EP3088674B1 - Rotorblatt und zugehörige gasturbine - Google Patents

Rotorblatt und zugehörige gasturbine Download PDF

Info

Publication number
EP3088674B1
EP3088674B1 EP16166812.4A EP16166812A EP3088674B1 EP 3088674 B1 EP3088674 B1 EP 3088674B1 EP 16166812 A EP16166812 A EP 16166812A EP 3088674 B1 EP3088674 B1 EP 3088674B1
Authority
EP
European Patent Office
Prior art keywords
side wall
tip
airfoil
rotor blade
slots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16166812.4A
Other languages
English (en)
French (fr)
Other versions
EP3088674A1 (de
Inventor
Jeffrey Clarence JONES
Xiuzhang Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
General Electric Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH filed Critical General Electric Technology GmbH
Publication of EP3088674A1 publication Critical patent/EP3088674A1/de
Application granted granted Critical
Publication of EP3088674B1 publication Critical patent/EP3088674B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/32Arrangement of components according to their shape
    • F05D2250/324Arrangement of components according to their shape divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/713Shape curved inflexed

Definitions

  • the present invention generally relates to a rotor blade for a turbine. More particularly, this invention involves a rotor blade having a flared tip configured for cooling a trailing edge portion of the rotor blade.
  • an air-ingesting turbo machine e.g., a gas turbine
  • air is pressurized by a compressor and then mixed with fuel and ignited within an annular array of combustors to generate combustion gases.
  • the hot gases are routed through a liner and into a hot gas path defined within a turbine section of the turbo machine.
  • Kinetic energy is extracted from the combustion gases via one or more rows of turbine rotor blades that are connected to a rotor shaft. The extracted kinetic energy causes the rotor shaft to rotate, thus producing work.
  • the turbine rotor blades or blades generally operate in extremely high temperature environments.
  • the blades typically include various internal cooling passages or cavities.
  • a cooling medium such as compressed air is routed through the internal cooling passages.
  • a portion of the cooling medium may be routed out of the internal cooling passages through various cooling holes defined along the blade surface, thereby reducing high surface temperatures.
  • An area that is generally challenging to cool effectively via the cooling medium is a blade tip portion of the turbine rotor blade, more particularly a trailing edge region of the blade tip.
  • the blade tip is generally defined at a radial extremity of the turbine rotor blade and is positioned radially inward from a turbine shroud that circumscribes the row of blades.
  • the turbine shroud defines a radially outward boundary of the hot gas path. The proximity of the blade tip to the turbine shroud makes the blade tip difficult to cool. The contiguity of the shroud and the blade tip minimizes the leakage of hot operating fluid past the tip which correspondingly improves turbine efficiency.
  • a tip cavity formed by a recessed tip cap and a pressure side wall and a suction side wall provides a means for achieving minimal tip clearance while at the same time assuring adequate blade tip cooling.
  • the pressure side wall and the suction side wall extend radially outwardly from the tip cap. At least a portion of at least one of the suction side wall and the pressure side wall is flared or inclined outward with respect to a radial centerline of the blade.
  • the pressure side wall intersects with the suction side wall at a leading edge portion of the blade. However, the pressure side wall does not intersect with the suction side wall at the trailing edge, thus forming an opening therebetween. This configuration is generally due to the lack of an appropriate wall thickness of the blade along the trailing edge.
  • the cooling medium is exhausted from the internal passages through holes in the tip cap into the tip cavity, thus effectively cooling the pressure and suction side walls as well as the tip cap surface.
  • US 2002/182074 A1 describes a turbine assembly having at least one rotor blade that comprises an airfoil having a pressure sidewall, a suction sidewall and a tip portion having a tip cap.
  • a tip is disposed on the tip cap.
  • a plurality of blade tip cooling holes are positioned within the airfoil near the tip portion. Cooling grooves are disposed within the airfoil to connect the blade tip cooling holes with the top portion of the tip to transition cooling flow from the cooling holes to the tip portion.
  • US 2004/179940 A1 describes a rotating blade for a gas turbine engine which is configured to uniformly diffuse cooling air from an internal cavity about the tip of the rotating blade.
  • the rotating blade includes a secondary cavity interposed between an internal cavity and the peripheral edge of the blade tip, wherein the secondary cavity steps down the cooling air pressure, decreasing the momentum of the cooling air exiting the rotating blade tip.
  • the cooling air is diffused about the tip of the rotating blade into cooling slots aligned along the peripheral edge, such that a sub-boundary layer of cooling air is built-up adjacent to surface of the airfoil.
  • US 2014/047842 A1 describes an airfoil for a gas turbine engine includes pressure and suction walls spaced apart from one another and joined at leading and trailing edges to provide an airfoil that extends in a radial direction.
  • the airfoil has a cooling passage arranged between the pressure and suction walls that extend toward a tip of the airfoil.
  • the tip includes a pocket that separates the pressure and suction walls.
  • Scarfed cooling holes fluidly connect the cooling passage to the pocket.
  • the scarfed cooling holes include a portion that is recessed into a face of the suction wall and exposed to the pocket.
  • US 8 801 377 B1 describes a turbine rotor blade with a squealer tip having an enclosed pocket channel formed below the squealer floor and having an inlet end opening adjacent to a leading edge region of the blade tip to receive cooler hot gas streanl and direct the cooler gas toward the trailing edge region, and with film cooling holes along the aft section of the blade tip that discharge the cooler hot gas flow passing through the pocket channel onto the tip rail surface to produce both cooling and sealing.
  • a similar pocket channel with film cooling holes can be used on the pressure and the suction sides of the blade tip.
  • US 2014/037458 A1 describes a rotor blade for a turbine of a combustion turbine engine having an airfoil that includes a pressure and a suction sidewall defining an outer periphery and a tip portion defining an outer radial end.
  • the tip portion includes a rail that defines a tip cavity.
  • the airfoil includes an interior cooling passage configured to circulate coolant.
  • the rotor blade further includes: a slotted portion of the rail; and at least one film cooling outlet disposed within at least one of the pressure sidewall and the suction sidewall of the airfoil.
  • the film cooling outlet includes a position that is adjacent to the tip portion and in proximity to the slotted portion of the rail.
  • EP 2 479 382 A1 describes a rotor blade has a radially extending aerofoil body which provides an aerofoil surface having pressure and suction sides extending between a leading edge and a trailing edge of the aerofoil body.
  • the rotor blade further has squealer tip at the radially outward end of the aerofoil body.
  • the squealer tip comprises a peripheral wall surrounding a cavity which is open at the radially outward end of the blade and at the trailing edge of the aerofoil body.
  • the peripheral wall has at least one first region which extends radially from the aerofoil surface and which has a first outer surface which is a continuation of the aerofoil surface.
  • the peripheral wall further has, along at least part of at least one of the pressure side and the suction side, at least one second region which is inclined outwardly of the cavity with respect to the radial direction of the blade and which has a second outer surface which extends obliquely outwardly of the blade from the aerofoil surface.
  • a radially outer portion of the second outer surface turns towards the radial direction to truncate the outward extension of the second outer surface.
  • One embodiment of the present invention is a rotor blade as claimed in claim 1.
  • Another embodiment is a gas turbine comprising such a rotor blade.
  • radially refers to the relative direction that is substantially perpendicular to an axial centerline of a particular component and/or substantially perpendicular to an axial centerline of the turbomachine
  • axially refers to the relative direction that is substantially parallel and/or coaxially aligned to an axial centerline of a particular component and/or to an axial centerline of the turbomachine.
  • FIG. 1 illustrates a schematic diagram of one embodiment of a gas turbine 10.
  • the gas turbine 10 generally includes an inlet section 12, a compressor section 14 disposed downstream of the inlet section 12, a plurality of combustors (not shown) within a combustor section 16 disposed downstream of the compressor section 14, a turbine section 18 disposed downstream of the combustor section 16 and an exhaust section 20 disposed downstream of the turbine section 18. Additionally, the gas turbine 10 may include one or more shafts 22 coupled between the compressor section 14 and the turbine section 18.
  • the turbine section 18 may generally include a rotor shaft 24 having a plurality of rotor disks 26 (one of which is shown) and a plurality of rotor blades 28 extending radially outwardly from and being interconnected to the rotor disk 26. Each rotor disk 26 in turn, may be coupled to a portion of the rotor shaft 24 that extends through the turbine section 18.
  • the turbine section 18 further includes an outer casing 30 that circumferentially surrounds the rotor shaft 24 and the rotor blades 28, thereby at least partially defining a hot gas path 32 through the turbine section 18.
  • a working fluid such as air flows through the inlet section 12 and into the compressor section 14 where the air is progressively compressed, thus providing pressurized air to the combustors of the combustion section 16.
  • the pressurized air is mixed with fuel and burned within each combustor to produce combustion gases 34.
  • the combustion gases 34 flow through the hot gas path 32 from the combustor section 16 into the turbine section 18, wherein energy (kinetic and/or thermal) is transferred from the combustion gases 34 to the rotor blades 28, thus causing the rotor shaft 24 to rotate.
  • the mechanical rotational energy may then be used to power the compressor section 14 and/or to generate electricity.
  • the combustion gases 34 exiting the turbine section 18 may then be exhausted from the gas turbine 10 via the exhaust section 20.
  • FIG. 2 is a perspective view of an exemplary rotor blade 100 as may incorporate one or more embodiments of the present invention and as may be incorporated into the turbine section 18 of the gas turbine 10 in place of rotor blade 28 as shown in FIG. 1 .
  • the rotor blade 100 generally includes a mounting or shank portion 102 having a mounting body 104, and an airfoil 106 that extends in span outwardly in a radial direction 108 from a platform portion 110 of the rotor blade 100.
  • the platform 110 generally serves as a radially inward flow boundary for the combustion gases 34 flowing through the hot gas path 32 of the turbine section 18 ( FIG. 1 ).
  • FIG. 1 As shown in FIG.
  • the mounting body 104 of the mounting or shank portion 102 may extend radially inwardly from the platform 110 and may include a root structure, such as a dovetail, configured to interconnect or secure the rotor blade 100 to the rotor disk 26 ( FIG. 1 ).
  • the airfoil 106 includes an outer surface 112 that surrounds the airfoil 106.
  • the outer surface 112 is at least partially defined by a pressure side wall 114 and an opposing suction side wall 116.
  • the pressure side wall 114 and the suction side wall 116 extend substantially radially outwardly from the platform 110 in span from a root 118 of the airfoil 106 to a blade tip or tip 120 of the airfoil 106.
  • the root 118 of the airfoil 106 may be defined at an intersection between the airfoil 106 and the platform 110.
  • the blade tip 120 is disposed radially opposite the root 118. As such, a radially outer surface 122 of the blade the tip 120 may generally define the radially outermost portion of the rotor blade 100.
  • the pressure side wall 114 and the suction side wall 116 are joined together or interconnected at a leading edge 124 of the airfoil 106 which is oriented into the flow of combustion gases 34.
  • the pressure side wall 114 and the suction side wall 116 are also joined together or interconnected at a trailing edge 126 of the airfoil 106 which is spaced downstream from the leading edge 124.
  • the pressure side wall 114 and the suction side wall 116 are continuous about the trailing edge 126.
  • the pressure side wall 114 is generally concave and the suction side wall 116 is generally convex.
  • chord of the airfoil 106 is the length of a straight line connecting the leading edge 124 and the trailing edge 126 and the direction from the leading edge 124 to the trailing edge 126 is typically described as the chordwise direction.
  • a chordwise line bisecting the pressure side wall 114 and the suction side wall 116 is typically referred to as the mean-line or camber-line 128 of the airfoil 106.
  • a cooling medium such as a relatively cool compressed air bled from the compressor section 14 ( FIG. 1 ) of the gas turbine engine 10 which is suitably channeled through the mounting or shank portion 102 of the rotor blade 100 and into an internal cavity or passage 132 that is at least partially defined within the airfoil 106 between the pressure side wall 114 and the suction side wall 116.
  • the internal cavity 132 may take any conventional form and is typically in the form of a serpentine passage.
  • the cooling medium 130 enters the internal cavity 132 from the mounting or shank portion 102 and passes through the internal cavity 132 for suitably cooling the airfoil 106 from the heating effect of the combustion gases 34 flowing over the outer surface 112 thereof.
  • Film cooling holes may be disposed on the pressure side wall 114 and/or the suction side wall 116 for conventionally film cooling the outer surface 112 of the airfoil 106.
  • a tip cavity or plenum 134 is formed at or within the blade tip 120.
  • the tip cavity 134 is at least partially formed by a tip cap 136.
  • the tip cap 136 is recessed radially inwardly from the blade tip 120 and/or the outer surface 122 of the blade tip 120 and forms a floor portion of the tip cavity 134.
  • the tip cap 136 is surrounded continuously by the pressure side wall 114 and the suction side wall 116.
  • the tip cap 136 is connected to and/or forms a seal against an inner surface or side 138 of the pressure side wall 114 and an inner surface or side 140 of the suction side wall 116 along a periphery 142 of the tip cap 136 between the leading and trailing edges 124, 126 of the airfoil 106.
  • the tip cap 136 further includes a plurality of holes or apertures 144 that extend through a top surface or side 146 of the tip cap 136 and that provide for fluid communication between the internal cavity 132 and the tip cavity 134.
  • FIG. 3 provides a perspective view of a portion the airfoil 106 which includes the blade tip 120 according to at least one embodiment of the present invention.
  • FIG. 4 provides a cross sectioned top view of a portion of the airfoil 106 taken along section lines 4-4 as shown in FIG. 3 , according to at least one embodiment of the present invention.
  • FIG. 5 provides a cross sectioned side view of a portion of the airfoil 106 taken along section lines 5-5 as shown in FIG. 3 , according to at least one embodiment of the present invention.
  • a portion of at least one of the suction side wall 116 or the pressure side wall 114 that defines the tip cavity 134 extends obliquely outwardly from the tip cavity 134 and/or the top surface 146 of the tip cap 136 with respect to radial direction 108 and/or with respect to the outer surface 112 of the airfoil 106.
  • Radial direction 108 may be substantially perpendicular to the top surface 146 of the tip cap 136.
  • a portion of the suction side wall 116 that defines the tip cavity 134 and a portion of the pressure side wall 114 that defines the tip cavity 134 extends obliquely outwardly from the tip cavity 134 with respect to radial direction 108 and/or with respect to the outer surface 112 of the airfoil 106.
  • a portion of the suction side wall 116 that defines the tip cavity 134 extends obliquely outwardly from the tip cavity 134 with respect to radial direction 108 and/or with respect to the outer surface 112 of the airfoil 106.
  • a portion of the pressure side wall 114 that defines the tip cavity 134 extends obliquely outwardly from the tip cavity 134 with respect to radial direction 108 and/or with respect to the outer surface 112 of the airfoil 106.
  • a portion of the inner surface or side 140 of the suction side wall 116 that defines the tip cavity 134 may extend obliquely outwardly from the tip cavity 134 with respect to radial direction 108, thus increasing an overall volume of the tip cavity 134.
  • a portion of the inner surface or side 138 of the pressure side wall 114 that defines the tip cavity 134 may extend obliquely outwardly from the tip cavity 134 with respect to radial direction 108, thus increasing an overall volume of the tip cavity 134.
  • the airfoil 106 includes a plurality of slots 148 defined by or within at least one of the suction side wall 116 or the pressure side wall 114 along the radially outer surface 122 and positioned proximate to the trailing edge 126 of the airfoil 106. As shown in FIGS. 3 and 4 , the pressure side wall 114 and the suction side wall 116 maintain continuity across the trailing edge 126. Although the plurality of slots 148 are shown in FIGS.
  • the plurality of slots 148 may occur only along the suction side wall 116 or occur only along the pressure side wall 114 or may occur along both the pressure side and the suction side walls 114, 116 as shown.
  • the plurality of slots 148 occurs only along the suction side wall 116. In another embodiment, the plurality of slots 148 occurs only along the pressure side wall 114. In one embodiment, as shown in FIG. 4 , the plurality of slots 148 includes a first slot 150 defined in the pressure side wall 114 and a second slot 152 defined within the suction side wall along the radially outer surface proximate to the trailing edge 126 of the airfoil 106. In particular embodiments, the plurality of slots 148 is equally or non-equally distributed on both the pressure and suction side walls 114, 116. An angle ⁇ ° is shown in FIGS. 4 and 5 .
  • one or more slots 148 of the plurality of slots 148 extend through the radially outer surface 122 of the airfoil 106 towards the top surface 146 of the tip cap 136.
  • one or more of the slots 148 may be angled towards the trailing edge 126 as it extends through the inner surface 138 of the pressure side wall 114 or the inner surface 140 of the suction side wall 116 and the outer surface 112 of the airfoil 106.
  • at least one slot 148 of the plurality of slots 148 extends radially into and/or at least partially through the top surface 146 of the tip cap 136.
  • FIG. 6 provides a perspective view of a portion the airfoil 106 which includes the blade tip 120 according to at least one embodiment of the present invention.
  • FIG. 7 provides a cross sectioned side view of a portion of the airfoil 106 taken along section lines 7-7 as shown in FIG. 6 , according to at least one embodiment of the present invention.
  • a portion 154 of the top surface 146 of the tip cap 136 that is proximate to the trailing edge 126 is stepped radially inwardly. Stepped portion 154 may be inclined along the camber line 128 ( FIG. 2 ) or otherwise contoured to facilitate or enhance cooling effectiveness.
  • One or more of the slots 148 of the plurality of slots 148 may be tapered.
  • One or more of the slots 148 of the plurality of slots 148 is non-linear to enable flow of the cooling medium from the tip cavity 134 adjacent to the trailing edge 126.
  • at least one slot 148 of the plurality of slots 148 may taper inwardly from the outer radial surface 122 of the blade tip 120 towards the top surface 146 of the tip cap 136.
  • at least one slot 148 of the plurality of slots 148 may include a curved or widened inlet 156 along inner surfaces 138, 140.
  • at least one slot 148 may also include a widened or diffusing outlet 158 along the outer surface 112.
  • at least one slot includes a narrowing region 160 defined between the inlet 156 and outlet 158.
  • At least one aperture 144 of the plurality of apertures 144 is positioned proximate to the trailing edge 126.
  • at least one aperture 144 of the plurality of apertures 144 is angled aft towards the trailing edge 126 of the airfoil 106 with respect to radial direction 108.
  • at least one aperture 144 of the plurality of apertures 144 is defined between adjacent slots 148 of the plurality of slots 148.
  • at least one aperture 144 may be disposed upstream of at least one slot 148.
  • one or more holes 162 are defined along the trailing edge 126 of the airfoil 106 radially below the tip cap 136.
  • the one or more holes 162 may be in fluid communication with the internal cavity 132, thus providing additional cooling along the trailing edge 126 of the airfoil 106.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (10)

  1. Rotorschaufel, umfassend:
    ein Schaufelblatt (106), das eine Druckseitenwand (114) und eine Saugseitenwand (116), die an Vorder- und Hinterkanten (124, 126) des Schaufelblatts verbunden sind, eine Schaufelspitze (120), die eine radial äußere Oberfläche (122) des Schaufelblatts definiert, und einen inneren Hohlraum (132) zum Aufnehmen eines Kühlmediums aufweist; und
    einen Spitzenhohlraum (134) in Fluidverbindung mit dem inneren Hohlraum und mindestens teilweise durch eine Spitzenkappe (136) definiert, die von der radial äußeren Oberfläche radial nach innen vertieft und durch die Druck- und Saugseitenwände umgeben ist,
    wobei eine Vielzahl von Schlitzen (148) in mindestens einer der Saugseitenwand oder der Druckseitenwand entlang der radial äußeren Oberfläche nahe der Hinterkante des Schaufelblatts definiert ist,
    wobei die Schlitze jeweils einen Auslass (158) an einer äußeren Oberfläche (112) des Schaufelblatts und einen Einlass (156) an der jeweiligen inneren Oberfläche (138, 140) der mindestens einen der Druckseitenwand oder der Saugseitenwand derart umfassen, dass sich jeder Schlitz durch die äußere Oberfläche (112) des Schaufelblatts und die jeweilige innere Oberfläche (138, 140) eines Abschnitts der mindestens einen der Druckseitenwand oder der Saugseitenwand erstreckt, der den Spitzenhohlraum definiert,
    und dadurch gekennzeichnet, dass:
    sich der Abschnitt der mindestens einen der Druckseitenwand oder der Saugseitenwand, der den Spitzenhohlraum definiert, von dem Spitzenhohlraum schräg nach außen erstreckt; und
    ein oder mehrere Schlitze der Vielzahl von Schlitzen eine sich verjüngende Region (160) umfassen, die zwischen dem Einlass und dem Auslass definiert ist, um einen Fluss des Kühlmediums von dem Spitzenhohlraum angrenzend an die Hinterkante zu ermöglichen.
  2. Rotorschaufel nach Anspruch 1, wobei sich mindestens ein Schlitz der Vielzahl von Schlitzen radial in die obere Oberfläche der Spitzenkappe erstreckt.
  3. Rotorschaufel nach Anspruch 1 oder 2, wobei die Vielzahl von Schlitzen einen ersten Schlitz, der in der Druckseitenwand definiert ist, und einen zweiten Schlitz einschließt, der innerhalb der Saugseitenwand an der radial äußeren Oberfläche nahe der Hinterkante des Schaufelblatts definiert ist.
  4. Rotorschaufel nach einem der Ansprüche 1 bis 3, wobei die obere Oberfläche der Spitzenkappe nahe der Hinterkante radial nach innen abgestuft ist.
  5. Rotorschaufel nach einem der vorstehenden Ansprüche, ferner umfassend eine Vielzahl von Öffnungen, die sich durch die Spitzenkappe erstrecken, wobei die Vielzahl von Öffnungen eine Fluidverbindung zwischen dem inneren Hohlraum und dem Spitzenhohlraum bereitstellen, wobei mindestens eine Öffnung der Vielzahl von Öffnungen stromaufwärts von mindestens einem Schlitz der Vielzahl von Schlitzen definiert ist.
  6. Rotorschaufel nach einem der vorstehenden Ansprüche, wobei ein oder mehrere Schlitze der Vielzahl von Schlitzen in Bezug auf eine Skelettlinie des Schaufelblatts in Richtung der Hinterkante abgewinkelt sind.
  7. Rotorschaufel nach einem der vorstehenden Ansprüche, ferner umfassend ein Loch, das an der Hinterkante des Schaufelblatts definiert und radial unter der Spitzenkappe positioniert ist, wobei das Loch in Fluidverbindung mit dem inneren Hohlraum steht.
  8. Rotorschaufel nach einem der vorstehenden Ansprüche, wobei sich der Abschnitt der mindestens einen Saugseitenwand oder der Druckseitenwand, der den Spitzenhohlraum definiert, auf der Saugseite befindet und sich von dem Spitzenhohlraum in Bezug auf eine Radialrichtung schräg nach außen erstreckt.
  9. Rotorschaufel nach einem der vorstehenden Ansprüche, wobei sich der Abschnitt der mindestens einen der Druckseitenwand oder der Saugseitenwand, der den Spitzenhohlraum definiert, auf der Druckseitenwand befindet und sich von dem Spitzenhohlraum in Bezug auf eine Radialrichtung schräg nach außen erstreckt.
  10. Gasturbine, umfassend:
    einen Verdichterabschnitt;
    eines Brennkammerteilabschnitts; und
    einen Turbinenbereich, wobei der Turbinenbereich eine Rotorwelle und eine Vielzahl von Rotorschaufeln aufweist, die mit der Rotorwelle verbunden sind, wobei jede Rotorschaufel nach einem der Ansprüche 1 bis 9 definiert ist.
EP16166812.4A 2015-04-29 2016-04-25 Rotorblatt und zugehörige gasturbine Active EP3088674B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/699,308 US20160319672A1 (en) 2015-04-29 2015-04-29 Rotor blade having a flared tip

Publications (2)

Publication Number Publication Date
EP3088674A1 EP3088674A1 (de) 2016-11-02
EP3088674B1 true EP3088674B1 (de) 2024-05-29

Family

ID=55808495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16166812.4A Active EP3088674B1 (de) 2015-04-29 2016-04-25 Rotorblatt und zugehörige gasturbine

Country Status (4)

Country Link
US (1) US20160319672A1 (de)
EP (1) EP3088674B1 (de)
JP (1) JP6824623B2 (de)
CN (1) CN106089313B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170058680A1 (en) * 2015-09-02 2017-03-02 General Electric Company Configurations for turbine rotor blade tips
US10677066B2 (en) 2015-11-23 2020-06-09 United Technologies Corporation Turbine blade with airfoil tip vortex control
US20170145827A1 (en) * 2015-11-23 2017-05-25 United Technologies Corporation Turbine blade with airfoil tip vortex control
EP3954882B1 (de) * 2016-03-30 2023-05-03 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbolader mit variabler geometrie
US10443405B2 (en) * 2017-05-10 2019-10-15 General Electric Company Rotor blade tip
CN107559048B (zh) * 2017-09-22 2024-01-30 哈尔滨汽轮机厂有限责任公司 一种用于中低热值重型燃气轮机发动机的转子叶片
KR102021139B1 (ko) * 2018-04-04 2019-10-18 두산중공업 주식회사 스퀼러 팁을 구비한 터빈 블레이드
US10787932B2 (en) * 2018-07-13 2020-09-29 Honeywell International Inc. Turbine blade with dust tolerant cooling system
CN110863862B (zh) * 2019-12-05 2022-12-06 中国航发四川燃气涡轮研究院 叶尖结构和涡轮
US11225874B2 (en) * 2019-12-20 2022-01-18 Raytheon Technologies Corporation Turbine engine rotor blade with castellated tip surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378074A1 (de) * 2010-04-19 2011-10-19 Rolls-Royce plc Laufschaufel und zugehöriges Gasturbinenkraftwerk
EP2479382A1 (de) * 2011-01-20 2012-07-25 Rolls-Royce plc Rotorblatt
US20140037458A1 (en) * 2012-08-03 2014-02-06 General Electric Company Cooling structures for turbine rotor blade tips

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761116A (en) * 1987-05-11 1988-08-02 General Electric Company Turbine blade with tip vent
US6179556B1 (en) * 1999-06-01 2001-01-30 General Electric Company Turbine blade tip with offset squealer
US6494678B1 (en) * 2001-05-31 2002-12-17 General Electric Company Film cooled blade tip
US6971851B2 (en) * 2003-03-12 2005-12-06 Florida Turbine Technologies, Inc. Multi-metered film cooled blade tip
GB0813556D0 (en) * 2008-07-24 2008-09-03 Rolls Royce Plc A blade for a rotor
US20120237358A1 (en) * 2011-03-17 2012-09-20 Campbell Christian X Turbine blade tip
US8801377B1 (en) * 2011-08-25 2014-08-12 Florida Turbine Technologies, Inc. Turbine blade with tip cooling and sealing
US10408066B2 (en) * 2012-08-15 2019-09-10 United Technologies Corporation Suction side turbine blade tip cooling
US9334742B2 (en) * 2012-10-05 2016-05-10 General Electric Company Rotor blade and method for cooling the rotor blade
CN106471215B (zh) * 2014-07-07 2018-06-19 西门子公司 燃气涡轮叶片凹槽状叶顶、对应的制造和冷却方法及燃气涡轮发动机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378074A1 (de) * 2010-04-19 2011-10-19 Rolls-Royce plc Laufschaufel und zugehöriges Gasturbinenkraftwerk
EP2479382A1 (de) * 2011-01-20 2012-07-25 Rolls-Royce plc Rotorblatt
US20140037458A1 (en) * 2012-08-03 2014-02-06 General Electric Company Cooling structures for turbine rotor blade tips

Also Published As

Publication number Publication date
US20160319672A1 (en) 2016-11-03
JP2016211545A (ja) 2016-12-15
CN106089313A (zh) 2016-11-09
CN106089313B (zh) 2020-12-01
JP6824623B2 (ja) 2021-02-03
EP3088674A1 (de) 2016-11-02

Similar Documents

Publication Publication Date Title
EP3088674B1 (de) Rotorblatt und zugehörige gasturbine
EP3088675B1 (de) Laufschaufel und zugehörige gasturbine
US9528377B2 (en) Method and system for cooling rotor blade angelwings
EP3214271B1 (de) Rotorschaufel mit hinterkantenkühlung
EP3415719B1 (de) Kühlstruktur einer turbomaschinenschaufel
JP2012102726A (ja) タービンロータブレードのプラットフォーム領域を冷却するための装置、システム、及び方法
JP2015092076A (ja) タービンアセンブリに冷却を提供するための方法およびシステム
EP3203024B1 (de) Laufschaufel und zugehörige gasturbine
US9816389B2 (en) Turbine rotor blades with tip portion parapet wall cavities
EP3669054B1 (de) Turbinenschaufel und entsprechendes wartungsverfahren
JP7297413B2 (ja) ターボ機械用ロータブレード
EP3249162B1 (de) Laufschaufel und zugehöriges gasturbinensystem
JP7271093B2 (ja) ターボ機械ロータブレード
US10472974B2 (en) Turbomachine rotor blade
US10577945B2 (en) Turbomachine rotor blade
US11629601B2 (en) Turbomachine rotor blade with a cooling circuit having an offset rib
US10746029B2 (en) Turbomachine rotor blade tip shroud cavity
US20180216474A1 (en) Turbomachine Blade Cooling Cavity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170502

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171121

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016087707

Country of ref document: DE