EP3065850A1 - Procédé d'épuration de gaz de dérivation dans l'industrie cimentière ou minéralière et installation de l'industrie cimentière ou minéralière - Google Patents

Procédé d'épuration de gaz de dérivation dans l'industrie cimentière ou minéralière et installation de l'industrie cimentière ou minéralière

Info

Publication number
EP3065850A1
EP3065850A1 EP14795778.1A EP14795778A EP3065850A1 EP 3065850 A1 EP3065850 A1 EP 3065850A1 EP 14795778 A EP14795778 A EP 14795778A EP 3065850 A1 EP3065850 A1 EP 3065850A1
Authority
EP
European Patent Office
Prior art keywords
bypass
bypass gas
gas
cement
dedusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14795778.1A
Other languages
German (de)
English (en)
Inventor
Timo Stender
Melanie Flaßpöhler
Kathrin Rohloff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Industrial Solutions AG
Original Assignee
ThyssenKrupp Industrial Solutions AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Industrial Solutions AG filed Critical ThyssenKrupp Industrial Solutions AG
Publication of EP3065850A1 publication Critical patent/EP3065850A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8656Successive elimination of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/8653Simultaneous elimination of the components characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/364Avoiding environmental pollution during cement-manufacturing
    • C04B7/365Avoiding environmental pollution during cement-manufacturing by extracting part of the material from the process flow and returning it into the process after a separate treatment, e.g. in a separate retention unit under specific conditions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/436Special arrangements for treating part or all of the cement kiln dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents

Definitions

  • the invention relates to a method for the purification of by-pass gases of the cement or mineral industry and a plant of the cement or mineral industry with a kiln and a bypass system connected thereto for the withdrawal of a bypass gas.
  • the bypass exhaust gas is diverted at the kiln inlet with temperatures depending on the application of the kiln plant, for example, more than 600 ° C or more than 1000 ° C and shortly after withdrawal, for example in the so-called bypass bell or heat exchange to 500 to 150 ° C, preferably 400 to 200 C, most preferably 370 to 240 ° C quenched.
  • the gas can be fed to an electric or a tissue filter for dust separation. Due to their condensation temperatures, gaseous chlorine and sulfur are also integrated in the bypass filter.
  • an alkali and chlorine-containing bypass gas from the clinker burning process at temperatures of 1050 to 1250 ° C is diverted and cooled by supplying fresh air to 700 to 1050 ° C. Thereafter, 50 to 70% of the dust contained in the gas stream are separated from the gas stream and returned to the burning process. Due to the low degree of separation in the separation of the dust from the gas flow only the low-alkali, coarse-grained dust particles from the
  • CONFIRMATION COPY Gas stream separated and abandoned the firing process. At temperatures of 700 to 1050 ° C, some of the alkalis are still volatile or only precipitate at the smallest particle fractions of the dust. After further cooling, these pollutants are then separated from the gas stream.
  • Nitrogen oxides are formed in the clinker production due to the high temperatures in the furnace by the oxidation of nitrogen from the combustion air. A reduction is typically achieved by a staged combustion and the injection of an ammonia-containing reducing agent in the range of the calciner or kiln inlet. Nitrogen oxides in the furnace exhaust gas are also removed by means of catalysts in the downstream exhaust line.
  • the invention is therefore based on the object to improve the reduction of gaseous pollutants in the bypass gas of the cement or minerals industry.
  • the process according to the invention for purifying bypass gases of the cement or mineral industry is characterized by the following process steps: a. Cooling of the withdrawn bypass gas to 500 ° C to 150 ° C, preferably 400 to 200 ° C, most preferably 370 to 240 ° C, b. Coarse dedusting of the bypass gas, wherein the dust load is reduced by 30 to 95%, preferably 50 to 95%, most preferably 80 to 95%, wherein the process steps a) and b) can also be carried out in the reverse order, c.
  • the plant according to the invention of the cement or mineral industry with a kiln and a bypass system connected thereto for extracting a bypass gas provides the following facilities with regard to the bypass system: a. a cooling device for cooling the withdrawn bypass gas to 500 to 150 ° C, preferably 400 to 200 ° C, most preferably 370 to 240 ° C b. a coarse dedusting device for reducing the dust loading of the bypass gas by 30 to 95%, preferably 50 to 95%, most preferably 80 to 95% c. a cleaning device for reducing the gaseous components contained in the partially dedusted bypass gas, which comprises a Feinentstaubungsease, wherein the cleaning device comprises a doped with catalytically active components separator.
  • the exhaust gases of a plant of the cement or mineral industry are composed of the preheater exhaust gases and the bypass gas. So far, only the preheater exhaust gas in its nitrogen oxide concentrations has been reduced so much that even after mixing with the previously not denitrified bypass gas, the limits could be complied with. Due to the increasing use of alternative fuels, however, the pollutant cycles increase enormously, so that a higher bypass gas rate must be diverted. By the proposed denitrification of the bypass gas according to the invention, the low limit values can also be maintained in this case.
  • the reduction of the nitrogen oxides is advantageously carried out at temperatures of 500 to 150 ° C, preferably 400 to 200 C, most preferably 370 to 240 ° C.
  • a partial amount of kiln exhaust gases produced in a kiln is withdrawn as a bypass gas and purified according to the above measures.
  • the nitrogen oxides of the remaining furnace exhaust gas are reduced, for example by means of SNCR method, before the furnace exhaust gas is recombined with the purified bypass gas.
  • further process stages such as crude and coal mills or cooling towers may be included.
  • an exhaust gas line with an SNCR device for reducing the nitrogen oxides joins the kiln.
  • the bypass gas is diverted from the exhaust line in the area of the kiln and after the SNCR device re-connected to the exhaust system or emitted via a separate chimney. If the latter is the case, adherence to the nitrogen oxide emissions is determined by means of a mixed calculation between volume flow and nitrogen oxide concentration of the two exhaust gas sources. A mixed calculation can also be applied if other emission sources, such as a coal mill with a separate chimney, are installed.
  • the removal of the dusts in the first chamber takes place, for example, by electrostatic forces, while in the second, filtering chamber in addition to the separation of Fine dust removal of the nitrogen oxides takes place.
  • a pressurized reducing agent for example ammonia water
  • a reduction of the nitrogen oxides takes place on a separator doped with catalytically active components.
  • the catalytic material is preferably applied or applied in or on a ceramic or other filtering material, such as Teflon or fiberglass.
  • the ammonia-containing reducing agent which is required for the denitrification of the bypass gases, can be injected before or after the coarse dedusting.
  • the prior dedusting of the bypass gas is advantageous, since dust loads relatively greater than 100 g / Nm 3 may be present in the bypass gas.
  • high dust load requires high cleaning pressures on fabric filters, which reduce the stability and function of the media for catalytic purification.
  • high pressure losses occur.
  • nitrogen oxides and hydrocarbons and / or carbon monoxide which arise due to incomplete combustion in the kiln inlet, could be catalytically reduced.
  • a fine cleaning of acidic gas constituents containing such as S0 2 or HCl in addition to the separation of dust, a fine cleaning of acidic gas constituents containing such as S0 2 or HCl.
  • a suitable sorbent such as sodium bicarbonate
  • Sodium bicarbonate typically deposits on a filtering tissue upon injection into the exhaust gas.
  • the temperature-dependent formation of ammonium salts at high partial pressures of NH 3 and S0 2 and S0 3 can lead to deactivation of the catalytic active components and prevent the degradation of nitrogen oxides, so that the bypass gas should not be cooled below 150 ° C.
  • Fig. 1 is a schematic representation of a system according to the invention
  • Fig. 2 is a schematic representation of a hybrid filter with a than
  • FIG. 3 is a schematic representation of a hybrid filter with a designed as an electrostatic precipitator first chamber
  • FIG. 5 schematic representation of the bypass system with a as
  • Centrifugal separator formed coarse dedusting.
  • the plant shown in Fig. 1 of the cement and minerals industry consists essentially of a preheater 1, here as a 5-stage cyclone preheater is formed and preheated in the raw meal 2 with exhaust gases from a kiln 3.
  • the preheated material 2 'then passes into a calciner 4, which is also flowed through by the exhaust gases of the kiln 3.
  • the precalcined raw meal 2 is finally fed to the kiln 3.
  • means 5 for injecting a reducing agent are provided in the region of the calciner 4.
  • Optional means 6 for injecting a reducing agent can also be provided in the upper region of the preheater 1 to be ordered.
  • the furnace exhaust gas 7 leaving the preheater 1 is optionally further de-nitrogenized in an optional SCR reactor 8.
  • bypass system 9 To interrupt the resulting between kiln 3 and preheater 1 pollutant cycles a bypass system 9 is provided.
  • part of the kiln exhaust gas is diverted as bypass gas 11 in the region of the kiln inlet 10.
  • the amount to be withdrawn as bypass gas may well account for 10% or more of the effluent from the kiln 3 exhaust gas.
  • the bypass gas which is initially hot, for example, above 1000 ° C., is cooled to 500 to 150 ° C., preferably 400 to 200 ° C., most preferably 370 to 240 ° C.
  • the cooling device 12 may be formed as a mixing chamber, wherein the bypass gas 11 is mixed with fresh air 13.
  • the cooled bypass gas 1 ⁇ then passes into a coarse dedusting device 14 for reducing the dust load of the cooled bypass gas by 30 to 95% and then into a cleaning device 15 for reducing the gaseous constituents contained in the partially dedusted bypass gas, which comprises a fine dedusting stage.
  • the purification stage 15 also has a separator doped with nitrogen for the reduction of nitrogen oxides with catalytically active components.
  • optional means 17 for injection of a Sorbent for desulfurization and optional means 18 for injecting a reducing agent for SCR reaction are provided before or after the coarse dedusting device 14 .
  • FIGS. 2 to 4 show a preferred embodiment in which the coarse dedusting device 14 and the cleaning device are accommodated in a hybrid filter 19.1, 19.2 or 19.3 consisting of at least two chambers, wherein the coarse dusting device is in the first chamber and in the second chamber the cleaning device are housed together with Feinentstaubungsease.
  • the coarse dedusting direction of the hybrid filter 19.1 is designed as a gravity separator 14.1.
  • the cleaning device in the second chamber of the hybrid filter 19.1 is formed by a separator 15.1 doped with catalytically active components.
  • the coarse dust 20 is first separated from the cooled bypass gas 11 ', which is then preferably returned and, for example, added to the raw meal at a suitable point.
  • the cleaning device 15.1 the reaction of nitrogen oxides and optionally further acidic gas constituents takes place at the separator 15.1.
  • the particulate matter 21 discharged there is heavily loaded and is usually discarded.
  • the bypass gas leaves the separator 15.1 then as purified bypass gas 11 ".
  • the hybrid filter 19.2 shown in FIG. 3 differs only in the region of the first chamber, in which case the coarse dedusting device is formed by an electrostatic precipitator 14.2.
  • the second chamber in turn, a doped with catalytically active components separator 15.2 is provided.
  • the coarse dedusting device of the first chamber of the hybrid filter 19.3 is designed as a filtering separator 14.3.
  • the coarse dedusting means and the cleaning means need not necessarily be disposed within a common housing of a hybrid filter.
  • the coarse dedusting device is designed as a centrifugal separator 14.4, which is connected via a connecting line 22 to a separator 15.4 doped with catalytically active components.
  • the preferred embodiment of the invention is to accommodate the coarse dedusting device 14 and the cleaning device 15 in a two-chamber hybrid filter, wherein in the second chamber not only the customary in hybrid filters dedusting, but at least a denitrification using a catalytically active components doped separator is provided. Furthermore, there is also the possibility of discharging via the fine dust 21 acid constituents, such as S0 2 , S0 3 , HCl and HF with the aid of a sorbent sprayed in via the means 17.
  • bypass gas 11 "cleaned in this way, in particular, can thus be combined with the denitrified furnace exhaust gas 7 'without the limit values for nitrogen oxides being exceeded even with a large proportion of bypass gas
  • bypass exhaust gases drawn off at the furnace inlet it is also possible to divert a gas bypass elsewhere in the furnace-preheater system and to supply this gas to the appropriate process stages.
  • the cooling of the other gas bypass could be used for example for a heat extraction.
  • a gas extraction of up to 50% of the total gas flow could take place.

Abstract

L'invention concerne un procédé d'épuration de gaz de dérivation dans l'industrie cimentière ou minéralière, caractérisé par les étapes consistant à : a) refroidir le gaz de dérivation prélevé à une température allant de 500°C à 150°C ; b) dépoussiérer grossièrement le gaz de dérivation afin d'obtenir une réduction de 30 à 95%, de préférence de 50 à 95% et dans l'idéal de 80 à 95% de la charge de poussière, les étapes a) et b) du procédé pouvant également être réalisées dans l'ordre inverse ; c) diminution des constituants gazeux contenus dans le gaz de dérivation partiellement dépoussiéré en effectuant une diminution catalytique des oxydes d'azote et/ou des hydrocarbures et/ou du monoxyde de carbone et un autre dépoussiérage.
EP14795778.1A 2013-11-06 2014-11-06 Procédé d'épuration de gaz de dérivation dans l'industrie cimentière ou minéralière et installation de l'industrie cimentière ou minéralière Withdrawn EP3065850A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310112210 DE102013112210A1 (de) 2013-11-06 2013-11-06 Verfahren zur Reinigung von Bypassgasen der Zement- oder Mineralsindustrie sowie Anlage der Zement- oder Mineralsindustrie
PCT/EP2014/002966 WO2015067363A1 (fr) 2013-11-06 2014-11-06 Procédé d'épuration de gaz de dérivation dans l'industrie cimentière ou minéralière et installation de l'industrie cimentière ou minéralière

Publications (1)

Publication Number Publication Date
EP3065850A1 true EP3065850A1 (fr) 2016-09-14

Family

ID=51868930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14795778.1A Withdrawn EP3065850A1 (fr) 2013-11-06 2014-11-06 Procédé d'épuration de gaz de dérivation dans l'industrie cimentière ou minéralière et installation de l'industrie cimentière ou minéralière

Country Status (5)

Country Link
US (1) US9855527B2 (fr)
EP (1) EP3065850A1 (fr)
CN (1) CN105705218A (fr)
DE (1) DE102013112210A1 (fr)
WO (1) WO2015067363A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014108154A1 (de) * 2014-06-10 2015-12-17 Elex Cemcat Ag Verfahren zur Abgasbehandlung und Anlage mit einer Abgasbehandlungsvorrichtung
DE102014116532A1 (de) * 2014-11-12 2016-05-12 Thyssenkrupp Ag Verfahren zur Verminderung eines Schadstoffgehalts eines bei einer thermischen Behandlung eines Materials entstehenden oder genutzten Abgasstroms
DE102015202698B4 (de) 2015-02-13 2020-11-05 Maerz Ofenbau Ag Verfahren zur Reinigung von Abgasen bei der thermischen Aufarbeitung von Mineralstoffen
WO2016183027A1 (fr) * 2015-05-12 2016-11-17 Flsmidth A/S Procédé de réduction des nox dans un système de fabrication en four à ciment
DE102015111974A1 (de) 2015-07-23 2017-01-26 Thyssenkrupp Ag Verfahren und Anlage zur Herstellung von Zementklinker oder anderen mineralischen Produkten und zur Entstickung von Bypassgasen
CN106215678B (zh) * 2016-09-19 2024-04-26 中材国际环境工程(北京)有限公司 一种水泥窑半干法脱硫系统
DE102017123746A1 (de) * 2017-10-12 2019-04-18 Thyssenkrupp Ag Verfahren und Anlage zur Herstellung von Zementklinker oder eines anderen mineralischen Produkts
DE102017218634A1 (de) * 2017-10-18 2018-12-20 Thyssenkrupp Ag Verfahren zur Stickoxid-Reduzierung in Bypass-Abgasen
CN107626202B (zh) * 2017-11-06 2019-12-03 中国科学院过程工程研究所 一种氧化铝焙烧烟气的scr脱硝装置、方法及其应用
CN108686476A (zh) * 2018-07-13 2018-10-23 天津水泥工业设计研究院有限公司 一种水泥行业除尘脱硝工艺、设备及其改造方法
CN111672296A (zh) * 2020-06-17 2020-09-18 昆山亿政食品有限公司 一种高效节能的无焰尾气处理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD274022A1 (de) 1988-07-11 1989-12-06 Dessau Zementanlagenbau Veb Verfahren zur thermischen behandlung des staub- und alkalihaltigen heissgasstromes
DE4132167A1 (de) * 1991-09-27 1993-04-01 Kloeckner Humboldt Deutz Ag Anlage zur thermischen behandlung von mehlfoermigen rohmaterialien
DE4436939A1 (de) * 1994-10-15 1996-04-18 Kloeckner Humboldt Deutz Ag Anlage zur thermischen Behandlung von mehlförmigen Rohmaterialien
DE69615344T3 (de) * 1995-12-11 2013-03-14 Taiheiyo Cement Corp. Verfahren zum behandeln von ofenabgas mittels chlorbypass und vorrichtung dafür
DE10164480A1 (de) 2001-12-29 2003-07-17 Schumacher Umwelt Trenntech Filterelement
US20040111958A1 (en) * 2002-12-16 2004-06-17 Oates David Bridson Fuel from ash
ES2357647T3 (es) * 2003-07-10 2011-04-28 Taiheiyo Cement Corporation Dispositivo y procedimiento para el procesamiento de gas de escape de combustión.
DE102004018571A1 (de) * 2004-04-16 2005-11-03 Polysius Ag Anlage und Verfahren zur Herstellung von Zementklinker
AT10369U1 (de) 2008-01-16 2009-02-15 Kirchdorfer Zementwerk Hofmann Rauchgasreinigungsanlage
TW201002413A (en) * 2008-06-17 2010-01-16 Taiheiyo Cement Corp Device and method for treating cement kiln exhaust gas
JP2009298677A (ja) * 2008-06-17 2009-12-24 Taiheiyo Cement Corp セメントキルン抽気ガスの処理システム及び処理方法
CN101385934A (zh) * 2008-10-17 2009-03-18 四川兆兴环保科技发展有限公司 一种联碱生产中对石灰窑气的除尘方法及专用设备
JP5808072B2 (ja) * 2009-02-24 2015-11-10 太平洋セメント株式会社 セメントキルン抽気ガスの処理システム及び処理方法
DE102009022903A1 (de) 2009-05-27 2010-12-09 Polysius Ag Verfahren und Anlage zur Wärmebehandlung von feinkörnigem Material
AT507773B1 (de) 2009-07-15 2010-08-15 Scheuch Gmbh Verfahren und vorrichtung zur entstickung von rauchgasen
KR101347877B1 (ko) * 2012-02-28 2014-01-15 주식회사 케이에프이앤이 고온 오염 기체 중의 오염 물질을 제거하는 에너지 활용형 먼지 제거 처리 시스템 및 이에 이용되는 관성 충돌형 에너지 회수 및 먼지 제거 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015067363A1 *

Also Published As

Publication number Publication date
CN105705218A (zh) 2016-06-22
WO2015067363A1 (fr) 2015-05-14
DE102013112210A1 (de) 2015-05-07
US9855527B2 (en) 2018-01-02
US20160279569A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
EP3065850A1 (fr) Procédé d'épuration de gaz de dérivation dans l'industrie cimentière ou minéralière et installation de l'industrie cimentière ou minéralière
DE102013016701B4 (de) Verfahren zur Entstickung von Bypassabgasen in einer Anlage zur Herstellung von Zementklinker und Anlage zur Herstellung von Zementklinker
EP3672919B1 (fr) Dispositif et procédé de production de clinker de ciment
WO2005070845A2 (fr) Production de clinker de ciment avec extraction d'un flux partiel de gaz d'echappement d'un four rotatif contenant des substances nuisibles
DE10158968A1 (de) Verfahren zur Emissionsminderung der Abgasschadstoffe Dioxine und/oder Furane bei einer Zementklinkerproduktionslinie
DE102007044731A1 (de) Verfahren und Vorrichtung zur Abscheidung von Quecksilber aus Rauchgasen
AT511543B1 (de) Verfahren und vorrichtung zur quecksilberabscheidung bei der zementklinkerherstellung
EP2694902B1 (fr) Procédé et système de fabrication de clinker et d'épuration des gaz brûlés produits
EP0129273A2 (fr) Procédé de séparation de polluants de gaz d'échappement
WO1993003823A1 (fr) Procede d'epuration des gaz d'evacuation charges d'installations d'incineration
EP2673583A1 (fr) Procédé et installation de production de clinkers de ciment
WO2016139225A1 (fr) Procédé et installation de dénitrification du gaz perdu de dérivation dans un système à multiples étages de chambres de mélange dans une installation de fabrication de clinker
AT505542B1 (de) Anlage zur reinigung der rauchgase eines ofens
EP3256236B1 (fr) Procédé d'épuration de gaz d'échappement lors du retraitement thermique de matières minérales
EP0478744B1 (fr) Procede pour l'epuration de gaz d'echappement provenant en particulier d'usines d'incineration d'ordures
DE4132167A1 (de) Anlage zur thermischen behandlung von mehlfoermigen rohmaterialien
WO2001066233A1 (fr) Procede et dispositif de traitement catalytique d'effluents gazeux contenant de la poussiere et de l'oxygene
WO2010136396A1 (fr) Procédé et installation de traitement thermique de matière à fines particules
EP3271052A1 (fr) Procédé de post-traitement des gaz d'échappement et système de post-traitement des gaz d'échappement
WO2018087024A1 (fr) Installation et procédé pour purifier les effluents gazeux d'un dispositif de traitement industriel de ciment, de chaux ou de minéraux
LU103009B1 (de) Thermische Behandlung von mineralischem Material, insbesondere Tonen, für die Zementindustrie, insbesondere zur Herstellung künstlicher Puzzolane
DE20122251U1 (de) Vorrichtung zur katalytischen Behandlung von staub- und sauerstoffhaltigen Abgasen
DE60223947T2 (de) Verfahren zur entfernung von stickstoffoxiden aus abgasen aus einem katalytischen wirbelschichtspaltungsreaktor
DE102008013065A1 (de) Anlage zur Reinigung der Rauchgase eines Ofens
DE102018200248A1 (de) Schadstoffminderung von Abgasen bei der thermischen Materialbehandlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

Owner name: THYSSENKRUPP AG

17Q First examination report despatched

Effective date: 20190711

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20191111

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603