EP3082383B1 - Procede et dispositif de determination d'une information d'esperance de cycle de vie d'un module a del - Google Patents

Procede et dispositif de determination d'une information d'esperance de cycle de vie d'un module a del Download PDF

Info

Publication number
EP3082383B1
EP3082383B1 EP16165482.7A EP16165482A EP3082383B1 EP 3082383 B1 EP3082383 B1 EP 3082383B1 EP 16165482 A EP16165482 A EP 16165482A EP 3082383 B1 EP3082383 B1 EP 3082383B1
Authority
EP
European Patent Office
Prior art keywords
voltage
led module
jump
detected
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16165482.7A
Other languages
German (de)
English (en)
Other versions
EP3082383A1 (fr
Inventor
Bernhard Wuppinger
Markus Rhein
Julia Pölzl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siteco GmbH
Original Assignee
Siteco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55759503&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3082383(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siteco GmbH filed Critical Siteco GmbH
Publication of EP3082383A1 publication Critical patent/EP3082383A1/fr
Application granted granted Critical
Publication of EP3082383B1 publication Critical patent/EP3082383B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/58Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving end of life detection of LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection

Definitions

  • the invention relates to a method and a device for determining life expectancy information of an LED module with a plurality of LEDs.
  • LEDs typically have a longer life expectancy than classic light sources such as Light bulbs or compact fluorescent lamps. Nevertheless, there is also a need for LED modules to detect an imminent failure of the LED module. In particular, it is important to recognize an imminent failure of the LED module, which is not due to a failure of one of the LEDs, but to another aging phenomenon of the LED module. These other aging phenomena typically lead to failure of the LED module much more frequently and earlier than the aging of the LEDs themselves.
  • US 2010/225235 A1 discloses a driver circuit for LEDs which detects whether individual LEDs are short-circuited or not. For this purpose, a voltage drop in the supply voltage of the LEDs is detected.
  • LEDs heat up significantly less than e.g. Lightbulbs. Due to the small size of the LEDs, however, a high level of heat is generated at the location of the LEDs and at the location of the soldering points with which the LEDs are electrically connected to the LED module and mechanically attached to the LED module. In particular, when the LED module is switched on and off frequently, there are therefore high temperature fluctuations at the location of the soldered joints.
  • the forward voltages can be detected, for example, by an A / D converter, with the forward voltages detected by the A / D converter being stored in a memory array of a microcontroller.
  • the times at which the acquisition takes place can be at regular intervals.
  • a D / A converter can read forward voltages at a fixed clock rate.
  • the forward voltage can be tapped at the positive and negative connection of the LED module.
  • the LED module can be designed to be supplied by a constant current source. This is particularly the case when the LED module does not have its own control electronics.
  • the LED module comprises several LEDs connected in series.
  • the forward voltage can also be tapped directly at the positive and negative connections of this series connection.
  • the LEDs of the LED module are supplied by a constant current source.
  • the LEDs of the LED module can be soldered onto a circuit board. Alternatively, however, other arrangements are also conceivable. A soft solder or a hard solder can be used as the solder. In particular, tin solders can be used. These can have different proportions of tin and lead with small proportions of iron, antimony, copper and nickel.
  • the minimum jump voltage is more than 200 mV, in particular more than 500 mV and / or the jump duration is less than 50 ms, in particular less than 10 ms, long.
  • the minimum jump voltage is more than 1 V or more than 2V and / or the jump duration is less than 5 ms or less than 2 ms.
  • the detection of such short voltage jumps may require that the forward voltage is detected in correspondingly short time intervals.
  • a negative minimum jump voltage is defined and for positive voltage jumps in which the Forward voltage jumps to a higher value, a positive minimum jump voltage is defined, the positive minimum jump voltage being different from the negative minimum jump voltage.
  • the minimum jump voltage from which a voltage jump is detected is determined relative to the forward voltage.
  • the minimum jump voltage can be 0.05% of the forward voltage.
  • the minimum jump voltage can be 0.1%, 0.3%, 1% or 3% of the forward voltage.
  • the minimum jump voltage can be determined relative to the current forward voltage or relative to the time-averaged forward voltage.
  • the minimum voltage jump from which a voltage jump is detected is an error criterion that, like other error criteria, can be defined depending on the application (ambient temperature ranges, LED, circuit board material, ). Minimum jump voltages between 0.3 and 2.0 V are preferably defined.
  • the first alarm information can therefore relate to a first early warning.
  • a first voltage jump will occur relatively early in the life cycle of an LED module, e.g. at a time when the probability of default is still below 10%.
  • the first such voltage jump can also indicate that the probability of an imminent failure has already reached 50%.
  • the second alarm information relates to the fact that more than a specified number of voltage jumps is detected within a specified time period, i.e. that a certain frequency of voltage jumps has already been reached.
  • the specified period typically only relates to a switched-on period of the LED module.
  • the second alarm information is typically an even more reliable sign of aging of the LED module or of soldered joints of the LED module, so that an imminent failure of the LED module is to be feared.
  • the outputting of the first and / or second alarm information includes outputting an acoustic and / or optical warning signal, in particular putting the LED module into a blinking mode.
  • a warning signal can also be output for alarm information other than the aforementioned first and / or second alarm information.
  • a warning signal can be output if a specifically calculated remaining life expectancy of the LED module is less than a predefined minimum life expectancy.
  • a warning signal can also be output immediately after voltage jumps have been detected. This means that a user can be informed immediately about an imminent failure without any delay. This has the further advantage that the user can possibly recognize that the aging of the LED module is possibly due to a certain operating mode. For example, if the LED module is installed in a lampshade in which not enough heat can be dissipated, it makes sense that the user is immediately informed about the voltage jumps.
  • a marker is set that a warning signal is output the next time the LED module is switched on. The user can thus be informed of the impending failure the next time the LED module is switched on.
  • a predetermined settling time is waited for before the further method steps are carried out. This prevents voltage fluctuations that can be traced back to normal transient behavior after switching on from being incorrectly identified as age-related voltage jumps and thus falsifying the determination of the life expectancy information.
  • the life expectancy information can also be determined as a function of the detected temperature. For example, it can be taken into account that a shorter life expectancy can generally be assumed at a higher temperature of the LED module.
  • Age-related voltage jumps typically only occur when the LED modules heat up to a certain extent. Since some time passes after switching on before this temperature rise is reached, the predetermined settling time can be chosen generously. For example, the predetermined settling time to be waited for can be 1 second, 5 seconds, or 30 seconds.
  • more than 20 and / or less than 200 forward voltages are stored in the memory array. In other embodiments of the invention it can also be provided that only 10 forward voltages are stored or more than 500 forward voltages are stored.
  • the method further comprises a step of averaging several detected forward voltages in order to obtain a time-averaged forward voltage, wherein the comparison of a currently detected forward voltage with one or more previously detected forward voltages comprises the currently detected forward voltage with the time-averaged forward voltage.
  • Comparing the currently recorded forward voltages with a time-averaged forward voltage has the effect that individual small outliers when recording the forward voltage are not used for the comparison with the currently recorded forward voltage. Since these smaller outliers are typically due to noise when detecting the forward voltage, it can make sense not to take them into account when determining the voltage jumps.
  • the time-averaged forward voltage can be determined over a predetermined time, which can be 0.1 seconds, 1 second, 10 seconds or 1 minute, for example.
  • the life expectancy information includes a failure probability, the failure probability being determined based on a level and / or a frequency of the voltage jumps, the failure probability being determined in particular proportionally to the level and / or the frequency of the voltage jumps.
  • the calculation can be carried out using a formula in which both an average jump voltage of the last detected voltage jumps and the frequency and / or cumulative frequency of the voltage jumps appear as factors.
  • the determined probability of failure does not necessarily have to be determined exactly proportional to the magnitude and / or frequency of the voltage jumps. It is also conceivable that the failure probability is determined using a formula in which there is a proportionality to the level and / or frequency of the voltage jumps only in certain sections.
  • the method further comprises a step of determining a difference between the detected forward voltage and a reference forward voltage, the failure probability being determined proportionally to the difference.
  • the determination of the failure probability can therefore be proportional to the mentioned difference and the level and / or the frequency of the voltage jumps.
  • the device furthermore has a bus interface and / or a radio interface which is designed to output the life expectancy information.
  • a bus interface and / or a radio interface which is designed to output the life expectancy information.
  • the radio interface can be a WLAN module that is designed to establish a radio connection with a WLAN and with the Internet.
  • the Radio interface it can also be a radio module that is designed to connect to a cellular network and thus establish a connection to the Internet.
  • the apparatus can communicate about the life expectancy information via the Internet.
  • the life expectancy information can be communicated to a maintenance company. The employees of the maintenance company then know that LED modules will soon have to be replaced.
  • an LED module comprising a circuit board, a plurality of LEDs soldered onto the circuit board, and a device according to the invention.
  • the LED module comprises a plurality of LEDs connected in series, e.g. at least 10 or 30 LEDs connected in series.
  • the device is a plug-in device which is suitable for being plugged onto an LED module and / or onto an electronic ballast.
  • the device can simply be clamped to the positive and negative connection of the LED module. It is therefore particularly easy to retrofit a possibility for determining life expectancy information in existing LED modules and / or electronic ballasts.
  • the plug-in device can have a temperature sensor which is arranged on the plug-in device in such a way that it faces the LED module when it is plugged on, that is to say can determine the temperature of the LED module.
  • the LED module has a constant current source for supplying the LEDs with a constant current, the constant current source being designed to reduce the constant current when the device receives a first and / or second alarm information issues.
  • the LED module can be “spared” when it is recognized that the aging of the LED module has already progressed to such an extent that the LED module is threatened with failure.
  • the power and thus the heat generated by the LED module are reduced. This means that further thermal distortions can at least partially be prevented.
  • the reduced power goes hand in hand with a reduced luminous flux for the user. In many cases, however, it will be preferable to have at least some minimum lighting rather than no lighting at all.
  • the visibly reduced luminous flux is a sign for the user that the LED module has already deteriorated to a certain extent and that it may therefore be necessary to replace the LED module soon.
  • the LED module can have first and second LEDs, wherein the first LEDs light up in normal operation, but the second LEDs are switched off.
  • the LED module can then be designed to carry out a switching process instead of reducing the constant current in order to switch a supply current from the first LEDs to the second LEDs.
  • FIG. 1 shows an exemplary simplified circuit diagram 100 of an arrangement of AC voltage source 110, electronic ballast 120, device 130 and LED module 140.
  • the electronic ballast 120 contains, inter alia, a rectifier which converts the AC voltage from the AC voltage source 110 into a DC voltage.
  • the DC voltage is fed to the LED module 140 via a positive lead 122 and a negative lead 124.
  • a feed line to the device 130 is discharged at a positive contact 123.
  • a negative feed line to the device 130 is discharged.
  • the contacts 123, 125 can be implemented, for example, by a plug connection, so that the device 130 can be added to an existing arrangement of electronic ballast 120 and LED module 140 by simply plugging it on. At least some of the LEDs 142 of the LED module 140 are preferably connected in series (in Fig. 1 not shown).
  • the device 130 furthermore has a bus connection 150, via which life expectancy information determined by the device can be communicated via the LED module 140 to further electronic processing devices (in Fig. 1 not shown).
  • Fig. 2 shows a flowchart of a method according to the invention for determining life expectancy information.
  • step S10 the LED module or an electronic ballast EVG is switched on.
  • step S20 the endless loop begins, in which the voltage jumps are detected.
  • step S30 it is checked whether the LED module is just being dimmed or whether there is still a settling phase after the LED module has been switched on. If this is the case, there is a wait in step S40 and a check is made again in the next time cycle in step S30 to determine whether there is still dimming or a settling phase is still running.
  • step S50 the method continues in step S50 and records a new measured value of a forward voltage.
  • step S60 it is then checked whether this is the first measured value after dimming or settling. If so, in step S62 all values in an evaluation array serving as a memory array are set to this new measured value. If not, the method continues in step S70 and the maximum value in the evaluation array (hereinafter: maximum value) and the minimum value in the evaluation array (hereinafter: minimum value) are determined.
  • step S80 it is checked whether a difference between the maximum value and the new measured value is greater than the minimum jump voltage, in the present example 60 mV. If not, the method continues in step S90 and checks whether a difference between the minimum value and the new measured value is greater than the minimum jump voltage, here: 60 mV. If not, in step S100 all measured values in the evaluation array are shifted one place "into the past” and in step S110 the new measured value is stored in the "most recent" place.
  • the minimum jump voltage here: 60 mV.
  • step S70 instead of determining the maximum and minimum values, a time-averaged average value is determined. This can e.g. take place in that all forward voltages stored in the evaluation array are averaged. A comparison with this forward voltage averaged over time can then be carried out in steps S80 and S90. For example, it can be determined in step S80 whether the current forward voltage is more than the (predetermined) positive minimum jump voltage above the time-averaged forward voltage and in step S90 it can be determined whether the current forward voltage is more than the (predetermined) negative minimum jump voltage below the temporally averaged forward voltage. In these cases, fatigue of at least one solder point can be recognized in step S92.
  • step S100 or step S110 If one of the checks in step S100 or step S110 has given a positive result, that is, that the minimum difference has been exceeded, it is determined internally in step S92 that at least one soldering point is beginning to tire.
  • step S94 a marker is then set for a message to the higher-level system or for signaling when switching on.
  • the endless loop can be ended here, but in other exemplary embodiments it can be provided that the endless loop is continued, e.g. to record further life expectancy information and output it via a bus.
  • step S120 the endless loop is ended when the electronic ballast or the LED module is switched off.
  • the Figures 3 to 5 show exemplary curves of the forward voltage and the operating current of the LED module.
  • FIG. 3 The diagram in Fig. 3 the horizontal axis represents time, with a unit of 1 second per horizontal section 301. Forward voltage and operating current are drawn in the vertical direction, with units of 2 V and 100 mA per vertical section 302, respectively.
  • Fig. 3 refers to a scenario in which the LED module is first switched on, then switched off and on again. Accordingly, the operating current 310 is initially constant at the intended current value of the constant current source, marked on the left-hand axis with reference number 311, then suddenly drops to a zero current value, marked with reference number 312, at time 305 of switching off, and increases at time 306 of switching on steeply again to the intended current value.
  • a transient process 321 can be observed in voltage profile 320, during which the voltage drops to a stable voltage value within approximately 0.5 seconds.
  • a first voltage fluctuation 322 has a voltage swing of just under 1 V. Depending on the selected embodiment of the invention, this may or may not already be recognized as a voltage jump.
  • a second voltage fluctuation has a voltage swing of a good 2 V and would typically be recognized as a voltage jump. After this voltage jump, the forward voltage of the LED module levels off at a new, approx. 2 V lower, stable voltage value.
  • the diagrams in Fig. 4 and 5 the horizontal axis represents the time, with a unit of 2 seconds per horizontal section 401, 501. In the vertical direction, the forward voltage and operating current are shown, with units of 1 V and 200 mA per vertical section 302.
  • Fig. 4 shows a scenario in which the LED module is switched on continuously.
  • the operating current curve 410 is thus essentially constant.
  • the voltage curve 420 fluctuates continuously and has several voltage fluctuations 421, 422, 423, 424 and 425, which are recognized by a method according to the invention as voltage jumps 421, 422, 423, 424 and 425.
  • further voltage fluctuations in Fig. 4 not provided with reference symbols can be recognized as voltage jumps. If the minimum jump voltage is too low, on the other hand, noise can also be incorrectly recognized as a voltage jump.
  • the in Fig. 5 In the scenario shown, the LED module is also switched on for the entire time shown.
  • the operating current curve 510 is thus constant except for a small amount of noise.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Claims (14)

  1. Procédé de détermination d'une information d'espérance de cycle de vie d'un module à DEL (140) avec une multiplicité de DEL (142), le procédé comprenant les étapes suivantes :
    - détection (S50) de tensions directes du module à DEL à des moments qui sont espacés de moins de 100 ms les uns des autres,
    - comparaison (S80, S90) d'une tension directe actuellement détectée avec une ou plusieurs tensions directes détectées antérieurement afin de détecter un saut de tension (322, 323, 421-425, 521) qui atteint une tension de saut minimale à l'intérieur d'une durée de saut prédéterminée,
    la tension de saut minimale étant d'au moins 60 mV, et la durée de saut prédéterminée étant d'une longueur inférieure à 100 ms, et
    - détermination (S92, S94) d'une information d'espérance de cycle de vie sur la base d'un ou de plusieurs sauts de tension détectés, l'information d'espérance de cycle de vie comprenant :
    - une première information d'alarme qui est délivrée quand un premier saut de tension (322, 421, 521) est détecté, et caractérisé par
    - une deuxième information d'alarme qui est délivrée quand, à l'intérieur d'une période prédéterminée, en particulier à l'intérieur d'une période prédéterminée du module à DEL dans l'état sous tension, plus d'un nombre prédéterminé de sauts de tension est détecté.
  2. Procédé selon la revendication 1,
    la tension de saut minimale étant supérieure à 200 mV, en particulier supérieure à 500 mV, et/ou la durée de saut étant d'une longueur inférieure à 50 ms, en particulier inférieure à 10 ms.
  3. Procédé selon l'une des revendications précédentes, une tension de saut minimale négative étant définie pour des sauts de tension (322, 323, 421-425) négatifs pour lesquels la tension directe saute jusqu'à une valeur plus faible, et une tension de saut minimale positive étant définie pour des sauts de tension (521) positifs pour lesquels la tension directe saute jusqu'à un niveau plus élevé, la tension de saut minimale positive étant différente de la tension de saut minimale négative.
  4. Procédé selon l'une des revendications précédentes, la délivrance de la première et/ou de la deuxième information d'alarme consistant à délivrer un signal d'avertissement acoustique et/ou optique, en particulier à faire passer le module à DEL (140) dans un mode clignotement.
  5. Procédé selon l'une des revendications précédentes, comprenant également les étapes suivantes :
    - détection d'une température et
    - adaptation, sur la base de la température détectée, de la tension de saut minimale et/ou de la durée de saut prédéterminée.
  6. Procédé selon l'une des revendications précédentes, dans lequel, après une mise sous tension du module à DEL (140), l'expiration d'une durée transitoire (321) prédéterminée est d'abord attendue avant que les autres étapes de procédé soient réalisées.
  7. Procédé selon l'une des revendications précédentes, comprenant également les étapes suivantes :
    - enregistrement (S50) de tensions directes détectées dans une baie de stockage,
    - détermination (S70) d'une tension directe minimale et/ou d'une tension directe maximale enregistrée dans la baie de stockage,
    la comparaison (S80, S90) d'une tension directe détectée actuellement avec une ou plusieurs tensions directes détectées antérieurement consistant à comparer la tension directe détectée actuellement avec la tension directe minimale et/ou avec la tension directe maximale.
  8. Procédé selon l'une des revendications précédentes, comprenant également une étape consistant à calculer la moyenne de plusieurs tensions directes détectées afin d'obtenir une tension directe moyennée dans le temps, la comparaison d'une tension directe détectée actuellement avec une ou plusieurs tensions directes détectées antérieurement consistant à comparer la tension directe détectée actuellement avec la tension directe moyennée dans le temps.
  9. Procédé selon l'une des revendications précédentes, l'information d'espérance de cycle de vie comprenant une probabilité de panne, la probabilité de panne étant déterminée sur la base d'une hauteur et/ou d'une fréquence des sauts de tension, la probabilité de panne étant en particulier déterminée proportionnellement à la hauteur et/ou à la fréquence des sauts de tension.
  10. Procédé selon la revendication 9, comprenant en outre une étape consistant à déterminer une différence de la tension directe détectée vis-à-vis d'une tension directe de référence, la probabilité de panne étant déterminée proportionnellement à cette différence.
  11. Dispositif (130) de détermination d'une information d'espérance de cycle de vie d'un module à DEL (140) ayant une multiplicité de DEL (142),
    le dispositif comportant des moyens qui sont appropriés pour exécuter le procédé selon l'une des revendications précédentes.
  12. Dispositif (130) selon la revendication 11, le dispositif comportant en outre une interface bus (150) et/ou une interface radio qui est constituée pour délivrer l'information d'espérance de cycle de vie.
  13. Dispositif (130) selon l'une des revendications 11 ou 12, le dispositif étant un dispositif enfichable qui est approprié pour être enfiché sur un module à DEL (140) et/ou sur un ballast électronique (120).
  14. Module à DEL (140), comprenant une carte de circuit imprimé, une multiplicité de DEL (142) brasées sur la carte de circuit imprimé et un dispositif (130) selon l'une des revendications 11 à 12, le module à DEL comportant une source de courant constant destinée à l'alimentation des DEL avec un courant constant, la source de courant constant étant constituée pour réduire le courant constant quand le dispositif délivre la première et/ou la deuxième information d'alarme.
EP16165482.7A 2015-04-17 2016-04-15 Procede et dispositif de determination d'une information d'esperance de cycle de vie d'un module a del Active EP3082383B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015105914.2A DE102015105914B3 (de) 2015-04-17 2015-04-17 Verfahren und Vorrichtung zur Bestimmung einer Lebenserwartungs-Information eines LED-Moduls

Publications (2)

Publication Number Publication Date
EP3082383A1 EP3082383A1 (fr) 2016-10-19
EP3082383B1 true EP3082383B1 (fr) 2020-08-26

Family

ID=55759503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16165482.7A Active EP3082383B1 (fr) 2015-04-17 2016-04-15 Procede et dispositif de determination d'une information d'esperance de cycle de vie d'un module a del

Country Status (4)

Country Link
US (1) US9572225B2 (fr)
EP (1) EP3082383B1 (fr)
CN (1) CN106061076B (fr)
DE (1) DE102015105914B3 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10945324B2 (en) 2017-11-30 2021-03-09 Osram Gmbh External assessment device for a lighting system and method of assessing a lighting system
CN112740836B (zh) * 2018-09-20 2024-05-17 昕诺飞控股有限公司 抽头式线性驱动器和驱动方法
NL2023528B1 (en) * 2019-07-18 2021-02-08 Schreder Sa Luminaire system and method for gauging the reliability of connections
CN111163550B (zh) * 2020-04-02 2020-07-28 深圳市晶讯软件通讯技术有限公司 一种智能照明设备的剩余使用寿命计算系统及方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101574021A (zh) 2006-12-27 2009-11-04 通用电气公司 电子镇流器的灯寿命终止单点感测、防电弧放电和空载保护
US20100225235A1 (en) 2007-10-26 2010-09-09 Panasonic Electric Works Co., Ltd. Light emitting diode drive device, illumination device, in-vehicle cabin illumination device, and vehicle illumination device
EP2244531A2 (fr) 2008-11-25 2010-10-27 Panasonic Electric Works Co., Ltd Dispositif d'éclairage
US20110089855A1 (en) 2009-10-21 2011-04-21 General Electric Company Knowledge-based driver apparatus for high lumen maintenance and end-of-life adaptation
US20110133769A1 (en) 2009-12-09 2011-06-09 Industrial Technology Research Institute Inspection apparatus and method for led package interface
US20120290241A1 (en) 2011-05-09 2012-11-15 Nxp B.V. Method of characterising an led device
US8482213B1 (en) 2009-06-29 2013-07-09 Panasonic Corporation Electronic ballast with pulse detection circuit for lamp end of life and output short protection
EP2677841A1 (fr) 2012-06-19 2013-12-25 ams AG Circuit électronique pour contrôler la température d'une diode électroluminescente
US20140074434A1 (en) 2011-05-13 2014-03-13 Koninklijke Philips N.V. Methods and apparatus for end-of-life estimation of solid state lighting fixtures
WO2014060288A1 (fr) 2012-10-15 2014-04-24 Continental Automotive Gmbh Procédé et dispositif de diagnostic d'un élément lumineux défectueux
US20140225508A1 (en) 2011-06-24 2014-08-14 Ams Ag Driver assembly and method for detecting an error condition of a lighting unit
US20140320019A1 (en) 2013-04-26 2014-10-30 Phoseon Technology, Inc. Method and system for light array thermal slope detection
US20150084637A1 (en) 2012-04-26 2015-03-26 Zumtobel Lighting Gmbh Assembly and method for evaluating the state of an electronic unit used for illumination purposes
US20150102726A1 (en) 2013-10-15 2015-04-16 Mitsubishi Electric Corporation Light source control device and light source control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170397A (ja) * 1996-12-05 1998-06-26 Hitachi Ltd 放電表示素子の寿命判定方法
KR101176086B1 (ko) * 2006-05-30 2012-08-22 페어차일드코리아반도체 주식회사 형광램프의 수명말기 검출회로
CN101452044B (zh) * 2007-12-07 2011-01-26 财团法人工业技术研究院 发光二极管寿命试验装置及方法
CN102854446B (zh) * 2012-08-14 2015-02-18 蚌埠德豪光电科技有限公司 Led器件寿命检测方法及检测电路及该检测电路的应用
CN104391237B (zh) * 2014-11-26 2017-04-12 电子科技大学中山学院 一种led芯片寿命快速估算方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101574021A (zh) 2006-12-27 2009-11-04 通用电气公司 电子镇流器的灯寿命终止单点感测、防电弧放电和空载保护
US20100225235A1 (en) 2007-10-26 2010-09-09 Panasonic Electric Works Co., Ltd. Light emitting diode drive device, illumination device, in-vehicle cabin illumination device, and vehicle illumination device
EP2244531A2 (fr) 2008-11-25 2010-10-27 Panasonic Electric Works Co., Ltd Dispositif d'éclairage
US8482213B1 (en) 2009-06-29 2013-07-09 Panasonic Corporation Electronic ballast with pulse detection circuit for lamp end of life and output short protection
US20110089855A1 (en) 2009-10-21 2011-04-21 General Electric Company Knowledge-based driver apparatus for high lumen maintenance and end-of-life adaptation
US20110133769A1 (en) 2009-12-09 2011-06-09 Industrial Technology Research Institute Inspection apparatus and method for led package interface
US20120290241A1 (en) 2011-05-09 2012-11-15 Nxp B.V. Method of characterising an led device
US20140074434A1 (en) 2011-05-13 2014-03-13 Koninklijke Philips N.V. Methods and apparatus for end-of-life estimation of solid state lighting fixtures
US20140225508A1 (en) 2011-06-24 2014-08-14 Ams Ag Driver assembly and method for detecting an error condition of a lighting unit
US20150084637A1 (en) 2012-04-26 2015-03-26 Zumtobel Lighting Gmbh Assembly and method for evaluating the state of an electronic unit used for illumination purposes
EP2677841A1 (fr) 2012-06-19 2013-12-25 ams AG Circuit électronique pour contrôler la température d'une diode électroluminescente
WO2014060288A1 (fr) 2012-10-15 2014-04-24 Continental Automotive Gmbh Procédé et dispositif de diagnostic d'un élément lumineux défectueux
US20140320019A1 (en) 2013-04-26 2014-10-30 Phoseon Technology, Inc. Method and system for light array thermal slope detection
US20150102726A1 (en) 2013-10-15 2015-04-16 Mitsubishi Electric Corporation Light source control device and light source control method

Also Published As

Publication number Publication date
US20160309562A1 (en) 2016-10-20
CN106061076A (zh) 2016-10-26
CN106061076B (zh) 2018-07-06
EP3082383A1 (fr) 2016-10-19
DE102015105914B3 (de) 2016-08-11
US9572225B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
EP3082383B1 (fr) Procede et dispositif de determination d'une information d'esperance de cycle de vie d'un module a del
DE10133007B4 (de) Elektronisches Vorschaltgerät für eine Entladungslampe
DE4331378C2 (de) Schaltungsanordnung zum Betrieb einer Hochdruck-Entladungslampe für einen Fahrzeugscheinwerfer
DE69816958T2 (de) Schaltungsanordnung mit dabei passender signalleuchte
DE19707986B4 (de) Schaltungsanordnung zum Betreiben einer Entladungslampe
EP2796006B1 (fr) Appareil de fonctionnement à correction du facteur de puissance et limitation d'ondulation par changement de fonctionnement
DE102015216820A1 (de) Dynamische Vorbelastungswiderstandsstromsteuerung für LED-Dimmer
CH663508A5 (de) Elektronisches vorschaltgeraet fuer fluoreszenzlampen sowie verfahren zu dessen betrieb.
DE4039161A1 (de) Verfahren und schaltungsanordnungen zur steuerung der helligkeit und des betriebsverhaltens von gasentladungslampen
WO2016026579A1 (fr) Dispositif de détection d'une tension d'alimentation et procédé de détection d'une tension d'alimentation
DE3322943C2 (fr)
DE202011000764U1 (de) Beleuchtungsanlage für eine Kühlanlage
DE102015120551B4 (de) Vorrichtung und Verfahren zur Bestimmung einer Alterungs-Information eines LED-Moduls
EP1901591B1 (fr) Allumage de lampes à décharge dans des conditions environnementales variables
EP2952061B1 (fr) Dispositif de fonctionnement de del
EP2408272A2 (fr) Agencement de commutation et procédé de fonctionnement d'au moins une lampe à décharge
EP2130412B1 (fr) Détection de défaut dans un appareil électrique pour moyen d'éclairage
DE112013005175T5 (de) Beleuchtungseinrichtung und diese verwendende Leuchte
EP1341402A2 (fr) Dispositif d' éclairage à module-LED
EP1286571A2 (fr) Alimentation avec protection électronique pour un circuit et dispositif d'affichage des informations variables
EP1958488A1 (fr) Procede de detection de defauts lors de l'utilisation de lampes a decharge gazeuse haute pression sur des ballasts electroniques
DE3306359A1 (de) Sicherheitsleuchte
WO2007096253A1 (fr) Ensemble circuit et procédé pour faire fonctionner une lampe à décharge haute pression
DE202020103133U1 (de) Ausfallsichere Beleuchtungsanlage
DE102012215786A1 (de) Schaltungsanordnung zum betreiben mindestens einer led und system aus einem vorschaltgerät und einer retrofit-lampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170413

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045580000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SITECO GMBH

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 45/58 20200101AFI20200214BHEP

INTG Intention to grant announced

Effective date: 20200311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R108

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1307684

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SCHOEPF, PATRICK

Effective date: 20210526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210415

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210415

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20221119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240417

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200826