected via a radially or obliquely through the valve element 10 leading inlet bore 5 with the control chamber 4. Consequently, in this second pressure chamber 18 there is the control chamber pressure or a pressure which differs negligibly from the control chamber pressure, so that the second pressure chamber 18 represents an extension or a component of the control chamber 4 from a functional point of view. Furthermore, the second pressure chamber 18 and thus the control chamber 4 via a throttle bore, which forms the inlet throttle 8, connected to a third pressure chamber 19 which is limited both in the radial direction and in the axial direction of the valve element 10.
  • the third pressure chamber 19 limiting surfaces on the valve element 10 are also part of the second control surface 13, wherein the pressure applied here corresponds to the pressure immediately upstream of the inlet throttle 8 between the other valve 9 and the inlet throttle 8.
  • the third pressure chamber 19 is sealed off from the high-pressure region 11.
  • the high-pressure fuel in the high-pressure region 11 causes an axial force on the valve element 10 by acting on the annular surface between the sealing edge 20 and the guide diameter, in which the nozzle needle 2 is guided in the valve element 10.
  • This guide diameter will be referred to in the following as "control chamber diameter”.
  • this axial force is directed in the opening or in the closing direction of the valve element 10.
  • the area with which the valve element 10 adjoins the high-pressure region 11 thus also represents a part of the second pressure surface 13.
  • the valve element 10 is acted upon in the closing direction, holds the valve element 10 in contact with the annular sealing edge 20, as long as the hydraulic pressure conditions on the valve element 10 are largely balanced. In this position of the valve element 10, there is no connection of the control chamber 4 and the pressure chambers 18 and 19 to the external high-pressure accumulator 33 or to the high-pressure region 11 of the fuel injector ( FIG. 3 ).
  • control valve 1 If the control valve 1 opens, the pressure in the pressure chamber 17 drops rapidly downstream of the outlet throttle 7, as a result of which the valve element 10 is subjected to an additional pressure force acting in the closing direction ( FIG. 4 ). With closing of the control valve 1, the flow through the outlet throttle 7 is suppressed and there is pressure equalization between the control chamber 4 and the first pressure chamber 17. The initially still present opening movement of the nozzle needle 2 now leads to a compression of the fuel in the control chamber 4 and thus to a brief Increase in the control room pressure. For a short time, the control chamber pressure may exceed the high pressure in the high-pressure region 11 of the injector.
  • the nozzle needle 2 Due to the increase in the control chamber pressure, the nozzle needle 2 is braked and reverses its direction of movement, so that the fuel in the control chamber 4 relaxes again and the control chamber pressure decreases again. If the sealing diameter 20 selected larger than the control chamber diameter, so the short-term exceeding the pressure level in the high pressure chamber 11 by the pressure in the control chamber 4 and in the pressure chambers 17, 18 and 19 results in a resulting opening force on the valve element 10 and thus to open at the Sealing edge 20 formed sealing seat.
  • the sealing diameter 20 is smaller than the control chamber diameter
  • the pressure level in the high-pressure chamber 11 by the pressure in the control chamber 4 and in the pressure chambers 17, 18 and 19 causes an additional closing force on the valve element 10 and the other valve 9 initially remains closed.
  • the opening time of the further valve 9 is independent of the height of the short pressure pulse in the control chamber 4th during the nozzle needle reversal. Therefore, this embodiment is particularly advantageous.
  • the opening operation of the valve element 10 causes a further increase in the force in the opening direction on the valve element 10 and thus a positive feedback on the opening movement, which stabilizes the opening operation of the other valve 9.
  • a received between the valve member 16 and a body 24 disc-shaped member 25 forms a stroke stop 22, which cooperates with a radially extending stop surface 23 on the valve element 10 to limit limiting.
  • FIGS. 6 to 8 An alternative concrete embodiment of a fuel injector according to the invention is in the FIGS. 6 to 8 shown.
  • the inlet throttle 8 is formed directly in the radially or obliquely extending inlet bore 5 in the valve element 10. Consequently, it connects the control chamber 4 in this embodiment directly to the third pressure chamber 19, which is bounded in both the radial and axial direction of the valve element 10.
  • the arrangement of the inlet throttle 8 in the valve element 10 eliminates the formation of the second pressure chamber 18.
  • the operation of the in the FIGS. 6 to 8 illustrated embodiment corresponds to in the FIGS. 3 to 5 shown embodiment, so that reference is made thereto.
  • FIG. 6 to 8 illustrated embodiment corresponds to in the FIGS. 3 to 5 shown embodiment, so that reference is made thereto.
  • FIG. 6 shows the position of the valve element 10 of the further valve 9 when the control valve 1 is closed, in which the spring force of the spring 14 presses the valve element 10 against the annular sealing edge 20.
  • the control valve 1 With opening of the control valve 1 acts on the valve element 10 an additional force acting in the closing direction compressive force ( FIG. 7 ).
  • the further valve 9 opens as a result of the increase in pressure in the first pressure chamber 17 and consequently also in the third pressure chamber 19 (FIG. FIG. 8 ).
  • FIG. 9 A modification of the in the FIGS. 6 to 8 illustrated embodiment is the FIG. 9 refer to.
  • the valve element 10 is acted upon in the opening direction by the spring force of a spring 21, wherein the spring force of the spring 21 is greater than that of the spring 14, so that when the control valve 1 is closed, the other Valve 9 is opened and a connection of the control chamber 4 via the inlet throttle 8, the pressure chamber 19 and the open seat of the other valve 9 with the high-pressure region 11 is.
  • the connection is only then separated when the control valve 1 opens and the pressure in the first pressure chamber 17 drops.
  • the spring 14 which at the same time serves as a nozzle needle closing spring in the present case, is not supported on the valve element 10 but, for example, on the body 24, it is not necessary for the spring force of the spring 21 to be greater than that of the spring 14.
  • An additional spring 21, whose spring force acts on the valve element 10 in the opening direction, can also in the in the FIGS. 3 to 5 used embodiment shown.
  • FIG. 10 out A further preferred specific embodiment of a fuel injector according to the invention is based on FIG. 10 out.
  • the control chamber 4 limiting end of the nozzle needle 2 is not performed in the valve element 10, but in a sealing sleeve 26 which is axially biased by the spring force of the spring 14 against the valve member 10.
  • the sealing sleeve 26 allows the compensation of any axial offset between the nozzle needle 2 and the valve element 10. Further, it simplifies the design of the valve element 10.
  • the sealing sleeve 26 can also in an injector according to the FIGS. 3 to 5 be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die Erfindung betrifft einen Kraftstoffinjektor für ein Kraftstoffeinspritzsystem, insbesondere ein Common-Rail-Einspritzsystem, mit den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a fuel injector for a fuel injection system, in particular a common rail injection system, having the features of the preamble of claim 1.

Stand der TechnikState of the art

Aus der Offenlegungsschrift DE 10 2006 049 050 A1 geht ein Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Verbrennungskraftmaschine hervor, der ein Injektorgehäuse besitzt, in dem ein Steuerventil zur Ansteuerung eines Einspritzventilgliedes, das mindestens eine Einspritzöffnung freigibt oder verschließt, aufgenommen ist. Der Kraftstoffinjektor wird an seinem Kraftstoffzulauf aus einem Druckspeicher mit unter Hochdruck stehendem Kraftstoff versorgt. Der Druck an diesem Injektoreingang wird im folgenden als "Hochdruck" bezeichnet. Das Steuerventil umfasst ein Steuerventilelement, durch welches eine Verbindung aus einem Steuerraum in einen Kraftstoffrücklauf freigebbar oder verschließbar ist. Ist die Verbindung freigegeben, wird der Steuerraum entlastet und der damit einhergehende Druckabfall im Steuerraum bewirkt ein Öffnen der Düsennadel. Zum Schließen der Düsennadel wird die Verbindung zum Kraftstoffrücklauf wieder verschlossen. Dabei strömt über mindestens ein Drosselelement Kraftstoff aus einem unter Hochdruck stehenden Kraftstoffvolumen in den Steuerraum, was zur Folge hat, dass die Düsennadel wieder in Richtung ihrer Ruheposition verdrängt wird und schließt.From the publication DE 10 2006 049 050 A1 For example, an injector for injecting fuel into a combustion chamber of an internal combustion engine, which has an injector housing in which a control valve for actuating an injection valve member which opens or closes at least one injection opening, is accommodated. The fuel injector is supplied at its fuel inlet from a pressure accumulator with fuel under high pressure. The pressure at this injector input will be referred to as "high pressure" below. The control valve comprises a control valve element, by means of which a connection from a control chamber into a fuel return can be opened or closed. If the connection is released, the control chamber is relieved and the concomitant pressure drop in the control chamber causes an opening of the nozzle needle. To close the nozzle needle, the connection to the fuel return is closed again. In this case, fuel flows from at least one throttle element from a high-pressure fuel volume in the control chamber, with the result that the nozzle needle is displaced again in the direction of its rest position and closes.

Da über das mindestens eine Drosselelement konstant eine Verbindung zwischen einem unter Hochdruck stehenden Kraftstoffvolumen und dem Steuerraum besteht, unabhängig davon, ob die Verbindung zum Kraftstoffrücklauf geöffnet oder geschlossen ist, fließt eine nicht unwesentliche Menge an Kraftstoff bei geöffnetem Steuerventil durch den Steuerraum hindurch vom Hochdruckbereich des Injektors zum Kraftstoffrücklauf. Diese durchströmende Kraftstoffmenge trägt nicht direkt zur Injektorfunktion bei, muss aber zusätzlich durch eine Hochdruckpumpe bereitgestellt werden. Die funktional nutzlose, durchströmende Kraftstoffmenge erhöht also die Anforderungen an die Fördermengenkapazität der Hochdruckpumpe und es erhöhen sich deren Antriebsmoment sowie Antriebsleistung. Zugleich verschlechtern sich der Wirkungsgrad des Kraftstoffeinspritzsystems und die CO2-Bilanz des zugehörigen Fahrzeugs.Since there is a constant connection between a high-pressure fuel volume and the control chamber via the at least one throttle element, irrespective of whether the connection to the fuel return is open or closed, a not insignificant amount of fuel flows when the fuel is open Control valve through the control chamber from the high pressure area of the injector to the fuel return. This amount of fuel flowing through does not contribute directly to the injector function, but must additionally be provided by a high-pressure pump. The functionally useless, flowing fuel quantity thus increases the requirements of the delivery capacity of the high pressure pump and it increases their drive torque and drive power. At the same time, the efficiency of the fuel injection system and the CO 2 balance of the associated vehicle deteriorate.

Aus der WO 2010/088781 A1 ist ein Kraftstoff-Injektor zum Einspritzen von Brennstoff in den Brennraum einer Verbrennungskraftmaschine bekannt, welches eine Steuervorrichtung zur Steuerung einer axialen Bewegung des Einspritzventilglieds zum Freigeben bzw. Sperren von mindestens einer Einspritzöffnung aufweist, wobei die der Einspritzöffnung abgewandten Seite des Einspritzventilglieds einen Steuerraum begrenzt, welcher über eine Zulaufdrossel mit Kraftstoff befüllbar und über eine Ablaufdrossel entlastbar ist. Durch hydraulische Druckveränderung im Steuerraum ist die axiale Bewegung des Einspritzventilglieds steuerbar. Durch ein weiteres druckbetätigbares Zwischenventil mit einem verschiebbaren Zwischenventilglied kann eine hydraulische Verbindung zwischen dem Steuerraum und einem Hochdruckbereich freigegeben bzw. gesperrt werden.
Die JP 2011 208554 A beschreibt eine ähnliche Vorrichtung zur Sperrung bzw. Freigabe eines Steuerraums mit einem Hochdruckbereich.
In diesen beiden Dokumenten wird als Lösung für die nicht direkt zur Injektorfunktion beitragende Kraftstoffmenge, welche direkt vom Hochdruckbereich des Injektors in den Kraftstoffrücklauf fließt, eine Vorrichtung beschrieben, welche die hydraulische Verbindung zwischen dem Steuerraum und einem Hochdruckbereich öffnen und schließen kann.
From the WO 2010/088781 A1 a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine is known, which has a control device for controlling an axial movement of the injection valve member for releasing or blocking of at least one injection port, wherein the injection opening facing away from the side of the injection valve member delimits a control chamber, which Can be filled with fuel via an inlet throttle and can be relieved via an outlet throttle. By hydraulic pressure change in the control chamber, the axial movement of the injection valve member is controllable. By a further pressure-actuated intermediate valve with a displaceable intermediate valve member, a hydraulic connection between the control chamber and a high-pressure region can be enabled or disabled.
The JP 2011 208554 A describes a similar device for blocking or releasing a control chamber with a high pressure area.
In these two documents, as a solution for the not directly contributing to the injector function amount of fuel flowing directly from the high pressure region of the injector in the fuel return, a device is described which can open and close the hydraulic connection between the control chamber and a high pressure area.

Aufgabe der vorliegenden Erfindung ist es, einen Kraftstoffinjektor der vorstehend genannten Art anzugeben, bei welchem ebenfalls zur Verringerung der dem Kraftstoffrücklauf zugeführten Kraftstoffmenge der Zustrom aus dem unter Hochdruck stehenden Kraftstoffvolumen in den Steuerraum unterbrechbar ist.Object of the present invention is to provide a fuel injector of the aforementioned type, in which also to reduce the fuel return supplied amount of fuel from the inflow from the high-pressure fuel volume is interrupted in the control room.

Zur Lösung der Aufgabe wird der Kraftstoffinjektor mit den Merkmalen des Anspruchs 1 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.To solve the problem, the fuel injector with the features of claim 1 is proposed. Advantageous developments of the invention are specified in the subclaims.

Offenbarung der ErfindungDisclosure of the invention

Der vorgeschlagene Kraftstoffinjektor umfasst ein Steuerventil zur Steuerung der Hubbewegung einer hubbeweglichen Düsennadel zum Freigeben und Verschließen wenigstens einer Einspritzöffnung, wobei das der Einspritzöffnung abgewandte Ende der Düsennadel einen Steuerraum begrenzt. Der Steuerraum ist zur Beeinflussung eines auf die Düsennadel einwirkenden Steuerraumdrucks über eine Zulaufdrossel mit unter Hochdruck stehendem Kraftstoff befüllbar und in Offenstellung des Steuerventils über eine Ablaufdrossel entlastbar. Stromaufwärts der Zulaufdrossel ist ein druckbetätigbares weiteres Ventil mit einem verschiebbaren Ventilelement zum Freigeben und Verschließen einer hydraulischen Verbindung der Zulaufdrossel mit einem Hochdruckbereich ausgebildet. Durch das weitere stromaufwärts der Zulaufdrossel ausgebildete Ventil kann der Zustrom aus einem unter Hochdruck stehenden Kraftstoffvolumen in den Steuerraum unterbrochen werden. Dies ist dann von Vorteil, wenn das Steuerventil geöffnet und der Steuerraum über die Ablaufdrossel entlastet wird. Denn einerseits wird der Steuerraum schneller entlastet, da keine zusätzliche Menge Kraftstoff in den Steuerraum nachströmt, andererseits wird die Rücklaufmenge reduziert und damit der Wirkungsgrad des Kraftstoffeinspritzsystems erhöht. Da sich der bei geöffnetem Steuerventil durch die Ablaufdrossel fließende Volumenstrom erheblich reduziert, kann die Ablaufdrossel mit einem erheblich verringerten Drosselquerschnitt ausgeführt werden. Indem das weitere Ventil druckbetätigbar ist, kann dieses als einfaches passives Ventil ausgelegt sein, welches unabhängig von einer Aktorik, insbesondere unabhängig von einem zur Betätigung des Steuerventils vorgesehenen Aktor betätigbar ist. Erfindungsgemäß besitzt das Ventilelement eine radial oder schräg zu einer Längsachse A des Ventilelements verlaufende Zulaufbohrung, welche den Steuerraum mit einem Druckraum verbindet. Die Zulaufdrossel ist in der Zulaufbohrung ausgebildet. Bevorzugt mündet die radial oder schräg verlaufende Zulaufbohrung einerseits in den Steuerraum stromaufwärts der Ablaufdrossel, andererseits in einen Druckraum, der in Abhängigkeit von der Schaltstellung des weiteren Ventils mit dem Hochdruckbereich des Kraftstoffinjektors verbindbar ist. Der Dichtsitz des weiteren Ventils, über den die Verbindung zum Hochdruckbereich des Injektors geschaltet wird, liegt stromaufwärts der Zulaufdrossel.The proposed fuel injector comprises a control valve for controlling the lifting movement of a liftable nozzle needle for releasing and closing at least one injection opening, wherein the end of the nozzle needle facing away from the injection opening delimits a control space. The control chamber can be filled to influence a control chamber pressure acting on the nozzle needle via an inlet throttle with high-pressure fuel and can be relieved in the open position of the control valve via an outlet throttle. Upstream of the inlet throttle is a pressure-actuatable further valve with a displaceable valve element for releasing and closing a hydraulic connection of the inlet throttle formed with a high-pressure region. Due to the further valve formed upstream of the inlet throttle, the inflow from a high-pressure fuel volume into the control chamber can be interrupted. This is advantageous when the control valve is opened and the control chamber is relieved via the outlet throttle. On the one hand, the control chamber is relieved faster because no additional amount of fuel flows into the control chamber, on the other hand, the return flow reduces and thus increases the efficiency of the fuel injection system. Since the volume flow flowing through the outlet throttle when the control valve is open is considerably reduced, the outlet throttle can be designed with a considerably reduced throttle cross-section. By the further valve is pressure-actuated, this can be designed as a simple passive valve, which is independent of an actuator, in particular independently of a provided for actuating the control valve actuator operable. According to the invention, the valve element has a radially or obliquely to a longitudinal axis A of the valve element extending inlet bore, which connects the control chamber with a pressure chamber. The inlet throttle is formed in the inlet bore. Preferably, the radially or obliquely extending inlet bore opens on the one hand into the control chamber upstream of the outlet throttle, on the other hand into a pressure chamber, which is connectable in dependence on the switching position of the other valve with the high-pressure region of the fuel injector. The sealing seat of the further valve, via which the connection is switched to the high-pressure region of the injector, is located upstream of the inlet throttle.

Gemäß einer ersten bevorzugten Ausführungsform der Erfindung besitzt das Ventilelement des druckbetätigbaren weiteren Ventils eine erste Steuerfläche, an welcher der im Steuerraum herrschende Druck anliegt, und wenigstens eine weitere Steuerfläche, an welcher der stromabwärts der Ablaufdrossel zwischen der Ablaufdrossel und einem Ventilsitz des Steuerventils und/oder der stromaufwärts der Zulaufdrossel zwischen dem weiteren Ventil und der Zulaufdrossel herrschende Druck anliegt. Die erste Steuerfläche begrenzt demnach bevorzugt - gemeinsam mit der Düsennadel - den Steuerraum in axialer Richtung. Die wenigstens eine weitere Steuerfläche begrenzt vorzugsweise einen weiteren Druckraum, der stromabwärts der Ablaufdrossel vor dem Ventilsitz des Steuerventils und/oder stromaufwärts, vorzugsweise unmittelbar stromaufwärts, der Zulaufdrossel ausgebildet ist. Da im Ablaufkanal stromabwärts der Ablaufdrossel und/oder unmittelbar stromaufwärts der Zulaufdrossel ein zumindest zeitweise vom Steuerraumdruck abweichender Druck herrscht bzw. herrschen, kann über die Druckdifferenz bzw. die Druckdifferenzen zwischen dem Steuerraumdruck und dem Druck bzw. den Drücken im wenigstens einen weiteren Druckraum das weitere Ventil betätigt werden.According to a first preferred embodiment of the invention, the valve element of the pressure-actuated further valve has a first control surface, which abuts the pressure prevailing in the control chamber, and at least one further control surface, at which the downstream of the outlet throttle between the outlet throttle and a valve seat of the control valve and / or the upstream of the inlet throttle between the other valve and the inlet throttle ruling pressure prevails. The first control surface therefore preferably limits - together with the nozzle needle - the control chamber in the axial direction. The at least one further control surface preferably defines a further pressure chamber, which is formed downstream of the outlet throttle in front of the valve seat of the control valve and / or upstream, preferably immediately upstream, of the inlet throttle. Since in the outlet channel downstream of the outlet throttle and / or immediately upstream of the inlet throttle prevails at least temporarily different from the control chamber pressure pressure or prevail, can on the pressure difference or the pressure differences between the control chamber pressure and the pressure or the pressures in at least one further pressure chamber, the further valve are actuated.

Vorzugsweise bewirkt der Steuerraumdruck eine auf das Ventilelement in Schließrichtung wirkende Kraft, während der Druck im wenigstens einen weiteren Druckraum eine auf das Ventilelement in Öffnungsrichtung wirkende Kraft bewirkt. Wird beispielsweise das Steuerventil geöffnet, fällt der Druck im wenigstens einen weiteren Druckraum, vorzugsweise zwischen der Ablaufdrossel und dem Ventilsitz des Steuerventils, stark ab. Die Druckdifferenz bewirkt, dass das weitere Ventil schließt und keine Verbindung des Steuerraums über die Zulaufdrossel mit dem Hochdruckbereich des Kraftstoffinjektors besteht. Das heißt, dass kein Kraftstoff über die Zulaufdrossel in den Steuerraum nachströmen kann. In der Folge wird die über die Ablaufdrossel abströmende Kraftstoffmenge deutlich reduziert. Lediglich die von der Düsennadel im Zuge ihrer Öffnungsbewegung aus dem Steuerraum verdrängte Kraftstoffmenge muss noch über die Ablaufdrossel aus dem Steuerraum entweichen. Eine vom Hochdruckbereich über Zulauf- und Ablaufdrossel zum Injektorrücklauf fließende Kraftstoffmenge existiert nicht mehr. Die Ablaufdrossel kann in der Folge mit einem erheblich kleineren Drosselquerschnitt ausgelegt werden, ohne dass sich dadurch die Öffnungsgeschwindigkeit der Düsennadel verringert oder der Beginn der Einspritzung verzögert. Schließt das Steuerventil, dann steigt der Druck im wenigstens einen Druckraum zwischen der Ablaufdrossel und dem Steuerventilsitz auf den Steuerraumdruck an. Des weiteren kann die Druckdifferenz zwischen dem Hochdruck und dem Steuerraumdruck eine zusätzliche Öffnungskraft auf das Ventilelement des weiteren Ventils bewirken, so dass dieses nach dem Schließen des Steuerventils sicher zu öffnen beginnt. Über den dadurch entstehenden Druckabfall an der Zulaufdrossel kann dann eine weitere Steigerung der Öffnungskraft auf das Ventilelement bewirkt werden, so dass dieses schnell vollständig öffnet und unmittelbar stromaufwärts der Zulaufdrossel sehr schnell wieder der Hochdruck ungedrosselt ansteht.The control chamber pressure preferably causes a force acting on the valve element in the closing direction, while the pressure in at least one further pressure chamber causes a force acting on the valve element in the opening direction. If, for example, the control valve is opened, the pressure drops sharply in at least one further pressure space, preferably between the outlet throttle and the valve seat of the control valve. The pressure difference causes the other valve closes and there is no connection of the control chamber via the inlet throttle with the high-pressure region of the fuel injector. This means that no fuel can flow into the control chamber via the inlet throttle. As a result, the amount of fuel flowing out via the outlet throttle is significantly reduced. Only the amount of fuel displaced from the control chamber by the nozzle needle in the course of its opening movement must still escape via the outlet throttle from the control chamber. A fuel quantity flowing from the high-pressure region via inlet and outlet throttle to the injector return no longer exists. The outlet throttle can be designed in the episode with a much smaller throttle cross-section, without thereby reducing the opening speed of the nozzle needle or delayed the beginning of the injection. When the control valve closes, the pressure in the at least one pressure chamber between the outlet throttle and the control valve seat increases to the control chamber pressure. Furthermore, the pressure difference between the high pressure and the control chamber pressure can cause an additional opening force on the valve element of the further valve, so that it begins to open safely after closing the control valve. On the resulting pressure drop at the inlet throttle then a further increase in the opening force can be effected on the valve element, so that this quickly opens completely and immediately upstream of the inlet throttle again very high pressure unthrottled pending.

Weiterhin bevorzugt ist das Ventilelement des druckbetätigbaren weiteren Ventils in Schließrichtung von der Federkraft einer Feder beaufschlagt. Die Feder dient der Rückstellung des Ventilelements des weiteren Ventils nach dem Ende einer Einspritzung. Vorzugsweise ist die Feder einerseits am Ventilelement und andererseits an der Düsennadel jeweils unmittelbar oder mittelbar abgestützt. Auf diese Weise kann die Feder zusätzlich zur Beaufschlagung der Düsennadel mit einer vom Hochdruck unabhängigen Schließkraft eingesetzt werden.Further preferably, the valve element of the pressure-actuatable further valve is acted upon in the closing direction by the spring force of a spring. The spring serves to return the valve element of the further valve after the end of an injection. Preferably, the spring is supported either directly or indirectly on the one hand on the valve element and on the other hand on the nozzle needle. In this way, the spring can be used in addition to the loading of the nozzle needle with a force independent of the high pressure closing force.

Vorteilhafterweise begrenzt das Ventilelement den Steuerraum in axialer und/oder radialer Richtung. Dies vereinfacht die Ausbildung einer ersten Steuerfläche, an welcher Steuerraumdruck anliegt. Das Ventilelement kann hierzu kolbenförmig ausgebildet sein und/oder einen als Hohlkolben ausgebildeten Abschnitt besitzen. Des Weiteren wird vorgeschlagen, dass das Ventilelement eine vorzugsweise axial verlaufende Bohrung besitzt, in der die Ablaufdrossel ausgebildet ist. Die Bohrung mündet bevorzugt einerseits in den Steuerraum und andererseits in einen weiteren Druckraum, der von einer weiteren Steuerfläche des Ventilelements begrenzt wird. Die Bohrung verbindet demnach den Steuerraum mit dem weiteren Druckraum. Dieser weitere Druckraum ist vorzugsweise zwischen der Ablaufdrossel und dem Ventilsitz des Steuerventils ausgebildet.Advantageously, the valve element limits the control chamber in the axial and / or radial direction. This simplifies the formation of a first control surface to which control chamber pressure is applied. The valve element may be designed to be piston-shaped and / or have a section designed as a hollow piston. Furthermore, it is proposed that the valve element has a preferably axially extending bore in which the outlet throttle is formed. The bore preferably opens on the one hand into the control chamber and on the other hand into a further pressure chamber, which is delimited by a further control surface of the valve element. The bore thus connects the control room with the further pressure chamber. This further pressure chamber is preferably formed between the outlet throttle and the valve seat of the control valve.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist das Ventilelement zumindest teilweise in einer Führungsbohrung eines Ventilstücks axial verschiebbar aufgenommen, wobei die Führungsbohrung zur Ausbildung wenigstens eines Druckraums und/oder einer mit dem Ventilelement zusammenwirkenden ringförmigen Dichtkante gestuft ausgeführt ist. Die ringförmige Dichtkante dichtet den wenigstens einen weiteren Druckraum gegenüber dem Hochdruckbereich des Kraftstoffinjektors ab, wenn das Ventilelement an der Dichtkante anliegt. Alternativ kann die ringförmige Dichtkante auch am Ventilelement angeordnet sein und mit einer Dichtfläche am Ventilstück zusammenwirken.According to a further preferred embodiment of the invention, the valve element is at least partially axially slidably received in a guide bore of a valve member, wherein the guide bore is designed to form at least one pressure chamber and / or cooperating with the valve element annular sealing edge stepped. The annular sealing edge seals the at least one further pressure chamber with respect to the high-pressure region of the fuel injector when the valve element bears against the sealing edge. Alternatively, the annular sealing edge can also be arranged on the valve element and interact with a sealing surface on the valve piece.

Des Weiteren wird vorgeschlagen, dass das Ventilelement den wenigstens einen innerhalb der Führungsbohrung ausgebildeten Druckraum in radialer und/oder axialer Richtung begrenzt. Die einen Druckraum in axialer Richtung begrenzenden Flächen dienen bevorzugt zugleich als Steuerflächen, über welche das Ventilelement des weiteren Ventils mit einer Druckkraft beaufschlagbar ist. Vorzugsweise begrenzt das Ventilelement wenigstens zwei Druckräume, die in einem axialen Abstand zueinander angeordnet und über die Zulaufdrossel hydraulisch verbunden sind. Die Zulaufdrossel ist in diesem Fall bevorzugt in dem Ventilstück und nicht in dem Ventilelement ausgebildet.Furthermore, it is proposed that the valve element delimit the at least one pressure chamber formed in the guide bore in the radial and / or axial direction. The surfaces defining a pressure chamber in the axial direction preferably also serve as control surfaces, via which the valve element of the further valve can be acted upon by a pressure force. Preferably, the valve element defines at least two pressure chambers, which are arranged at an axial distance from one another and are hydraulically connected via the inlet throttle. In this case, the inlet throttle is preferably formed in the valve piece and not in the valve element.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist das Ventilelement - alternativ oder ergänzend zur in Schließrichtung wirkenden Federkraft der bereits genannten Feder - in Öffnungsrichtung von der Federkraft einer Feder beaufschlagt. Sofern zwei Federn vorgesehen sind, deren Federkräfte einander entgegen gesetzt sind, ist vorzugsweise die Federkraft der weiteren, in Öffnungsrichtung wirkenden Feder größer als die Federkraft der in Schließrichtung wirkenden Feder gewählt. Dies gilt insbesondere dann, wenn die in Schließrichtung wirkende Feder zugleich der Rückstellung der Düsennadel dient. Die Federkraft der weiteren Feder bewirkt, dass das weitere Ventil im Ruhezustand eine geöffnete Position einnimmt.According to a further preferred embodiment of the invention, the valve element is acted upon in the opening direction of the spring force of a spring - alternatively or in addition to acting in the closing direction spring force of the aforementioned spring. If two springs are provided whose spring forces are set against each other, the spring force of the further, acting in the opening direction spring is preferably selected to be greater than the spring force of the spring acting in the closing direction. This applies in particular when the spring acting in the closing direction also serves to return the nozzle needle. The spring force of the other spring causes the other valve in the idle state assumes an open position.

Vorteilhafterweise besitzt das Ventilelement eine mit einem Hubanschlag zusammenwirkende radial verlaufende Anschlagfläche. Der Öffnungshub des Ventilelementes wird auf diese Weise begrenzt. Dabei kann der Hubanschlag von einem Körper des Kraftstoffinjektors, insbesondere einem Düsenkörper oder einem Haltekörper, oder von einem separaten, vorzugsweise scheibenförmigen Bauteil ausgebildet werden. Das scheibenförmige Bauteil ist im Hochdruckbereich des Kraftstoffinjektors eingesetzt und besitzt bevorzugt wenigstens eine Durchströmöffnung, um eine Verbindung der diesseits und jenseits des scheibenförmigen Bauteils gelegenen Druckräume zu gewährleisten.Advantageously, the valve element has a cooperating with a stroke stop radially extending stop surface. The opening stroke of the valve element is limited in this way. In this case, the stroke stop can be formed by a body of the fuel injector, in particular a nozzle body or a holding body, or by a separate, preferably disk-shaped component. The disc-shaped component is used in the high-pressure region of the fuel injector and preferably has at least one through-flow opening in order to ensure a connection of the pressure chambers located on this side and beyond the disk-shaped component.

In einer Weiterbildung der Erfindung ist das der Einspritzöffnung abgewandte Ende der Düsennadel von einer Dichthülse umgeben. Die Dichthülse begrenzt den zwischen der Düsennadel und dem Ventilelement des weiteren Ventil ausgebildeten Steuerraum in radialer Richtung. Die Dichthülse ist hierzu bevorzugt an dem Ventilelement abgestützt und/oder zur Abdichtung des Steuerraums gegenüber dem Hochdruckbereich über die Federkraft der Feder in Richtung des Ventilelementes axial vorgespannt. Die Dichthülse ermöglicht den Ausgleich eines etwaigen Achsversatzes zwischen der Düsennadel und dem Ventilelement. Zugleich wird die Ausbildung des Ventilelements vereinfacht.In one embodiment of the invention, the injection opening facing away from the end of the nozzle needle is surrounded by a sealing sleeve. The sealing sleeve defines the control space formed between the nozzle needle and the valve element of the further valve in the radial direction. For this purpose, the sealing sleeve is preferably supported on the valve element and / or axially prestressed in the direction of the valve element for sealing the control chamber with respect to the high-pressure region via the spring force of the spring. The sealing sleeve allows the compensation of any axial offset between the nozzle needle and the valve element. At the same time, the formation of the valve element is simplified.

Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher beschrieben. Diese zeigen:

  • Figur 1 ein hydraulisches Schaltbild einer ersten bevorzugten Ausführungsform eines erfindungsgemäßen Kraftstoffinjektors,
  • Figur 2 ein hydraulisches Schaltbild einer zweiten bevorzugten Ausführungsform eines erfindungsgemäßen Kraftstoffinjektors,
  • Figur 3 einen Längsschnitt durch eine Ausführungsform eines Kraftstoffinjektors, nicht Teil der Erfindung, bei geschlossenem Steuerventil,
  • Figur 4 den Injektor der Figur 3 bei geöffnetem Steuerventil,
  • Figur 5 den Injektor der Figur 3 bei geschlossenem Steuerventil und geöffnetem weiteren Ventil,
  • Figur 6 einen Längsschnitt durch eine zweite bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffinjektors bei geschlossenem Steuerventil,
  • Figur 7 den Injektor der Figur 6 bei geöffnetem Steuerventil,
  • Figur 8 den Injektor der Figur 6 bei geschlossenem Steuerventil und geöffnetem weiteren Ventil,
  • Figur 9 einen Längsschnitt durch eine zweite bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffinjektors bei geschlossenem Steuerventil und
  • Figur 10 einen Längsschnitt durch eine dritte bevorzugte Ausführungsform eines erfindungsgemäßen Kraftstoffinjektors bei geschlossenem Steuerventil.
Preferred embodiments of the invention are described below with reference to the accompanying drawings. These show:
  • FIG. 1 a hydraulic circuit diagram of a first preferred embodiment of a fuel injector according to the invention,
  • FIG. 2 a hydraulic circuit diagram of a second preferred embodiment of a fuel injector according to the invention,
  • FIG. 3 a longitudinal section through an embodiment of a fuel injector, not part of the invention, with a closed control valve,
  • FIG. 4 the injector of FIG. 3 with open control valve,
  • FIG. 5 the injector of FIG. 3 with closed control valve and opened further valve,
  • FIG. 6 a longitudinal section through a second preferred embodiment of a fuel injector according to the invention with a closed control valve,
  • FIG. 7 the injector of FIG. 6 with open control valve,
  • FIG. 8 the injector of FIG. 6 with closed control valve and opened further valve,
  • FIG. 9 a longitudinal section through a second preferred embodiment of a fuel injector according to the invention with a closed control valve and
  • FIG. 10 a longitudinal section through a third preferred embodiment of a fuel injector according to the invention with a closed control valve.

Ausführliche Beschreibung der ZeichnungenDetailed description of the drawings

Der in der Figur 1 schematisch dargestellte erfindungsgemäße Kraftstoffinjektor umfasst eine hubbewegliche Düsennadel 2 zum Freigeben und Verschließen mehrerer Einspritzöffnungen 3. Die Bewegung der Düsennadel 2 ist über ein Steuerventil 1 steuerbar, das vorliegend als Kugelventil ausgelegt und über einen Magnetaktor 27 betätigbar ist.The Indian FIG. 1 schematically illustrated fuel injector according to the invention comprises a liftable nozzle needle 2 for releasing and closing a plurality of injection openings 3. The movement of the nozzle needle 2 is controlled by a control valve 1, which in the present case designed as a ball valve and a solenoid actuator 27 can be actuated.

Bei deaktiviertem Magnetaktor 27 wird ein kugelförmiges Steuerventilelement 28 des Steuerventils 1 von der Druckkraft einer Feder 29 gegen einen Ventilsitz 30 gedrückt. Als Druckübertragungsglied dient ein Ankerelement 31, das zwischen der Feder 29 und dem Steuerventilelement 28 angeordnet ist. Bei aktiviertem Magnetaktor 27 wird das Ankerelement 31 entgegen der Federkraft der Feder 29 in Richtung des Magnetaktors 27 gezogen, wobei das Steuerventil 1 öffnet. Bei geöffnetem Steuerventil 1 besteht eine Verbindung eines Steuerraums 4 über eine Ablaufdrossel 7 mit einem Rücklauf 32, so dass eine Entlastung des Steuerraums 4 bewirkt wird. Der Druckabfall im Steuerraum 4 hat zur Folge, dass die Düsennadel 2, die mit einem Ende den Steuerraum 4 begrenzt, öffnet und die Einspritzöffnungen 3 freigibt. Über die Einspritzöffnungen 3 wird dann unter Hochdruck stehender Kraftstoff aus einem Hochdruckbereich 11 in den Brennraum einer Brennkraftmaschine (nicht dargestellt) eingespritzt. Zum Schließen der Düsennadel 2 wird die Aktivierung des Magnetaktors 27 beendet, so dass die Federkraft der Feder 29 die Rückstellung des Ankerelements 31 bewirkt, wobei das kugelförmige Steuerventilelement 28 zurück in den Ventilsitz 30 gestellt wird und das Steuerventil 1 schließt. In Schließstellung des Steuerventils 1 bewirkt der über eine Zulaufdrossel 8 aus einem Volumen mit unter Hochdruck stehendem Kraftstoff in den Steuerraum 4 nachströmende Kraftstoff eine Richtungsumkehr der Düsennadelbewegung und in der Folge eine kontinuierliche Schließbewegung der Düsennadel 2. Dadurch wird die Düsennadel 2 schließlich in ihre Ausgangsposition zurück verbracht und die Einspritzung endet.When the solenoid actuator 27 is deactivated, a spherical control valve element 28 of the control valve 1 is pressed against a valve seat 30 by the pressure force of a spring 29. As pressure transmitting member is an anchor member 31 which is disposed between the spring 29 and the control valve member 28. When activated solenoid actuator 27, the armature element 31 is pulled against the spring force of the spring 29 in the direction of the magnetic actuator 27, wherein the control valve 1 opens. When the control valve 1 is open, there is a connection of a control chamber 4 via an outlet throttle 7 with a return 32, so that a relief of the control chamber 4 is effected. The pressure drop in the control chamber 4 has the consequence that the nozzle needle 2, which limits the control chamber 4 with one end, opens and the injection openings 3 releases. High-pressure fuel from a high-pressure region 11 is then injected into the combustion chamber of an internal combustion engine (not shown) via the injection openings 3. To close the nozzle needle 2, the activation of the solenoid actuator 27 is terminated, so that the spring force of the spring 29 causes the return of the anchor member 31, wherein the spherical control valve member 28 is placed back in the valve seat 30 and the control valve 1 closes. In the closed position of the control valve 1, the fuel flowing through an inlet throttle 8 from a volume of high-pressure fuel into the control chamber 4 causes a reversal of direction of the nozzle needle movement and, consequently, a continuous closing movement of the nozzle needle 2. As a result, the nozzle needle 2 returns to its original position spent and the injection ends.

Zur Reduzierung der bei geöffnetem Steuerventil 1 über die Ablaufdrossel 7 abströmenden Kraftstoffmenge, ist stromaufwärts der Zulaufdrossel 8 ein druckbetätigbares weiteres Ventil 9 angeordnet, das in Schließstellung den Zulauf von unter Hochdruck stehendem Kraftstoff zur Zulaufdrossel 8 und danach in den Steuerraum 4 unterbricht. Das druckbetätigbare weitere Ventil 9 weist hierzu ein verschiebbares Ventilelement 10 mit einer ersten Steuerfläche 12 und einer zweiten Steuerfläche 13 auf. Die erste Steuerfläche 12 begrenzt den Steuerraum 4, so dass hier Steuerraumdruck anliegt. An der zweiten Steuerfläche 13 liegt der Druck an, der stromabwärts der Ablaufdrossel 7 zwischen der Ablaufdrossel 7 und dem Ventilsitz 30 des Steuerventils 1 herrscht. Mit Öffnen des Steuerventils 1 fällt der Druck stromabwärts der Ablaufdrossel 7 stärker ab als im Steuerraum 4. Die Druckdifferenz bewirkt, dass das Ventilelement 10 des weiteren Ventils 9 von einer auf die erste Steuerfläche 12 wirkenden Schließkraft beaufschlagt wird, welche größer als eine auf die zweite Steuerfläche 13 wirkende Öffnungskraft ist, die aus dem hieran anliegenden hydraulischen Druck sowie der Federkraft einer Feder 14 resultiert. Dies hat zur Folge, dass das weitere Ventil 9 schließt und mangels Verbindung zu einem Hochdruckspeicher 33 kein Kraftstoff über die Zulaufdrossel 8 in den Steuerraum 4 nachströmt. Mit Schließen des Steuerventils 1 gleichen sich die Druckverhältnisse am Ventilelement 10 des weiteren Ventils 9 an, was ein Öffnen des weiteren Ventils 9 und damit eine schnelle Wiederbefüllung des Steuerraums 4 über die Zulaufdrossel 8 zur Folge hat.In order to reduce the amount of fuel flowing out through the outlet throttle 7 when the control valve 1 is open, a pressure-actuatable further valve 9 is arranged upstream of the inlet throttle 8, which interrupts the supply of high-pressure fuel to the inlet throttle 8 and then into the control chamber 4 in the closed position. For this purpose, the pressure-actuable further valve 9 has a displaceable valve element 10 with a first control surface 12 and a second control surface 13. The first control surface 12 limits the control chamber 4, so that here control chamber pressure is applied. At the second control surface 13, the pressure prevails downstream of the outlet throttle 7 between the outlet throttle 7 and the valve seat 30 of the control valve 1. With the opening of the control valve 1, the pressure drops downstream of the outlet throttle 7 more than in the control chamber 4. The pressure difference causes the valve element 10 of the further valve 9 is acted upon by a force acting on the first control surface 12 closing force which is greater than a force acting on the second control surface 13 opening force resulting from the hydraulic pressure applied thereto and the spring force of a spring 14. This has the consequence that the further valve 9 closes and, for lack of connection to a high-pressure accumulator 33, no fuel flows via the inlet throttle 8 into the control chamber 4. With closing of the control valve 1, the pressure conditions on the valve element 10 of the other valve 9 are equalized, which has an opening of the other valve 9 and thus a rapid refilling of the control chamber 4 via the inlet throttle 8 result.

In der Figur 2 ist eine alternative Ausführungsform eines erfindungsgemäßen Kraftstoffinjektors dargestellt, wobei die Darstellung auf das hydraulische Schaltbild beschränkt worden ist. Im Unterschied zur vorhergehenden Ausführungsform liegt an der zweiten Steuerfläche 13 des Ventilelements 10 des weiteren Ventils 9 nicht nur der stromabwärts der Ablaufdrossel 7 zwischen Ablaufdrossel 7 und dem Ventilsitz 30 des Steuerventils 1 herrschende Druck an, sondern ferner der Druck, der unmittelbar stromaufwärts der Zulaufdrossel 8 zwischen dem weiteren Ventil 9 und der Zulaufdrossel 8 herrscht. Dies hat den Vorteil, dass der sich an der Zulaufdrossel 8 einstellende Druckabfall ebenfalls zur Erzeugung einer auf das Ventilelement 10 wirkenden Öffnungskraft nutzbar gemacht werden kann. Die Schaltbewegung des Ventilelementes 10 kann auf diese Weise deutlich beschleunigt werden. Darüber hinaus kann auch der unter Hochdruck stehende Kraftstoff aus einem Hochdruckvolumen 11 des Injektors vor dem Dichtsitz des weiteren Ventils 9 auf einen Teil der zweiten Steuerfläche 13 wirken, was die sofortige Einleitung des Öffnungsvorgangs des weiteren Ventils 9 nach dem Schließen des Steuerventils 1 begünstigt.In the FIG. 2 an alternative embodiment of a fuel injector according to the invention is shown, wherein the representation has been limited to the hydraulic circuit diagram. In contrast to the previous embodiment, not only the downstream of the outlet throttle 7 between outlet throttle 7 and the valve seat 30 of the control valve 1 prevailing pressure on the second control surface 13 of the valve element 10 of the other valve, but also the pressure immediately upstream of the inlet throttle. 8 between the other valve 9 and the inlet throttle 8 prevails. This has the advantage that the pressure drop occurring at the inlet throttle 8 can likewise be utilized to produce an opening force acting on the valve element 10. The switching movement of the valve element 10 can be significantly accelerated in this way. In addition, the high-pressure fuel from a high-pressure volume 11 of the injector in front of the sealing seat of the other valve 9 may act on a part of the second control surface 13, which favors the immediate initiation of the opening operation of the further valve 9 after closing the control valve 1.

Den Figuren 3 bis 5 ist eine Ausgestaltung eines Kraftstoffinjektors, nicht Teil der Erfindung, zu entnehmen, wobei sich die Darstellung auf den Bereich des weiteren Ventils 9 beschränkt. Das weitere Ventil 9 weist ein verschiebbares Ventilelement 10 auf, das als gestufter Hohlkolben zur Ausbildung des Steuerraums 4 ausgeführt ist. In einem ersten Abschnitt mit größerem Außendurchmesser ist das den Einspritzöffnungen 3 abgewandte Ende der Düsennadel 2 aufgenommen, welche somit den Steuerraum 4 axial begrenzt. In einem zweiten Abschnitt mit verringertem Außendurchmesser ist die Ablaufdrossel 7 ausgebildet, über welche der Steuerraum 4 - bei geöffnetem Steuerventil 1 - mit dem Rücklauf 32 (siehe Figur 1) verbindbar ist. Der zweite Abschnitt dient vorliegend zugleich als Führungsabschnitt, der in einer Führungsbohrung 15 eines Ventilstücks 16 aufgenommen ist. Die Führungsbohrung 15 weist Abschnitte mit unterschiedlichen Innendurchmessern auf, so dass im Führungsbereich zwischen dem Ventilstück 16 und dem Ventilelement 10 mehrere Druckräume 17, 18, 19 ausgebildet werden. Ein erster Druckraum 17 wird zwischen einem radial verlaufenden Absatz der Führungsbohrung 15 und einer Stirnfläche des Ventilelements 10 ausgebildet, die Bestandteil der zweiten Steuerfläche 13 ist. Hier liegt der stromabwärts der Ablaufdrossel 7 zwischen Ablaufdrossel 7 und dem Ventilsitz 30 des Steuerventils 1 herrschende Druck an. Dieser erste Druckraum 17 umfasst folglich das Kraftstoffvolumen zwischen der Ablaufdrossel 7 und dem Ventilsitz 30 des Steuerventils 1. Ein ringförmiger zweiter Druckraum 18 wird durch eine umlaufende Nut in der Führungsbohrung 15 ausgebildet. Dieser zweite Druckraum 18 ist über eine radial oder schräg durch das Ventilelement 10 führende Zulaufbohrung 5 mit dem Steuerraum 4 verbunden. In diesem zweiten Druckraum 18 herrscht folglich der Steuerraumdruck oder ein Druck, der sich vernachlässigbar vom Steuerraumdruck unterscheidet, so dass der zweite Druckraum 18 aus funktionaler Sicht eine Erweiterung bzw. einen Bestandteil des Steuerraums 4 darstellt. Des weiteren ist der zweite Druckraum 18 und damit der Steuerraum 4 über eine Drosselbohrung, welche die Zulaufdrossel 8 ausbildet, mit einem dritten Druckraum 19 verbunden, der sowohl in radialer Richtung als auch in axialer Richtung von dem Ventilelement 10 begrenzt wird. Die den dritten Druckraum 19 begrenzenden Flächen am Ventilelement 10 sind ebenfalls Bestandteil der zweiten Steuerfläche 13, wobei der hier anliegende Druck dem Druck unmittelbar stromaufwärts der Zulaufdrossel 8 zwischen dem weiteren Ventil 9 und der Zulaufdrossel 8 entspricht. Über eine an dem Ventilstück 16 ausgebildete ringförmige Dichtkante 20, welche mit dem Ventilelement 10 dichtend zusammenwirkt, wird der dritte Druckraum 19 gegenüber dem Hochdruckbereich 11 abgedichtet. Des weiteren bewirkt der unter Hochdruck stehende Kraftstoff im Hochdruckbereich 11 eine Axialkraft auf das Ventilelement 10, indem er auf die Ringfläche zwischen der Dichtkante 20 und dem Führungsdurchmesser wirkt, bei dem die Düsennadel 2 im Ventilelement 10 geführt ist. Dieser Führungsdurchmesser wird im folgenden kurz als "Steuerraumdurchmesser" bezeichnet. Abhängig von der Dimensionierung dieser beiden Durchmesser ist diese Axialkraft in Öffnungsoder in Schließrichtung des Ventilelements 10 gerichtet. Die Fläche, mit der das Ventilelement 10 an den Hochdruckbereich 11 angrenzt, stellt folglich ebenfalls einen Teil der zweiten Druckfläche 13 dar. Die Federkraft einer Feder 14, welche hier - im Unterschied zu den Ausführungsformen der Figuren 1 und 2 - das Ventilelement 10 in Schließrichtung beaufschlagt, hält das Ventilelement 10 in Anlage mit der ringförmigen Dichtkante 20, solange die hydraulischen Druckverhältnisse am Ventilelement 10 weitgehend ausgeglichen sind. In dieser Lage des Ventilelements 10 besteht keine Verbindung des Steuerraums 4 sowie der Druckräume 18 und 19 zum externen Hochdruckspeicher 33 oder zum Hochdruckbereich 11 des Kraftstoffinjektors (Figur 3). Öffnet das Steuerventil 1, fällt der Druck im Druckraum 17 stromabwärts der Ablaufdrossel 7 schnell ab, wodurch das Ventilelement 10 mit einer zusätzlichen in Schließrichtung wirkenden Druckkraft beaufschlagt wird (Figur 4). Mit Schließen des Steuerventils 1 wird die Durchströmung der Ablaufdrossel 7 unterbunden und es kommt zum Druckausgleich zwischen dem Steuerraum 4 und dem ersten Druckraum 17. Die zunächst noch vorliegende Öffnungsbewegung der Düsennadel 2 führt nun zu einer Verdichtung des Kraftstoffs im Steuerraum 4 und somit zu einem kurzzeitigen Anstieg des Steuerraumdrucks. Kurzzeitig kann der Steuerraumdruck den Hochdruck im Hochdruckbereich 11 des Injektors überschreiten. Durch den Anstieg des Steuerraumdrucks wird die Düsennadel 2 abgebremst und ihre Bewegungsrichtung umgekehrt, so dass sich der Kraftstoff im Steuerraum 4 wieder entspannt und der Steuerraumdruck wieder abnimmt. Ist der Dichtdurchmesser 20 größer gewählt als der Steuerraumdurchmesser, so führt das kurzzeitige Überschreiten des Druckniveaus im Hochdruckraum 11 durch den Druck im Steuerraum 4 sowie in den Druckräumen 17, 18 und 19 zu einer resultierenden Öffnungskraft auf das Ventilelement 10 und somit zum Öffnen des an der Dichtkante 20 gebildeten Dichtsitzes.The FIGS. 3 to 5 is an embodiment of a fuel injector, not part of the invention, can be seen, wherein the representation is limited to the range of the other valve 9. The further valve 9 has a displaceable valve element 10, which is designed as a stepped hollow piston for forming the control chamber 4. In a first section with a larger outer diameter, the injection openings 3 facing away from the end of the nozzle needle 2 is added, which thus limits the control chamber 4 axially. In a second section with a reduced outer diameter, the outlet throttle 7 is formed, via which the control chamber 4 - with the control valve 1 open - with the return 32 (see FIG. 1 ) is connectable. The second section is used here at the same time as a guide portion which is received in a guide bore 15 of a valve member 16. The guide bore 15 has sections with different inner diameters, so that a plurality of pressure chambers 17, 18, 19 are formed in the guide region between the valve piece 16 and the valve element 10. A first pressure chamber 17 is formed between a radially extending shoulder of the guide bore 15 and an end face of the valve element 10, which is part of the second control surface 13. Here is the downstream of the outlet throttle 7 between outlet throttle 7 and the valve seat 30 of the control valve 1 prevailing pressure. This first pressure chamber 17 thus comprises the fuel volume between the outlet throttle 7 and the valve seat 30 of the control valve 1. An annular second pressure chamber 18 is formed by a circumferential groove in the guide bore 15. This second pressure chamber 18 is connected via a radially or obliquely through the valve element 10 leading inlet bore 5 with the control chamber 4. Consequently, in this second pressure chamber 18 there is the control chamber pressure or a pressure which differs negligibly from the control chamber pressure, so that the second pressure chamber 18 represents an extension or a component of the control chamber 4 from a functional point of view. Furthermore, the second pressure chamber 18 and thus the control chamber 4 via a throttle bore, which forms the inlet throttle 8, connected to a third pressure chamber 19 which is limited both in the radial direction and in the axial direction of the valve element 10. The third pressure chamber 19 limiting surfaces on the valve element 10 are also part of the second control surface 13, wherein the pressure applied here corresponds to the pressure immediately upstream of the inlet throttle 8 between the other valve 9 and the inlet throttle 8. By way of an annular sealing edge 20 formed on the valve piece 16, which sealingly cooperates with the valve element 10, the third pressure chamber 19 is sealed off from the high-pressure region 11. Furthermore, the high-pressure fuel in the high-pressure region 11 causes an axial force on the valve element 10 by acting on the annular surface between the sealing edge 20 and the guide diameter, in which the nozzle needle 2 is guided in the valve element 10. This guide diameter will be referred to in the following as "control chamber diameter". Depending on the dimensioning of these two diameters, this axial force is directed in the opening or in the closing direction of the valve element 10. The area with which the valve element 10 adjoins the high-pressure region 11 thus also represents a part of the second pressure surface 13. The spring force of a spring 14, which here - unlike the embodiments of the FIGS. 1 and 2 - The valve element 10 is acted upon in the closing direction, holds the valve element 10 in contact with the annular sealing edge 20, as long as the hydraulic pressure conditions on the valve element 10 are largely balanced. In this position of the valve element 10, there is no connection of the control chamber 4 and the pressure chambers 18 and 19 to the external high-pressure accumulator 33 or to the high-pressure region 11 of the fuel injector ( FIG. 3 ). If the control valve 1 opens, the pressure in the pressure chamber 17 drops rapidly downstream of the outlet throttle 7, as a result of which the valve element 10 is subjected to an additional pressure force acting in the closing direction ( FIG. 4 ). With closing of the control valve 1, the flow through the outlet throttle 7 is suppressed and there is pressure equalization between the control chamber 4 and the first pressure chamber 17. The initially still present opening movement of the nozzle needle 2 now leads to a compression of the fuel in the control chamber 4 and thus to a brief Increase in the control room pressure. For a short time, the control chamber pressure may exceed the high pressure in the high-pressure region 11 of the injector. Due to the increase in the control chamber pressure, the nozzle needle 2 is braked and reverses its direction of movement, so that the fuel in the control chamber 4 relaxes again and the control chamber pressure decreases again. If the sealing diameter 20 selected larger than the control chamber diameter, so the short-term exceeding the pressure level in the high pressure chamber 11 by the pressure in the control chamber 4 and in the pressure chambers 17, 18 and 19 results in a resulting opening force on the valve element 10 and thus to open at the Sealing edge 20 formed sealing seat.

Ist das Verhältnis der beiden Durchmesser umgekehrt gewählt, ist also der Dichtdurchmesser 20 kleiner als der Steuerraumdurchmesser, so bewirkt die Überschreitung des Druckniveaus im Hochdruckraum 11 durch den Druck im Steuerraum 4 sowie in den Druckräumen 17, 18 und 19 eine zusätzliche Schließkraft auf das Ventilelement 10 und das weitere Ventil 9 bleibt zunächst geschlossen. Nach dem Umkehrvorgang der Düsennadel 2 nehmen aber die Drücke im Steuerraum 4 sowie in den Druckräumen 17 bis 19 wieder unter den im Hochdruckraum 11 herrschenden Druck ab, was eine resultierende Kraft in Öffnungsrichtung auf das Ventilelement 10 und folglich ein Öffnen des weiteren Ventils 9 zur Folge hat. In diesem Fall ist der Öffnungszeitpunkt des weiteren Ventils 9 unabhängig von der Höhe des kurzen Druckimpulses im Steuerraum 4 während der Düsennadelumkehr. Daher ist diese Ausführungsform besonders vorteilhaft.If the ratio of the two diameters is chosen vice versa, that is, the sealing diameter 20 is smaller than the control chamber diameter, then the pressure level in the high-pressure chamber 11 by the pressure in the control chamber 4 and in the pressure chambers 17, 18 and 19 causes an additional closing force on the valve element 10 and the other valve 9 initially remains closed. After the reversal operation of the nozzle needle 2 but take the pressures in the control chamber 4 and in the pressure chambers 17 to 19 again under the prevailing pressure in the high pressure chamber 11, resulting in a resultant force in the opening direction of the valve element 10 and consequently an opening of the other valve 9 result Has. In this case, the opening time of the further valve 9 is independent of the height of the short pressure pulse in the control chamber 4th during the nozzle needle reversal. Therefore, this embodiment is particularly advantageous.

Sobald der durch die Dichtkante 20 und das Ventilelement 10 gebildete Dichtsitz des weiteren Ventils 9 öffnet, nimmt der Druck im Druckraum 19 den Wert des Hochdrucks im Hochdruckraum 11 an und damit einen Wert, der höher ist als bei geöffnetem Steuerventil. Somit bewirkt der Öffnungsvorgang des Ventilelements 10 einen weiteren Anstieg der Kraft in Öffnungsrichtung auf das Ventilelement 10 und damit eine Mitkopplung auf die Öffnungsbewegung, welche den Öffnungsvorgang des weiteren Ventils 9 stabilisiert. Ein zwischen dem Ventilstück 16 und einem Körper 24 aufgenommenes scheibenförmiges Bauteil 25 bildet einen Hubanschlag 22 aus, welcher mit einer radial verlaufenden Anschlagfläche 23 am Ventilelement 10 hubbegrenzend zusammenwirkt.As soon as the sealing seat formed by the sealing edge 20 and the valve element 10 of the further valve 9 opens, the pressure in the pressure chamber 19 assumes the value of the high pressure in the high-pressure chamber 11 and thus a value which is higher than when the control valve is open. Thus, the opening operation of the valve element 10 causes a further increase in the force in the opening direction on the valve element 10 and thus a positive feedback on the opening movement, which stabilizes the opening operation of the other valve 9. A received between the valve member 16 and a body 24 disc-shaped member 25 forms a stroke stop 22, which cooperates with a radially extending stop surface 23 on the valve element 10 to limit limiting.

Eine alternative konkrete Ausgestaltung eines erfindungsgemäßen Kraftstoffinjektors ist in den Figuren 6 bis 8 dargestellt. Im Unterschied zur Ausgestaltung der Figuren 3 bis 5 ist vorliegend die Zulaufdrossel 8 direkt in der radial oder schräg verlaufenden Zulaufbohrung 5 im Ventilelement 10 ausgebildet. Folglich verbindet sie den Steuerraum 4 in dieser Ausgestaltung direkt mit dem dritten Druckraum 19, der sowohl in radialer als auch axialer Richtung von dem Ventilelement 10 begrenzt wird. Durch die Anordnung der Zulaufdrossel 8 im Ventilelement 10 entfällt die Ausbildung des zweiten Druckraums 18. Die Funktionsweise der in den Figuren 6 bis 8 dargestellten Ausgestaltung entspricht der in den Figuren 3 bis 5 gezeigten Ausgestaltung, so dass hierauf verwiesen wird. Figur 6 zeigt die Lage des Ventilelements 10 des weiteren Ventils 9 bei geschlossenem Steuerventil 1, in der die Federkraft der Feder 14 das Ventilelement 10 gegen die ringförmige Dichtkante 20 drückt. Mit Öffnen des Steuerventils 1 wirkt auf das Ventilelement 10 eine zusätzliche in Schließrichtung wirkende Druckkraft (Figur 7). Mit Schließen des Steuerventils 1 öffnet das weitere Ventil 9 in Folge des Druckanstiegs im ersten Druckraum 17 und in der Folge auch im dritten Druckraum 19 (Figur 8).An alternative concrete embodiment of a fuel injector according to the invention is in the FIGS. 6 to 8 shown. In contrast to the embodiment of FIGS. 3 to 5 In the present case, the inlet throttle 8 is formed directly in the radially or obliquely extending inlet bore 5 in the valve element 10. Consequently, it connects the control chamber 4 in this embodiment directly to the third pressure chamber 19, which is bounded in both the radial and axial direction of the valve element 10. The arrangement of the inlet throttle 8 in the valve element 10 eliminates the formation of the second pressure chamber 18. The operation of the in the FIGS. 6 to 8 illustrated embodiment corresponds to in the FIGS. 3 to 5 shown embodiment, so that reference is made thereto. FIG. 6 shows the position of the valve element 10 of the further valve 9 when the control valve 1 is closed, in which the spring force of the spring 14 presses the valve element 10 against the annular sealing edge 20. With opening of the control valve 1 acts on the valve element 10 an additional force acting in the closing direction compressive force ( FIG. 7 ). As the control valve 1 closes, the further valve 9 opens as a result of the increase in pressure in the first pressure chamber 17 and consequently also in the third pressure chamber 19 (FIG. FIG. 8 ).

Eine Abwandlung der in den Figuren 6 bis 8 dargestellten Ausgestaltung ist der Figur 9 zu entnehmen. Hier ist das Ventilelement 10 in Öffnungsrichtung von der Federkraft einer Feder 21 beaufschlagt, wobei die Federkraft der Feder 21 größer als die der Feder 14 ist, so dass bei geschlossenem Steuerventil 1 das weitere Ventil 9 geöffnet ist und eine Verbindung des Steuerraums 4 über die Zulaufdrossel 8, den Druckraum 19 und den geöffneten Sitz des weiteren Ventils 9 mit dem Hochdruckbereich 11 besteht. Die Verbindung wird erst dann getrennt, wenn das Steuerventil 1 öffnet und der Druck im ersten Druckraum 17 absinkt. Sofern die Feder 14, die vorliegend zugleich als Düsennadelschließfeder dient, nicht am Ventilelement 10 abgestützt ist, sondern beispielsweise am Körper 24, ist es nicht erforderlich, dass die Federkraft der Feder 21 größer als die der Feder 14 gewählt ist. Eine zusätzliche Feder 21, deren Federkraft das Ventilelement 10 in Öffnungsrichtung beaufschlagt, kann auch bei der in den Figuren 3 bis 5 dargestellten Ausgestaltung eingesetzt werden.A modification of the in the FIGS. 6 to 8 illustrated embodiment is the FIG. 9 refer to. Here, the valve element 10 is acted upon in the opening direction by the spring force of a spring 21, wherein the spring force of the spring 21 is greater than that of the spring 14, so that when the control valve 1 is closed, the other Valve 9 is opened and a connection of the control chamber 4 via the inlet throttle 8, the pressure chamber 19 and the open seat of the other valve 9 with the high-pressure region 11 is. The connection is only then separated when the control valve 1 opens and the pressure in the first pressure chamber 17 drops. If the spring 14, which at the same time serves as a nozzle needle closing spring in the present case, is not supported on the valve element 10 but, for example, on the body 24, it is not necessary for the spring force of the spring 21 to be greater than that of the spring 14. An additional spring 21, whose spring force acts on the valve element 10 in the opening direction, can also in the in the FIGS. 3 to 5 used embodiment shown.

Eine weitere bevorzugte konkrete Ausgestaltung eines erfindungsgemäßen Kraftstoffinjektors geht aus der Figur 10 hervor. Hier ist das den Steuerraum 4 begrenzende Ende der Düsennadel 2 nicht im Ventilelement 10 geführt, sondern in einer Dichthülse 26, die mittels der Federkraft der Feder 14 gegen das Ventilelement 10 axial vorgespannt ist. Die Dichthülse 26 erlaubt den Ausgleich eines etwaigen Achsversatzes zwischen der Düsennadel 2 und dem Ventilelement 10. Ferner vereinfacht sie die Ausgestaltung des Ventilelements 10. Auch die Dichthülse 26 kann in einen Injektor gemäß den Figuren 3 bis 5 eingesetzt werden.A further preferred specific embodiment of a fuel injector according to the invention is based on FIG. 10 out. Here, the control chamber 4 limiting end of the nozzle needle 2 is not performed in the valve element 10, but in a sealing sleeve 26 which is axially biased by the spring force of the spring 14 against the valve member 10. The sealing sleeve 26 allows the compensation of any axial offset between the nozzle needle 2 and the valve element 10. Further, it simplifies the design of the valve element 10. The sealing sleeve 26 can also in an injector according to the FIGS. 3 to 5 be used.

Claims (10)

  1. Fuel injector for a fuel injection system, in particular a common-rail injection system, comprising a control valve (1) for controlling the stroke movement of a nozzle needle (2), which can perform stroke movements, for the purposes of opening up and closing off at least one injection opening (3), wherein that end of the nozzle needle (2) which is averted from the injection opening (3) delimits a control chamber (4) which, for the purposes of influencing a control chamber pressure acting on the nozzle needle (2), can be charged with highly pressurized fuel via an inflow throttle (8) and can be relieved of pressure via an outflow throttle (7) in the open position of the control valve (1), wherein, upstream of the inflow throttle (8), there is formed a pressure-actuable further valve (9) with a displaceable valve element (10) for opening up and closing off a hydraulic connection of the inflow throttle (8) to a high-pressure region (11),
    characterized in that the valve element (10) has an inflow bore (5) which runs radially or obliquely with respect to a longitudinal axis (A) of the valve element (10) and which connects the control chamber (4) to a pressure chamber (18, 19), and in that the inflow throttle (8) is formed in the inflow bore (5).
  2. Fuel injector according to Claim 1,
    characterized in that the valve element (10) of the pressure-actuable further valve (9) has a first control surface (12), which is acted on by the pressure prevailing in the control chamber (4), and at least one further control surface (13), which is acted on by the pressure prevailing downstream of the outflow throttle (7) between the outflow throttle (7) and a valve seat (30) of the control valve (1) and/or upstream of the inflow throttle (8) between the further valve (9) and the inflow throttle (8).
  3. Fuel injector according to Claim 1 or 2,
    characterized in that the valve element (10) of the pressure-actuable further valve (9) is acted on in the closing direction by the spring force of a spring (14) which is preferably supported, directly or indirectly in each case, at one side on the valve element (10) and at the other side on the nozzle needle (2).
  4. Fuel injector according to one of the preceding claims,
    characterized in that the valve element (10) delimits the control chamber (4) in an axial and/or radial direction and has a preferably axially running bore in which the outflow throttle (7) is formed.
  5. Fuel injector according to one of the preceding claims,
    characterized in that the valve element (10) is at least partially received in axially displaceable fashion in a guide bore (15) of a valve piece (16), wherein the guide bore (15) is of stepped form for the purposes of forming at least one pressure chamber (17, 18, 19) and/or forming a ring-shaped sealing edge (20) which interacts with the valve element (10).
  6. Fuel injector according to Claim 5,
    characterized in that the valve element (10) delimits the at least one pressure chamber (17, 18, 19), which is formed within the guide bore (15), in a radial and/or axial direction, wherein preferably, at least two pressure chambers (18, 19) are arranged with an axial spacing to one another and are hydraulically connected by way of the inflow throttle (8).
  7. Fuel injector according to Claim 1 or 5,
    characterized in that the inflow throttle (8) connects the control chamber (4) to the pressure chamber (19).
  8. Fuel injector according to one of the preceding claims,
    characterized in that the valve element (10) is acted on in the opening direction by the spring force of a spring (21), wherein the spring force of the spring (21) is preferably greater than the spring force of the spring (14).
  9. Fuel injector according to one of the preceding claims,
    characterized in that the valve element (10) has a radially running stop surface (23) which interacts with a stroke stop (22), wherein the stroke stop (22) is formed by a body (24) of the fuel injector or by a separate, preferably disc-shaped component (25).
  10. Fuel injector according to one of the preceding claims,
    characterized in that that end of the nozzle needle (2) which is averted from the injection opening (3) is surrounded by a sealing sleeve (26) which is preferably supported on the valve element (10) and/or, for the purposes of sealing off the control chamber (4) with respect to the high-pressure region (11), preloaded axially in the direction of the valve element (10) by way of the spring force of the spring (14).
EP13189766.2A 2012-12-14 2013-10-22 Fuel injector Active EP2743493B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012223166.8A DE102012223166A1 (en) 2012-12-14 2012-12-14 fuel injector

Publications (3)

Publication Number Publication Date
EP2743493A2 EP2743493A2 (en) 2014-06-18
EP2743493A3 EP2743493A3 (en) 2015-07-29
EP2743493B1 true EP2743493B1 (en) 2017-02-08

Family

ID=49447474

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13189766.2A Active EP2743493B1 (en) 2012-12-14 2013-10-22 Fuel injector

Country Status (2)

Country Link
EP (1) EP2743493B1 (en)
DE (1) DE102012223166A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205582A1 (en) * 2015-03-27 2016-09-29 Robert Bosch Gmbh Fuel injector for a fuel injection system
DE102015226070A1 (en) * 2015-12-18 2017-06-22 Robert Bosch Gmbh fuel injector
DE102017205772A1 (en) 2017-04-05 2018-10-11 Robert Bosch Gmbh ball valve
EP3990770A1 (en) * 2019-06-25 2022-05-04 Ganser-Hydromag AG Fuel injection valve for combustion engines

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428357B2 (en) * 2006-04-03 2010-03-10 株式会社デンソー Fuel injection valve
DE102006049050A1 (en) 2006-10-18 2008-04-30 Robert Bosch Gmbh Injector for injecting fuel
CH700396A1 (en) * 2009-02-09 2010-08-13 Ganser Hydromag Fuel injection valve for internal combustion engines.
JP5531713B2 (en) * 2010-03-29 2014-06-25 株式会社デンソー Fuel injection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2743493A3 (en) 2015-07-29
DE102012223166A1 (en) 2014-06-18
EP2743493A2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
EP0657642B1 (en) Fuel injection device for internal combustion engines
EP1332282B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
WO1998031933A1 (en) Fuel injection device for internal combustion engines
DE102007001363A1 (en) Injector for injecting fuel into combustion chambers of internal combustion engines
DE102012010614B4 (en) injector
EP1853813A1 (en) Injection nozzle
EP2743493B1 (en) Fuel injector
EP1865192B1 (en) Fuel injector with servo assistance
WO2007141094A1 (en) Fuel injection device for an internal combustion engine
WO2004022929A1 (en) Hydraulic valve actuator for actuating a gas exchange valve
EP1911966A2 (en) Fuel injector for a combustion engine
EP2957760B1 (en) Nozzle assembly for a fuel injector and fuel injector
EP2126333B1 (en) Fuel injector comprising a coupler
EP3095998B1 (en) Fuel injector
DE102012224247A1 (en) Fuel injector i.e. common-rail injector, for use with self-ignition engine, has magnet armature indirectly connected with coupler, which delimits adjusting element over coupling element by spring element
WO2009138279A1 (en) Solenoid valve having an armature slot configuration
DE102009045556A1 (en) Injector, particularly common-rail-injector for injecting fuel to combustion chamber of internal combustion engine, comprises valve element which is adjusted between closing position and opening position
DE102007001365A1 (en) Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve
DE102009027187A1 (en) fuel injector
DE102016201539A1 (en) fuel injector
DE102015205582A1 (en) Fuel injector for a fuel injection system
EP3126663A1 (en) Fuel injector
DE102019215119A1 (en) Fuel injector
DE102018200500A1 (en) fuel injector
DE102009029231A1 (en) Fuel injector for injecting fuel into combustion chamber of internal combustion engine, comprises control valve arrangement for controlling nozzle needle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131022

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 47/02 20060101ALI20150619BHEP

Ipc: F02M 63/00 20060101AFI20150619BHEP

R17P Request for examination filed (corrected)

Effective date: 20160129

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161018

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 866989

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013006315

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170509

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170508

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013006315

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171022

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171022

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171022

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 866989

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211214

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221020

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221031

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013006315

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503