EP3087257A1 - Dampfkraftanlage mit spindelleckdampfleitung - Google Patents
Dampfkraftanlage mit spindelleckdampfleitungInfo
- Publication number
- EP3087257A1 EP3087257A1 EP15707928.6A EP15707928A EP3087257A1 EP 3087257 A1 EP3087257 A1 EP 3087257A1 EP 15707928 A EP15707928 A EP 15707928A EP 3087257 A1 EP3087257 A1 EP 3087257A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- valve
- spindle
- line
- designed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
Definitions
- the invention relates to a steam power plant comprising a steam turbine, a steam line, which is fluidically connected to the steam turbine and is designed for conducting steam, a valve which is arranged in the steam line and is designed to change a steam flow rate of the steam through the steam line
- a spindle outlet steam is formed and this is fluidly connected to a Spindelleckdampf effet, a SpindelleckdampfSammler which is fluidically connected to the Spindelleckdampf nie.
- the invention relates to a method for operating a steam power plant.
- Steam power plants usually comprise a steam turbine and a steam generator, wherein a steam line is designed and arranged such that a steam generator he generated in the steam generator ⁇ can flow to the steam turbine.
- a steam line is designed and arranged such that a steam generator he generated in the steam generator ⁇ can flow to the steam turbine.
- steam with a temperature of over 600 ° C and a pressure of over 300 bar arise.
- Such high temperatures and pressures of the steam pose a challenge to the valves located in the steam lines.
- two valves are arranged in a steam line in which steam is fed to a steam turbine, namely a quick-acting valve and a control valve.
- the quick-closing valve is provided for ⁇ rapid closure in an accident and is configured accordingly for this case.
- the control valve takes over the task of quick ⁇ closing valve to regulate open, the steam supply through the steam line or control.
- the invention seeks to remedy this situation and has set itself the task of specifying a steam power plant, in which the spindle leak steam can be used further.
- This object is achieved by a steam power plant umfas ⁇ send a steam turbine, a steam conduit for conducting steam, a valve which is arranged in the steam line, a spindle leakage steam line, which is fluidically connected to the valve and a spindle leakage steam collector fluidically connected to the spindle leakage steam line is, wherein the spindle leakage steam collector is designed as a capacitor.
- the object is achieved by offering a method for operating the steam power plant, in which the valve opens when a spindle leak steam is present in front of the valve and closes again when no spindle leak steam flows out of the valve.
- the valve opens when a spindle leak steam is present in front of the valve and closes again when no spindle leak steam flows out of the valve.
- it is thus proposed to arrange a valve in the spindle outlet steam line. Under operating conditions where the spindle leak steam flows through the spindle outlet steam line, the valve remains open. To one Preventing backflow under certain operating conditions closes the valve if no spindle leakage steam flows in. Such operating conditions should be recorded by means of suitable measuring instruments located in front of the valve in the spindle outlet steam line.
- Suitable measuring devices would be, for example, a measuring device for detecting the pressure of the spin ⁇ delleckdampfes and / or a measuring device for detecting the temperature of the spindle Tempe ⁇ leak steam.
- the spindle leak steam collector is designed as a capacitor. So far, the direct introduction of the spindle leak steam in the capacitor was not possible. As a result of the inventive use of a fitting in the spindle outlet steam line, the spindle outlet steam can now be led directly into the condenser.
- the spindle leak steam collector may be formed as a standpipe.
- a standpipe is usually a water level control vessel, which is arranged in front of a capacitor.
- the spindle ⁇ leakage steam is fed directly into the standpipe.
- the standpipe which is designed substantially bent, the steam is flowed in a geodetically lower location, the steam flows upwards and eventually passes through a water injection finally to the condenser.
- the collected water is led via a water loop to the condenser hotwell at a geodetically low point.
- the valve is designed as a flap.
- the valve is formed in the steam line with a known in the art flap. Movement of the flap regulates the flow through the spindle outlet steam line.
- a flap is a relatively inexpensive way to control the flow of steam through a pipe.
- the flap is controlled in a further advantageous embodiment.
- This means that the movement of the flap is effected via a control unit, said control ⁇ or controlled variables are fed operated from the outside. As a result, the application of the flap is increased.
- the flap is designed as a check valve.
- the valve may be formed as a valve.
- a valve With a valve, a more precise regulation of the throughput Flow through the spindle outlet steam line possible and can be considered depending on the desired application.
- the arrival control of the valve can also via a control unit he ⁇ follow.
- the control unit from outside control variables are specified.
- the control unit can be designed in such a way that autonomous control can take place.
- a safety valve is arranged in the spindle outlet steam line, which is arranged in addition to the valve and opens when exceeding the maximum allowable pressure and protects the valves against high counter pressures.
- the object is also achieved in that a method for operating the steam power plant is indicated, the valve opens when spindle leak steam is present in front of the valve and closes again when no spindle leak steam flows out of the valve. Thus, an unwanted pulling air into the valve is effectively prevented.
- the safety valve is only opened as soon as a maximum pressure in the spindle outlet steam line is reached in order to protect the turbine valves from high counter pressures.
- the sole FIGURE shows a steam power plant according to the invention.
- the figure shows a steam power plant 1 comprising a steam turbine ⁇ 2, comprising a first turbine part 2a and a second turbine part 2b.
- a steam generator and a generator is not shown in detail.
- the first sub-turbine 2a is designed as a combined high-pressure and medium-pressure steam turbine.
- Fresh steam flows from a steam generator, not shown, via a quick- closing valve 3 and a flow-connected with the quick- closing valve 3 Stell ⁇ valve 4 in a steam line 5.
- the live steam therefore flows first through the quick- closing valve 3 and then through the control valve 4 and from there via the steam line 5 in the high pressure part 2c of the first turbine part 2a.
- the steam flows through the medium-pressure part 2d of the first sub-turbine 2a, it finally reaches the second sub-turbine 2b, which is designed as a low-pressure turbine.
- the steam line which connects the first turbine section 2a with the two ⁇ th turbine part 2b of flow is not illustrated and is referred to as overflow.
- the steam After flowing through the second turbine part 2b, the steam then flows into a condenser 8 and condenses there to water.
- a part of a DichtdampfSys ⁇ system 9 is shown in the steam turbine 2. The one in the
- Quick-closing valve 3 and the control valve 4 flowing steam is characterized by a comparatively high temperature and high pressure.
- the steam flowing into the medium-pressure quick-closing valve 6 and the medium-pressure control valve 7 is characterized by a high temperature at a lower pressure than in the previous case.
- valves 3, 4, 6 and 7 comprise a valve housing and a valve stem which moves a poppet. A movement of the valve spindle with the valve cone leads to a regulation of the vapor flow through the valve and thus the steam flow rate ⁇ through the steam line 5.
- Each valve 3, 4, 6, 7 each comprise a control unit 10, which is designed to control the valve stem is.
- the spindle leakage steam flows via a first spindle leakage steam line 11 3. from the quick-acting valve from the With ⁇ telyak quick-acting valve 6 also flows spindle leakage steam via a second spindle leakage steam line 12 into a common third spindle leakage steam pipe 13. In the third spindle leakage steam line 13 a valve 14 is arranged. After flowing through the steam through the valve 14a, the spindle leak steam passes via a fourth spindle outlet steam line 15 into a spindle leak steam collector 16.
- the spindle outlet steam from the control valve 4 and the medium-pressure control valve 7 is formed.
- the spindle ⁇ lickdampf from the control valve 4 is passed through a fifth spindelleckdampf für 17.
- the spindle outlet steam flowing out of the medium-pressure control valve 7 passes into a sixth spindle outlet steam line 18.
- the fifth spindle leak steam line 17 and the sixth spindle leak steam line 18 open into a common seventh spindle outlet steam line 19, in which a valve 14b is arranged. After flowing through the valve 14b, the leakage steam enters an eighth spindle outlet steam line 20 and from there finally into the spindle steam collector 16.
- a first safety valve 21 is in addition to the valve 14a and in the sieve ⁇ th spindle outlet steam line 19, a second safety valve 22 is arranged in addition to the valve 14b.
- valves 14a and 14b are opened.
- the valves 14a and 14b reconnect when no spindle leak steam flows.
- the fittings 14a and 14b may be formed as flaps. These flaps can be controlled via a respective first control unit 23a and a second control unit 23b.
- the first control unit 23a controls the first armature 14a and the second control unit 23b activates the second armature 14b.
- the flap 14a, 14b may be formed as a check valve.
- the valve 14a and 14b may also be formed as a valve.
- the steam power plant 1 shown in the figure is characterized in that the spindle steam collector 16 is formed as a capacitor 8. This may be a separator capacitor or the capacitor, which is fluidically connected to the second turbine part 2b.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15707928.6A EP3087257A1 (de) | 2014-03-13 | 2015-03-03 | Dampfkraftanlage mit spindelleckdampfleitung |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14159494.5A EP2918792A1 (de) | 2014-03-13 | 2014-03-13 | Dampfkraftanlage mit Spindelleckdampfleitung |
EP15707928.6A EP3087257A1 (de) | 2014-03-13 | 2015-03-03 | Dampfkraftanlage mit spindelleckdampfleitung |
PCT/EP2015/054355 WO2015135791A1 (de) | 2014-03-13 | 2015-03-03 | Dampfkraftanlage mit spindelleckdampfleitung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3087257A1 true EP3087257A1 (de) | 2016-11-02 |
Family
ID=50289421
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14159494.5A Withdrawn EP2918792A1 (de) | 2014-03-13 | 2014-03-13 | Dampfkraftanlage mit Spindelleckdampfleitung |
EP15707928.6A Withdrawn EP3087257A1 (de) | 2014-03-13 | 2015-03-03 | Dampfkraftanlage mit spindelleckdampfleitung |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14159494.5A Withdrawn EP2918792A1 (de) | 2014-03-13 | 2014-03-13 | Dampfkraftanlage mit Spindelleckdampfleitung |
Country Status (7)
Country | Link |
---|---|
US (1) | US10337356B2 (de) |
EP (2) | EP2918792A1 (de) |
JP (1) | JP6416274B2 (de) |
KR (1) | KR101925697B1 (de) |
CN (1) | CN106103910B (de) |
RU (1) | RU2642708C1 (de) |
WO (1) | WO2015135791A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110425011B (zh) * | 2019-07-30 | 2022-03-08 | 西安热工研究院有限公司 | 一种电站汽轮机组轴封及门杆漏汽系统的优化控制方法 |
CN115875092A (zh) * | 2021-08-11 | 2023-03-31 | 上海电气电站设备有限公司 | 汽轮机蒸汽阀门阀杆漏汽排放系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001227303A (ja) * | 2000-02-15 | 2001-08-24 | Fuji Electric Co Ltd | 蒸気タービンの軸封装置 |
DE102012213976A1 (de) * | 2012-08-07 | 2014-02-13 | Siemens Aktiengesellschaft | Externer Dampfspeicher zur Beteiligung einer Dampfturbine an Netzdienstleistungen und Leistungsrampen |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58206809A (ja) * | 1982-05-28 | 1983-12-02 | Toshiba Corp | タ−ビンバイパス弁浸蝕防止装置 |
JPS58217705A (ja) * | 1982-06-10 | 1983-12-17 | Toshiba Corp | 蒸気タ−ビンの制御装置 |
JPS60237101A (ja) * | 1984-05-08 | 1985-11-26 | Toshiba Corp | 蒸気弁監視装置 |
JPS62206203A (ja) * | 1986-03-07 | 1987-09-10 | Hitachi Ltd | 蒸気タ−ビン運転制御方法 |
US4873827A (en) * | 1987-09-30 | 1989-10-17 | Electric Power Research Institute | Steam turbine plant |
ES2026076A6 (es) | 1990-01-25 | 1992-04-01 | Westinghouse Electric Corp | Sistema de diagnosis para evaluar la actuacion de valvulas criticas en un sistema de turbina de vapor. |
US5018356A (en) * | 1990-10-10 | 1991-05-28 | Westinghouse Electric Corp. | Temperature control of a steam turbine steam to minimize thermal stresses |
DE19535228C2 (de) * | 1995-09-22 | 2003-05-08 | Alstom | Verfahren zum Betrieb einer Kraftwerksanlage |
RU2106864C1 (ru) * | 1995-10-23 | 1998-03-20 | Николай Серафимович Зефиров | Средство для лечения болезни альцгеймера |
CN1318737C (zh) * | 2000-05-31 | 2007-05-30 | 西门子公司 | 用于运行包括若干无负载或小负载缸的蒸汽轮机的方法和装置 |
DE10048439C2 (de) * | 2000-09-29 | 2002-09-19 | Siemens Ag | Dampfturbinenanlage und Verfahren zum Betreiben einer Dampfturbinenanlage |
US7548518B2 (en) * | 2001-06-29 | 2009-06-16 | Nokia Corporation | Receiver |
JP2008089283A (ja) * | 2006-10-05 | 2008-04-17 | Chugoku Electric Power Co Inc:The | 安全装置の状態検出装置 |
EP2136037A3 (de) * | 2008-06-20 | 2011-01-05 | Siemens Aktiengesellschaft | Verfahren und Vorrichtung zum Betreiben einer Dampfkraftwerksanlage mit Dampfturbine und Prozessdampfverbraucher |
US8650878B2 (en) * | 2010-03-02 | 2014-02-18 | General Electric Company | Turbine system including valve for leak off line for controlling seal steam flow |
US8545166B2 (en) * | 2010-07-28 | 2013-10-01 | General Electric Company | System and method for controlling leak steam to steam seal header for improving steam turbine performance |
GB201106410D0 (en) * | 2011-04-15 | 2011-06-01 | Doosan Power Systems Ltd | Turbine system |
-
2014
- 2014-03-13 EP EP14159494.5A patent/EP2918792A1/de not_active Withdrawn
-
2015
- 2015-03-03 CN CN201580013099.1A patent/CN106103910B/zh not_active Expired - Fee Related
- 2015-03-03 KR KR1020167028046A patent/KR101925697B1/ko active IP Right Grant
- 2015-03-03 RU RU2016139987A patent/RU2642708C1/ru not_active IP Right Cessation
- 2015-03-03 EP EP15707928.6A patent/EP3087257A1/de not_active Withdrawn
- 2015-03-03 JP JP2016556966A patent/JP6416274B2/ja not_active Expired - Fee Related
- 2015-03-03 US US15/123,748 patent/US10337356B2/en not_active Expired - Fee Related
- 2015-03-03 WO PCT/EP2015/054355 patent/WO2015135791A1/de active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001227303A (ja) * | 2000-02-15 | 2001-08-24 | Fuji Electric Co Ltd | 蒸気タービンの軸封装置 |
DE102012213976A1 (de) * | 2012-08-07 | 2014-02-13 | Siemens Aktiengesellschaft | Externer Dampfspeicher zur Beteiligung einer Dampfturbine an Netzdienstleistungen und Leistungsrampen |
Non-Patent Citations (1)
Title |
---|
See also references of WO2015135791A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20170016351A1 (en) | 2017-01-19 |
US10337356B2 (en) | 2019-07-02 |
RU2642708C1 (ru) | 2018-01-25 |
CN106103910A (zh) | 2016-11-09 |
KR20160131094A (ko) | 2016-11-15 |
EP2918792A1 (de) | 2015-09-16 |
CN106103910B (zh) | 2019-05-10 |
JP6416274B2 (ja) | 2018-10-31 |
JP2017519140A (ja) | 2017-07-13 |
KR101925697B1 (ko) | 2018-12-05 |
WO2015135791A1 (de) | 2015-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009036064B4 (de) | rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger | |
EP2326800A2 (de) | Dampfkraftanlage zur erzeugung elektrischer energie | |
EP2992183B1 (de) | Ventil für eine strömungsmaschine | |
EP2644840A1 (de) | Dampfturbinensystem und Verfahren zum Anfahren einer Dampfturbine | |
WO2015135791A1 (de) | Dampfkraftanlage mit spindelleckdampfleitung | |
EP2918793A1 (de) | Regelkonzept zur Fernwärmeauskopplung bei einer Dampfkraftanlage | |
DE19919653A1 (de) | Sperrdampfeinspeisung | |
EP1757817B1 (de) | Ventilanordnung zur Ansteuerung eines Schnellschlussventils von Gas- oder Dampfturbinen | |
CH635401A5 (de) | Sperrdampfvorrichtung und verwendung desselben. | |
EP3087256B1 (de) | Verfahren zum abkühlen einer dampfturbine | |
WO2013072195A1 (de) | Verfahren zur trocknung eines rohrleitungssystems | |
WO2015135772A1 (de) | Dampfkraftanlage mit dampferzeuger umfassend eine trommeldruckhaltearmatur | |
WO2011033069A1 (de) | Ventil für eine strömungsmaschine | |
DE701324C (de) | Zwangsdurchfluss-Roehrendampferzeuger mit Zwischenueberhitzer | |
EP3460207B1 (de) | Dampferzeugereinheit mit power-to-heat-funktion | |
EP3111059B1 (de) | Wasserdampfkreislauf sowie ein verfahren zum betreiben eines wasserdampfkreislaufes | |
EP3444449A1 (de) | Anlage mit umleitstation | |
EP2988037A1 (de) | Ventil für eine Überströmleitung | |
EP3109420A1 (de) | Verfahren zum abkühlen einer strömungsmaschine | |
DE20022525U1 (de) | Anschlußarmatur für Heizkörper von Warmwasserheizanlagen | |
DE102014117629A1 (de) | Verteilerventil mit integrierter Durchflussmesseinrichtung | |
EP2655834B1 (de) | Einspritzblende für ein dampfkraftwerk | |
EP2031190B1 (de) | Dampfturbine mit geregelter Kühlmittelzuführung | |
WO2012146482A1 (de) | Kombiniertes dampfturbinenventil mit integriertem vorhubdesign | |
EP3460205A1 (de) | Verfahren zum betreiben einer dampfturbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160725 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
17Q | First examination report despatched |
Effective date: 20170817 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201124 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210407 |