CN106471215B - 燃气涡轮叶片凹槽状叶顶、对应的制造和冷却方法及燃气涡轮发动机 - Google Patents

燃气涡轮叶片凹槽状叶顶、对应的制造和冷却方法及燃气涡轮发动机 Download PDF

Info

Publication number
CN106471215B
CN106471215B CN201480080443.4A CN201480080443A CN106471215B CN 106471215 B CN106471215 B CN 106471215B CN 201480080443 A CN201480080443 A CN 201480080443A CN 106471215 B CN106471215 B CN 106471215B
Authority
CN
China
Prior art keywords
leaf top
track
pressure
slit
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480080443.4A
Other languages
English (en)
Other versions
CN106471215A (zh
Inventor
李经邦
谭国汶
G.S.阿扎德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN106471215A publication Critical patent/CN106471215A/zh
Application granted granted Critical
Publication of CN106471215B publication Critical patent/CN106471215B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • F05D2230/53Building or constructing in particular ways by integrally manufacturing a component, e.g. by milling from a billet or one piece construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/307Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the tip of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

燃气涡轮发动机叶片凹槽状叶顶包含冷却狭槽,其在前边缘下游形成于吸力侧轨道中以便沿凹槽状叶顶压力侧轨道的内侧边缘引导冷却气流。一些实施例包含接近冷却狭槽在吸力侧轨道上的叶顶肋片。分段式吸力侧轨道实施例在与压力侧轨道潜在接触之前刮磨相对的涡轮外壳耐磨表面,从而减小压力侧轨道摩擦加热的可能性。在涡轮发动机操作期间,更冷的压力侧轨道减小凹槽状叶顶侵蚀的可能性。

Description

燃气涡轮叶片凹槽状叶顶、对应的制造和冷却方法及燃气涡 轮发动机
技术领域
本发明涉及燃气涡轮发动机叶片凹槽状叶顶和用于冷却燃气涡轮发动机凹槽状叶顶的方法。更具体地,本发明的实施例涉及冷却狭槽和叶顶肋片,所述冷却狭槽和叶顶肋片形成在凹槽状叶顶轨道中以便沿凹槽状叶顶压力侧轨道的内侧边缘引导冷却气流。分段式吸力侧轨道实施例在与压力侧轨道潜在接触之前刮磨相对的涡轮外壳耐磨表面,从而降低压力侧轨道摩擦加热的可能性。
背景技术
已知的燃气涡轮发动机包含被涡轮外壳或壳体周向约束的轴安装式涡轮叶片。流动通过涡轮叶片的热气体引起叶片旋转,叶片旋转将热气体内的热能转化为机械功,所述机械功可用于为旋转机械(诸如发电机)供能。参考图1到图4,已知的涡轮发动机(诸如燃气涡轮发动机30)包括多级压缩机部段32、燃烧器部段34、多级涡轮部段36和排气系统38。大气压力进气总体沿流动箭头F的方向沿涡轮发动机30的轴向长度被吸入压缩机部段32内。进气在压缩机部段32中通过数行旋转压缩机叶片逐步加压,并且通过匹配的压缩机导叶被引导至燃烧器部段34,在所述燃烧器处,进气与燃料混合并被点燃。点燃的燃料/空气混合物(现在处于比原始进气更大的压力和温度下)被引导至涡轮部段36中的多个顺序行R1、R2等。发动机的转子和轴39具有多行翼型横截面形状的涡轮叶片40,所述涡轮叶片40终止于压缩机部段32和涡轮部段36中的远端叶片凹槽状叶顶46中。为了方便性和简洁性,对发动机中的涡轮叶片和耐磨层的进一步论述将集中于涡轮部段36的实施例和应用上,不过类似的构造也适用于压缩机部段32。每个叶片40均具有凹形轮廓压力侧42和凸形吸力侧44。沿燃烧流动方向F流动的高温和高压燃烧气体在叶片40上赋予旋转运动,从而使转子39转动。如众所周知的那样,赋予于转子轴上的一些机械功率可用于执行有用功。燃烧气体在转子的径向远侧由涡轮外壳60约束且在转子近侧由气封件约束。参考图2中所示的行1部段和图3中相同叶片40的透视图,相应的上游导叶62总体上平行于涡轮叶片的前边缘48的入射角来引导上游燃烧气体,并且下游导叶使离开叶片的后边缘50的下游燃烧气体转向。
涡轮发动机30的涡轮外壳60(接近叶片凹槽状叶顶46)布有多个扇形耐磨部件64,每个耐磨部件均具有:支撑表面,其固持在外壳60内并联接到外壳60;以及耐磨衬底66,其通过叶顶间隙G与叶顶成相对的、间隔分开的关系。耐磨衬底常常由金属/陶瓷材料建构,所述材料具有高耐热性和耐热蚀性,并且在高燃烧温度下维持结构完整性。作为耐磨表面66,金属-陶瓷材料常常比涡轮叶顶46材料更加耐磨,维持叶顶间隙G以避免两个相对的部件之间的接触,所述接触在最好的情况下可能引起叶顶过早磨损且在更糟糕的情形下可能引起发动机损坏。
除了期望防止叶顶46过早磨损或与耐磨衬底66接触之外,为了实现理想的气流和动力效率,每个相应的叶顶46均期望地具有相对于耐磨部件64尽可能小的均匀的叶顶间隙G(理想地为零空隙),以使凹形压力叶片侧42与凸形吸力叶片侧44之间以及轴向地沿燃烧流动方向F的叶顶气流泄漏L最小化。然而,制造和操作权衡需要叶顶间隙G大于零。这种权衡包括相互作用的部件的公差累加,使得建构在更高端部(具有可接受的径向长度公差)上的叶片和建构在更低端部(具有可接受的径向公差)上的耐磨部件耐磨衬底66在操作期间不过度彼此影响。类似地,在发动机组装期间,小机械对齐方差能够引起叶顶间隙G的局部变化。例如,在具有数米的轴向长度的涡轮发动机(具有内径为多米的涡轮外壳耐磨衬底66)中,极小的机械对齐方差能够赋予几毫米的局部叶顶间隙G方差。
在涡轮发动机30操作期间,涡轮发动机外壳60可经历失圆(例如,鸡蛋形)热变形。外壳60的热变形潜在性在涡轮发动机30的操作循环之间增加,因为发动机被发动以生成动力且随后在发电几千小时之后被冷却以便维修。通常,相比于侧向的右和左周向位置(即,3:00和9:00位置),更大的外壳60和耐磨部件64变形趋于在最上和最下外壳周向位置(即,6:00和12:00位置)处发生。例如,如果6:00位置处的外壳变形引起叶顶与耐磨衬底66接触,则叶顶凹槽46中的一个或多个可以在操作期间磨损,从而使位于涡轮外壳60的各种其它更小程度变形的周向部分中附近的叶顶间隙从理想间隙G增大到更大间隙。过度的叶片间隙变形增加叶顶泄漏L,从而将热的燃烧气体引离涡轮叶片40翼型,从而降低涡轮发动机的效率。
图3到图6中更详细地示出示例性叶片40凹槽状叶顶46构造及其与涡轮外壳耐磨表面66的相互作用。凹槽状叶顶46具有翼型平面形状叶顶板56,其在其前边缘48下游和其后边缘50上游沿其外周边具有相对的且侧向分开的向外或径向突出的凹形压力轨道52和凸形吸力轨道54,所述轨道分别具有相对的内面和外面。封闭的叶顶腔57被限定在从前边缘48到后边缘50在叶顶板56与压力轨道52(在图4中也参考为压力轨道内表面53)及吸力轨道54的相应内面之间。参考在凹槽状叶顶46与耐磨表面(为更清楚地观察流动流线,未示出耐磨表面)之间及在所述两者周围的气流的流线模拟,压力侧气流FP在前边缘48周围被偏转并分开而不与压力侧轨道52接触,从而允许热集中在压力轨道的外面上。这种过度的热集中能够引起压力轨道52被侵蚀,从而使叶片过早地磨损且不期望地增大叶顶间隙,如先前所描述的那样。燃烧气体流FT不期望地从凹槽状叶顶46的顶部上穿过叶顶间隙,但大部分燃烧气体流被引离压力轨道内表面53朝向吸力侧轨道,从而沿压力轨道内表面形成另一个潜在的热集中区。沿叶顶46的吸力侧44的气流FS被引导朝向叶片后边缘50,在所述后边缘50处其不能够辅助从压力轨道52热集中区传递热量。如先前提及的,凹槽状叶顶46压力轨道52与耐磨表面46之间的摩擦接触也不期望地增加压力轨道区域的热集中。
图7中示出另一个已知的常规叶片凹槽状叶顶146,其具有分段式压力侧轨道152,且所述压力侧轨道152带有接近凹槽状叶顶146后边缘150的狭槽158。在该实施例中,吸力侧轨道154从前边缘148向下游到后边缘150是连续的。轨道152、154和在下的叶顶板(未示出)形成凹槽状叶顶腔157。
发明内容
因此,所建议的目标是通过降低凹槽状叶顶压力轨道操作温度(通过沿压力轨道的内侧表面增加冷却气流)来减小涡轮叶片凹槽状叶顶磨损。
另一个所建议的目标是通过降低凹槽状叶顶压力轨道操作温度(通过压力轨道与发动机的相对耐磨表面之间的减小的接触)来减小涡轮叶片凹槽状叶顶磨损。减小或消除压力轨道与耐磨表面的接触减小了压力侧轨道滑动摩擦加热的可能性。
在一个或多个示例性实施例中,通过燃气涡轮发动机叶片凹槽状叶顶来实现这些和其它目标,其中所述叶片凹槽状叶顶包含冷却狭槽,所述冷却狭槽在前边缘下游形成于吸力侧轨道中,以便沿凹槽状叶顶压力侧轨道的内侧边缘引导冷却气流。一些实施例包含在吸力侧轨道上接近冷却狭槽的叶顶肋片(fin)。分段式吸力侧轨道实施例在与压力侧轨道潜在接触之前刮磨相对的涡轮外壳耐磨表面,从而减小压力侧轨道摩擦加热的可能性。在涡轮发动机操作期间,更冷的压力侧轨道减小了凹槽状叶顶侵蚀的可能性。
示例性实施例以燃气涡轮发动机叶片凹槽状叶顶为特征,其包括翼型平面形状叶顶板,所述叶顶板在其前边缘下游和其后边缘上游沿其外周边具有相对的且侧向分开的突出的凹形压力轨道和凸形吸力轨道,所述轨道分别具有内面和外面。封闭的叶顶腔被限定在从前边缘到后边缘叶顶板与压力轨道及吸力轨道的相应内面之间。在前边缘下游穿过吸力轨道的相应内面和外面形成至少一个狭槽。该狭槽与叶顶腔连通并且被取向为用于引导冷却空气流动通过该处并沿压力轨道内面向下游流动。这些叶片凹槽状叶顶在方法实施例中用于冷却燃气涡轮发动机,所述燃气涡轮发动机包括转子,所述转子具有由此径向突出的叶片,并且其中叶片凹槽状叶顶与由涡轮外壳支撑的周向耐磨层成相对关系。通过以下步骤执行所述方法:提供并安装涡轮叶片,所述涡轮叶片具有前述的叶片凹槽状叶顶;以及操作发动机使得冷却空气沿压力轨道内面向下游流动并且流动通过前边缘下游穿过吸力轨道的相应内面和外面形成的狭槽。
额外的实施例以一种用于通过提供一种涡轮叶片来制造燃气涡轮发动机叶片凹槽状叶顶压力侧轨道的方法为特征,所述涡轮叶片带有:翼型平面形状的叶顶板,所述叶顶板在其前边缘下游和其后边缘上游沿其外周边具有相对的且侧向分开的突出的凹形压力轨道和凸形吸力轨道,所述轨道分别具有内面和外面;以及封闭的叶顶腔,其被限定在从前边缘到后边缘在叶顶板与压力轨道及吸力轨道的相应内面之间。针对在叶顶中在前边缘下游穿过吸力轨道的相应内面和外面的至少一个狭槽确定位置,并且其中所述狭槽与叶顶腔连通并且被取向成用于引导冷却空气流动通过该处并沿压力轨道内面向下游流动。在所确定的位置处在叶顶中形成狭槽。
其它实施例以燃气涡轮发动机为特征,所述燃气涡轮发动机包括转子,所述转子具有由此径向突出的叶片,并且其中每个叶片均具有包括翼型平面形状叶顶板的凹槽状叶顶,所述叶顶板在其前边缘下游和其后边缘上游沿其外周边具有相对的且侧向分开的突出的凹形压力轨道和凸形吸力轨道,所述轨道分别具有内面和外面。凹槽状叶顶包括封闭的叶顶腔,所述封闭的叶顶腔被限定在从前边缘到后边缘叶顶板与压力轨道及吸力轨道的相应内面之间。在前边缘下游穿过压力轨道的相应内面和外面形成至少一个狭槽。每个相应的狭槽均与叶顶腔连通并且被取向成用于引导冷却空气流动通过该处并沿压力轨道内面向下游流动。
可由本领域技术人员以任何组合或子组合共同地或各自地应用示例性实施例的相应目标和特征。
附图说明
通过结合附图考虑以下详细描述,能够容易地理解本发明的教导,附图中:
图1是示例性已知的燃气涡轮发动机的部分轴向横截面视图;
图2是已知的行1涡轮叶片和导叶的详细横截面立视图,其示出叶顶与图1的涡轮发动机的耐磨部件之间的叶顶间隙G;
图3是图1和图2的示例性已知的涡轮叶片的透视图,所述涡轮叶片带有闭合的凹槽状叶顶,所述凹槽状叶顶具有连续的压力侧轨道和吸力侧轨道;
图4是沿3-3截取的图3的已知的涡轮叶片和凹槽状叶顶的立视横截面视图;
图5是图3和图4的已知的凹槽状叶顶及其相对于涡轮发动机耐磨表面的相对取向和运动的示意性平面示图;
图6是图5的已知的涡轮叶片凹槽状叶顶和耐磨表面周围的气流的流线型流动模拟;
图7是另一个已知的凹槽状叶顶及其相对于涡轮发动机耐磨表面的对立的相对取向和运动的示意性平面视图(与图5类似);
图8是本发明的凹槽状叶顶的示例性第一实施例及其相对于涡轮发动机耐磨表面的对立的相对取向和运动的示意性平面视图(与图7类似);
图9是本发明的凹槽状叶顶的示例性第二实施例及其相对于涡轮发动机耐磨表面的对立的相对取向和运动的示意性平面视图(与图7类似);
图10是包含图8的第一实施例凹槽状叶顶的涡轮叶片的俯视立视图;
图11是图10的涡轮叶片的透视图;
图12是在带有图8的第一实施例凹槽状叶顶的涡轮叶片周围的气流的流线型流动模拟;
图13是包含图9的第二实施例凹槽状叶顶的涡轮叶片的俯视立视图;
图14是图13的涡轮叶片的透视图;以及
图15是在带有图9的第二实施例凹槽状叶顶的涡轮叶片周围的气流的流线型流动模拟。
为了促进理解,已经在可能的地方使用相同的附图标记来指代诸图所共有的相同元件。
具体实施方式
在考虑以下描述之后,本领域技术人员将清楚地认识到,能够容易地利用本发明的教导来减小沿燃气涡轮发动机叶片的凹槽状叶顶压力轨道的热集中,以便降低叶顶磨损的可能性,所述叶顶磨损减小叶片使用寿命并在磨损的叶顶使发动机叶顶间隙增大时降低发动机操作效率。在本发明的示例性实施例中,涡轮叶片凹槽状叶顶包含一个或多个冷却狭槽,所述冷却狭槽在前边缘的下游形成于吸力侧轨道中。这些狭槽被取向成用于沿凹槽状叶顶压力侧轨道的内侧边缘引导冷却气流,使得沿压力侧轨道的热集中被输送远离凹槽状叶顶的最热区。一些实施例包含吸力侧轨道上接近冷却狭槽的叶顶肋片。分段式吸力侧轨道实施例在与压力侧轨道潜在接触之前刮磨相对的涡轮外壳耐磨表面(类似于除雪车),从而减小压力侧轨道摩擦加热的可能性。在涡轮发动机操作期间,更冷的压力侧轨道减小凹槽状叶顶侵蚀的可能性。
当与图3到图7的已知的常规凹槽状叶顶的那些实施例相比较时,对本发明的开槽式或分段式凹槽状叶顶实施例的构造和功能的益处的更加完整的理解变得显而易见。已知的常规叶顶46/146在凹形压力侧52/152和凸形吸力侧54/154两者上均具有厚度均匀的一致的、连续的凹槽状轨道。在发动机旋转期间,当凹槽与环形节段之间存在接触时,吸力侧凹槽将首先切入环形节段中。根据如图6中所示的气体流动模拟CFD分析,经过叶顶46的前边缘48的气流分裂成两个流,一个流朝向压力侧42且一个流朝向吸力侧44。吸力侧气流FS在前部部段处进入叶顶腔内,并在于下游部段中离开至吸力侧之前在下游位置处与来自压力侧FP的泄漏流混合。图8和图9的本发明实施例(每个分别带有分段式吸力侧凹槽254/354)允许更多的吸力侧气流FS进入叶顶腔257/357内并使叶顶腔加压(类似于静态壁(static wall)),这将导致来自压力侧252/352的泄漏FP更少。包括肋片262/264/254或364/354的分段式凹槽设计在其相应的吸力侧上设有侧向重叠的凹槽,以具有对耐磨环形节段图案的更多的切割功率且有更好的机会来保持压力侧凹槽252/352以实现更好的密封。相比于图5和图7的常规凹槽状叶顶46/146设计,图8和图9的分段式和重叠的吸力侧262/264/254或364/354凹槽构造实施例具有更耐久的叶顶和更小的性能丧失的叶顶泄漏(performance robbing tip leakage)。图8到图15中示出根据本发明的教导建构的凹槽状叶顶的两个示例性实施例。
图8和图10到图12中示出带有凹槽状叶顶246的第一示例性实施例叶片240,所述叶片具有在前边缘248下游的先前描述的分段式吸力侧,所述分段式吸力侧由第一肋片262、第二肋片264和吸力轨道254形成。第一狭槽260和第二狭槽266允许叶片240的吸力侧与叶顶腔257之间连通,如形成在压力轨道252中接近后边缘250的可选狭槽258那样。在该示例性实施例中,凹槽状叶顶形成有第一狭槽260和第二狭槽266,且带有或不带有狭槽258。如图15中所示,沿压力轨道内面253引导腔257内的冷却气流FT,由此输送热离开压力轨道252。可选地,通过沿吸力侧添加冷却孔270或在叶顶腔中添加冷却孔272或在两个位置处添加冷却孔来提供沿压力轨道内面253穿过凹槽状叶顶腔257的额外有益的气流。
图9和图13到图15中示出带有凹槽状叶顶346的第二示例性实施例叶片340,所述叶片具有在前边缘348下游的先前描述的分段式吸力侧,所述分段式吸力侧由第一肋片362和吸力轨道354形成。第一狭槽360允许叶片340的吸力侧与叶顶腔357之间连通,如形成于压力轨道352中接近后边缘350的可选狭槽358那样。在该示例性实施例中,凹槽状叶顶346形成有第一狭槽360,且带有或不带有狭槽358。如图18中所示,沿压力轨道内面353引导腔357内的冷却气流FT,由此输送热离开压力轨道352。可选地,通过沿吸力侧添加冷却孔370或在叶顶腔中添加冷却孔372或在两个位置处添加冷却孔来提供沿压力轨道内面353穿过凹槽状叶顶腔357的额外有益的气流。
虽然本文中已详细示出和描述了包含本发明的教导的各种实施例,但本领域技术人员能够容易地想出仍包含这些教导的许多其它变化的实施例。本发明就其应用方面不限于说明书中所阐述或附图中所图示的部件的构造和布置的示例性实施例细节。本发明能够实现其它实施例,且能够以各种方式实践或实施。而且,应理解的是,本文中所使用的措辞和术语是出于描述的目的且不应被视为是限制性的。本文中对“包括”、“包含”或“具有”及其变型的使用意指涵盖其后所列举的项及其等效物以及额外项。除非另有其它具体说明或限制,否则术语“安装”、“连接”、“支撑”和“联接”及其变型被广义地使用且涵盖直接和间接的安装、连接、支撑和联接。此外,“连接”和“联接”并不限制于物理的或机械的连接或联接。

Claims (10)

1.一种燃气涡轮发动机叶片凹槽状叶顶,其包括:
翼型平面形状叶顶板,其在其前边缘下游和其后边缘上游沿其外周边具有相对的且侧向分开的突出的凹形压力轨道和凸形吸力轨道,所述轨道分别具有内面和外面;
封闭的叶顶腔,其限定在从所述前边缘到所述后边缘在所述叶顶板与所述压力轨道及所述吸力轨道的相应内面之间;以及
在所述前边缘下游穿过所述吸力轨道的相应内面和外面形成的至少一个狭槽,所述狭槽与所述叶顶腔连通并且取向成用于引导冷却空气流动通过所述叶顶腔并沿所述压力轨道内面向下游流动。
2.根据权利要求1所述的凹槽状叶顶,其特征在于,还包括从所述叶顶板突出的第一叶顶肋片,所述第一叶顶肋片具有接近所述吸力轨道的上游部分、取向在所述叶顶腔中的下游部分和限定形成在所述吸力轨道中的第一狭槽的上游侧的外面,所述第一叶顶肋片取向成用于引导冷却空气流动通过所述第一狭槽并沿所述压力轨道内面向下游流动。
3.根据权利要求2所述的凹槽状叶顶,其特征在于,还包括所述第一叶顶肋片与形成所述第一狭槽的下游侧的所述吸力轨道的一部分侧向间隔开并重叠。
4.根据权利要求2所述的凹槽状叶顶,其特征在于,还包括在所述第一叶顶肋片下游从所述叶顶板突出的第二叶顶肋片,所述第二叶顶肋片具有接近所述吸力轨道的上游部分、取向在所述叶顶腔中的下游部分和限定形成在所述吸力轨道中的第二狭槽的上游侧的外面,所述第二叶顶肋片取向成用于引导冷却空气流动通过所述第二狭槽并沿所述压力轨道内面向下游流动。
5.根据权利要求4所述的凹槽状叶顶,其特征在于,还包括所述第二肋片与所述第一肋片的一部分侧向间隔开并重叠。
6.根据权利要求5所述的凹槽状叶顶,其特征在于,还包括形成在所述叶顶板中的第一冷却孔、第二冷却孔和第三冷却孔,其中:
所述第一冷却孔取向在所述叶顶腔中位于所述第一叶顶肋片与所述压力轨道之间;
所述第二冷却孔取向为接近所述第一狭槽位于第一肋片与第二肋片之间;以及
所述第三冷却孔取向为接近所述第二狭槽位于所述第二肋片与所述吸力轨道之间;
所述冷却孔取向成用于将冷却空气引入所述叶顶腔内,随后沿所述压力轨道内面引导所述冷却空气。
7.根据权利要求1所述的凹槽状叶顶,其特征在于,还包括位于所述涡轮叶片中的至少一个冷却孔,所述冷却孔取向为接近所述狭槽以便将冷却空气引入所述叶顶腔内,随后沿所述压力轨道内面引导所述冷却空气。
8.根据权利要求2所述的凹槽状叶顶,其特征在于,还包括位于所述叶顶板中的至少一个冷却孔,所述冷却孔取向在所述叶顶腔中且位于所述第一叶顶肋片与所述压力轨道之间,以便将冷却空气引入所述叶顶腔内,随后沿所述压力轨道内面引导所述冷却空气。
9.一种用于制造燃气涡轮发动机叶片凹槽状叶顶压力侧轨道的方法,其包括:
提供一种涡轮叶片,所述涡轮叶片带有:翼型平面形状叶顶板,所述叶顶板在其前边缘下游和其后边缘上游沿其外周边具有相对的且侧向分开的突出的凹形压力轨道和凸形吸力轨道,所述轨道分别具有内面和外面;以及封闭的叶顶腔,其限定在从所述前边缘到所述后边缘在所述叶顶板与所述压力轨道及所述吸力轨道的相应内面之间;
针对所述叶顶中在所述前边缘下游穿过所述吸力轨道的相应内面和外面的至少一个狭槽确定位置,并且其中所述狭槽与所述叶顶腔连通并且取向成用于引导冷却空气流动通过所述叶顶腔并沿所述压力轨道内面向下游流动;以及
在所述确定的位置处在所述叶顶中形成所述狭槽。
10.根据权利要求9所述的方法,其特征在于,还包括形成从所述叶顶板突出的第一叶顶肋片,所述第一叶顶肋片具有接近所述吸力轨道的上游部分、取向在所述叶顶腔中的下游部分和限定形成在所述吸力轨道中的第一狭槽的上游侧的外面,所述第一叶顶肋片取向成用于引导冷却空气流动通过所述第一狭槽并沿所述压力轨道内面向下游流动。
CN201480080443.4A 2014-07-07 2014-07-07 燃气涡轮叶片凹槽状叶顶、对应的制造和冷却方法及燃气涡轮发动机 Expired - Fee Related CN106471215B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/045512 WO2016007116A1 (en) 2014-07-07 2014-07-07 Gas turbine blade squealer tip, corresponding manufacturing and cooling methods and gas turbine engine

Publications (2)

Publication Number Publication Date
CN106471215A CN106471215A (zh) 2017-03-01
CN106471215B true CN106471215B (zh) 2018-06-19

Family

ID=51220914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480080443.4A Expired - Fee Related CN106471215B (zh) 2014-07-07 2014-07-07 燃气涡轮叶片凹槽状叶顶、对应的制造和冷却方法及燃气涡轮发动机

Country Status (5)

Country Link
US (1) US9810074B2 (zh)
EP (1) EP3167161A1 (zh)
JP (1) JP6347892B2 (zh)
CN (1) CN106471215B (zh)
WO (1) WO2016007116A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319672A1 (en) * 2015-04-29 2016-11-03 General Electric Company Rotor blade having a flared tip
US10533429B2 (en) * 2017-02-27 2020-01-14 Rolls-Royce Corporation Tip structure for a turbine blade with pressure side and suction side rails
US10443405B2 (en) * 2017-05-10 2019-10-15 General Electric Company Rotor blade tip
CN107035844B (zh) * 2017-05-25 2021-02-02 吉林大学 一种液力变矩器分段式涡轮叶片
US10808572B2 (en) 2018-04-02 2020-10-20 General Electric Company Cooling structure for a turbomachinery component
US11118462B2 (en) * 2019-01-24 2021-09-14 Pratt & Whitney Canada Corp. Blade tip pocket rib
US11371359B2 (en) 2020-11-26 2022-06-28 Pratt & Whitney Canada Corp. Turbine blade for a gas turbine engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761116A (en) * 1987-05-11 1988-08-02 General Electric Company Turbine blade with tip vent
EP1057972A2 (en) * 1999-06-01 2000-12-06 General Electric Company Turbine blade tip with offset squealer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503527A (en) * 1994-12-19 1996-04-02 General Electric Company Turbine blade having tip slot
US6059530A (en) * 1998-12-21 2000-05-09 General Electric Company Twin rib turbine blade
WO2010050261A1 (ja) * 2008-10-30 2010-05-06 三菱重工業株式会社 チップシニングを備えたタービン動翼
US20120237358A1 (en) * 2011-03-17 2012-09-20 Campbell Christian X Turbine blade tip
US20130149163A1 (en) * 2011-12-13 2013-06-13 United Technologies Corporation Method for Reducing Stress on Blade Tips
US9273561B2 (en) * 2012-08-03 2016-03-01 General Electric Company Cooling structures for turbine rotor blade tips

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761116A (en) * 1987-05-11 1988-08-02 General Electric Company Turbine blade with tip vent
EP1057972A2 (en) * 1999-06-01 2000-12-06 General Electric Company Turbine blade tip with offset squealer

Also Published As

Publication number Publication date
WO2016007116A1 (en) 2016-01-14
JP2017529476A (ja) 2017-10-05
CN106471215A (zh) 2017-03-01
JP6347892B2 (ja) 2018-06-27
US9810074B2 (en) 2017-11-07
US20170122110A1 (en) 2017-05-04
EP3167161A1 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
CN106471215B (zh) 燃气涡轮叶片凹槽状叶顶、对应的制造和冷却方法及燃气涡轮发动机
US8162598B2 (en) Gas turbine sealing apparatus
US8075256B2 (en) Ingestion resistant seal assembly
JP6031116B2 (ja) ガスタービンエンジン用の非対称半径方向スプラインシール
JP6192984B2 (ja) タービン動翼の先端の冷却構造
CN110030045B (zh) 具有环形腔的涡轮发动机
JP6216166B2 (ja) エーロフォイル
US9938835B2 (en) Method and systems for providing cooling for a turbine assembly
US11015453B2 (en) Engine component with non-diffusing section
JP2008106743A (ja) ガスタービンエンジンの構成要素
US20160032764A1 (en) Gas turbine engine end-wall component
US20130045088A1 (en) Airfoil seal
US10472980B2 (en) Gas turbine seals
US7766619B2 (en) Convectively cooled gas turbine blade
US9464536B2 (en) Sealing arrangement for a turbine system and method of sealing between two turbine components
US9957829B2 (en) Rotor tip clearance
US20190249554A1 (en) Engine component with cooling hole
US20160186577A1 (en) Cooling configurations for turbine blades
JP6224161B2 (ja) ガスタービンのためのロータブレード
KR101984397B1 (ko) 로터, 터빈 및 이를 포함하는 가스터빈
US20160265364A1 (en) Turbine blade
KR102000256B1 (ko) 로터 블레이드 팁 부의 실링 구조
JP5404247B2 (ja) タービン動翼およびガスタービン
JP2013516561A (ja) エネルギー変換用タービンおよびその動作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180619

Termination date: 20190707