EP3041987A1 - Procede d'hydrofugation et de lubrification de fibres vegetales - Google Patents

Procede d'hydrofugation et de lubrification de fibres vegetales

Info

Publication number
EP3041987A1
EP3041987A1 EP14767044.2A EP14767044A EP3041987A1 EP 3041987 A1 EP3041987 A1 EP 3041987A1 EP 14767044 A EP14767044 A EP 14767044A EP 3041987 A1 EP3041987 A1 EP 3041987A1
Authority
EP
European Patent Office
Prior art keywords
fibers
plant fibers
weight
hydrophobing
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14767044.2A
Other languages
German (de)
English (en)
Inventor
Sandrine Millot
Franck POCHON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elkem Silicones France SAS
Original Assignee
Bluestar Silicones France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bluestar Silicones France SAS filed Critical Bluestar Silicones France SAS
Publication of EP3041987A1 publication Critical patent/EP3041987A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/745Vegetal products, e.g. plant stems, barks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Definitions

  • the present invention relates to a process for hydrophobing and lubricating plant fibers with a silicone-based composition and the use of said treated vegetable fibers in an insulating material.
  • the present invention is in the field of plant fiber processing methods.
  • Natural insulation is derived from renewable materials, possibly available locally and recyclable.
  • Natural insulators based on plant fibers can combine ecological awareness and thermal performance, acoustic & humidity regulation and energy saving.
  • Insulators made of vegetable or animal fibers include cork, linen wool, cellulose wadding, wood felt, hemp, coconut wool, sheep wool, feathers.
  • a plant fiber is a dead cell expansion that is mainly composed of polymers such as cellulose, hemicellulose, lignin and pectins. It is either isolated or grouped with others into a bundle. It is usually these bundles of fibers that are commonly referred to as plant fibers.
  • Vegetable fibers can come from different parts of the plant: seeds (cotton), stem or trunk (flax, hemp, wood), fruits (coconut) or leaves (agave, sisal).
  • the type of plant, the origin of the fibers and the conditions of growth are all factors playing on the variability of the performances of the vegetable fibers.
  • Vegetable fibers are mainly derived from the stem of plants.
  • straw commonly refers to one to several whole stems.
  • This stem is composed of 4 concentric zones: the outer bark, the liber in which are the bundles of fibers, xylem: internal marrow formed by lignin-rich cells and the lumen: hollow core.
  • xylem internal marrow formed by lignin-rich cells
  • lumen hollow core.
  • Retting is the maceration that is done to textile plants such as flax, hemp, etc., to facilitate the separation of the filamentous bark from the stem.
  • the so-called “classical” or “generic” extraction process is composed of three stages. Firstly, the decortication consists, by a mechanical operation exerted on the whole stem, to separate the ligneous material from the liber. Then, the different plant fractions obtained are separated. And finally the refining focuses on the beams to reduce the number of unit fibers per beam.
  • the flours correspond to crushed vegetable fibers which are homogeneous and of small particle size ( ⁇ ).
  • Wood and annuals consist mainly of cellulose, hemicellulose (a substance similar to celluloses) and lignin. All of these; polymers constitutes more than 90% of the dry matter. Softwoods or hardwoods and annuals are distinguished by the proportions of each of these components expressed as a percentage by weight of fiber.
  • the average chemical composition of flax fibers is at least 60% cellulose, 15% hemicellulose and 1% lignin, respectively.
  • the average chemical composition of hemp fiber is 67% cellulose, 16% hemicellulose and 3% lignin.
  • the average chemical composition of softwood fibers is 48% cellulose, 20% hemicellulose and 27% lignin.
  • the average chemical composition of hardwood fibers is 51% cellulose, 21% hemicellulose and 23% lignin.
  • Wood fibers are therefore characterized by a lignin content greater than 10%. Unlike yarn from spinning, that is to say the agglutination of fibers to form a long assembly intended for example weaving or knitting to obtain fabrics or knits, raw natural fibers are short and have little resistance or solidity.
  • Natural insulation comes in many forms: in panels, rolls or flakes in bulk (deposited or insufflated).
  • the application EP2392848 relates to a thermally and acoustically insulating material comprising a mixture of flax and hemp fibers.
  • dimethyl polysiloxane as water repellant is described in JP57191043 and the use of aminoalkyl silane as a binder is described in US8039110.
  • the fibers be lubricated to improve their sliding properties and thus bring more comfort for users because their touch is then more pleasant and the amount of dust emitted during handling is lower. Improving the slip properties of plant fibers also facilitates the transport and organization of the fibers in the final material.
  • An object of the present invention is to provide a process for hydrophobing and lubricating plant fibers to obtain plant fibers simultaneously meeting these needs, namely with improved moisture resistance and sliding properties.
  • the first object of the invention relates to a process for hydrophobing and lubricating vegetable fibers containing respectively from 40 to 80% by weight of cellulose, from 10 to 30% by weight of hemicellulose and from 0.1 to 30% by weight of lignin, expressed as a percentage by weight of fibers, characterized in that said plant fibers are brought into contact with at least one composition ( A) comprising at least one linear, cyclic or three-dimensional polyorganosiloxane (B) consisting of the following units:
  • R 1 , R 2 and R 3 which are identical and / or different, represent a monovalent hydrocarbon radical chosen from linear or branched alkyl radicals having from 1 to 4 carbon atoms, the linear or branched alkoxy radicals having from 1 to 4 carbon atoms, a phenyl radical and, preferably, a hydroxyl radical, an ethoxy radical, a methoxy radical or a methyl radical;
  • R 4 being a divalent hydrocarbon group having from 1 to 40 carbon atoms
  • R 5 being a hydrogen atom or a monovalent hydrocarbon group having from 1 to 40 carbon atoms
  • R 6 being a hydrogen atom or a radical of formula (II) below:
  • R 7 being a divalent radical of formula (III) below:
  • R 8 is a hydrogen atom or a monovalent hydrocarbon group having from 1 to 40 carbon atoms
  • the process for treating plant fibers with a composition (A) is simple and is particularly effective in optimizing both their water repellency and their lubrication.
  • Examples of useful radicals V according to the invention include the following radicals:
  • the indices i, j and k are identical or different integers having a value greater than or equal to 0 and less than or equal to 20 and the sum i + j + k is preferably between 0 and 30.
  • the radical V is selected from the group consisting of the following radicals: - (CH 2) 3 -NH 2 and - (CH 2) 3 -NH- (CH 2) 2 NH 2.
  • the silicone nomenclature to describe we speak of units M, D, T.
  • the letter M represents the monofunctional unit of formula (CH3) 3 SiO / 2, the silicon atom being bonded to a single oxygen atom in the polymer comprising this unit.
  • the letter D means a difunctional unit (CH 3 ) 2 SiO 2/2 in which the silicon atom is connected to two oxygen atoms.
  • the letter T represents a trifunctional unit of the formula (CH 3) Si0 3/2, wherein the silicon atom is bonded to three oxygen atoms. These units may be functionalized, which has the consequence of replacing one or more radicals CH3 by another radical as mentioned above.
  • motifs M, D, T while specifying the specific radicals.
  • the linear, cyclic or three-dimensional polyorganosiloxane (B) is a polydimethylsiloxane comprising M units bearing an ethoxy function and, on average, at least one D unit bearing a - (CH 2 ) 3 -NH 2 function .
  • the linear, cyclic or three-dimensional polyorganosiloxane (B) is a polydimethylsiloxane comprising M units bearing a methoxy function and, on average, at least one T unit carrying a function - (CH 2 ) 3 -NH - (CH 2 ) 2 -NH 2 .
  • the plant fibers used have a length of between 0.1 and 300 mm and preferably between 0.1 and 250 mm and even more preferably between 0.1 and 200 mm.
  • the plant fibers used are composed respectively of 50 to 80% cellulose, 10 to 25% hemicellulose and 0.01 to 10% lignin (expressed as a percentage by weight of fibers).
  • the flax or hemp fibers or their mixture are therefore preferably used.
  • composition (A) comprises:
  • the dispersing medium is an organic solvent that can be used for water repellency of plant fibers.
  • the organic solvent is "white spirit" or heptane.
  • the solvent or solvent mixture is present, preferably, in proportions of between 10 and 90% and preferably between 20 and 60% by weight relative to the total weight of the
  • the method for hydrophobing and lubricating plant fibers is characterized in that said plant fibers are brought into contact with the composition (A) which is in the form of an aqueous dispersion of from minus one linear, cyclic or three-dimensional polyorganosiloxane (B) and as defined above.
  • the water is present, preferably, in proportions of between 10 and 90% and preferably between 20 and 60% by weight relative to the total weight of the composition.
  • composition (A) is in the form of a silicone emulsion in water which comprises:
  • surfactant (T) will be easily determined by those skilled in the art, the objective being to prepare a stable emulsion.
  • the anionic, cationic, nonionic and zwitterionic surfactants can be used alone or as a mixture.
  • composition (A) according to the invention may also comprise protective colloids such as polyvinyl alcohol.
  • anionic surfactant mention may be made of the following surfactants:
  • R a represents a C 8 -C 20 alkyl radical, preferably C 1 -C 6 alkyl
  • R b is a C 1 -C 6 alkyl radical, preferably C1-C3 and M an alkaline cation (sodium, potassium, lithium), substituted or unsubstituted ammonium (methyl-, dimethyl-, trimethyl-, tetramethylammonium, dimethylpiperidinium) or derived from an alkanolamine (monoethanolamine, diethanolamine, triethanolamine) ,
  • alkylsulphates of formula ROSO3M in which R c represents a C10-C24, preferably C12-C20, alkyl or hydroxyalkyl radical, M representing a hydrogen atom or a cation of the same definition as above, as well as their derivatives; ethoxylenes (EO) and / or propoxylenes (PO), preferably having from 1 to 20 EO units,
  • R d represents an alkyl radical C2-C22, preferably Ce-C, R e alkyl, C 2 -C 3l M representing a hydrogen atom or a cation with the same definition as above, as well as their ethoxylenated (EO) and / or propoxylenated (PO) derivatives, preferably having 1 to 20 EO units,
  • C 8 -C 2 4 preferably C 14 -C 20 fatty acid salts, C 9 -C 20 alkylbenzenesulfonates, and their ethoxylenated (EO) and / or propoxylenated (OP) derivatives, exhibiting preferably 1 to 20 EO units, - alkylbenzenesulfonates C9-C20, C8-C22 primary or secondary alkylsulfonates, alkylglycerol sulfonates, sulfonated polycarboxylic acids disclosed in GB-A-1 082 179, paraffin sulfonates, N-acyl N-alkyltaurates, mono- and dialkylphosphates, alkylisethionates, alkylsuccinamates, alkylsulfosuccinates, monoesters or diesters of sulfosuccinates, N-acyl sarcosinates, alkylgly
  • alkyl or aryl ethers of polyalkylene oxide examples include polyoxyethylene sorbitan hexastearate, polyoxyethylenated sorbitan oleate and cetylstearyl and polyethylene oxide ethers.
  • polyalkylene ether aryl ether mention may be made of polyoxyethylenated alkylphenols.
  • alkyl ether of polyalkylene oxide mention may be made of polyethylene glycol isodecyl ether and polyethylene glycol trimethylnonyl ether containing from 3 to 15 ethylene oxide units per molecule.
  • surfactants ionic, nonionic or amphoteric fluorinated surfactants and mixtures thereof, for example:
  • fluorinated surfactant is meant, as is well known per se, a compound formed of an aliphatic perfluorocarbon moiety, comprising at least three carbon atoms, and a hydrophilic, ionic, nonionic or amphoteric moiety.
  • the perfluorocarbon portion of at least three carbon atoms may represent either all or only a fraction of the fluorocarbon portion of the molecule.
  • references in the literature The skilled person can refer in particular to the following references: - FR-A-2 149 519, WO-A-94 21 233, US-A-3, 94,767, the book “Fluorinated Surfactants", Erik Kissa, Publisher Marcel Dekker Inc. (1994) Chapter 4, including Tables 4.1 and 4.4.
  • surfactants include, in particular, anionic perfluoroalkyl compounds, cationic, nonionic and amphoteric surfactants, and among them, particularly, the surfactants of the class of ZONYL ® marketed by Du Pont, marketed by Du under the respective bridge ZONYL ® FSA, ZONYL ® FSO, ZONYL ® FSC and ZONYL ® FSK. We can further specify about them:
  • ZONYL ® FSO 100 CAS 65545-80-4, (nonionic) 99 to 100%, the remainder being 1,4-dioxane,
  • - ZONYL ® FSD CAS 70983-60-7 30% (cationic), the balance being hexylene glycol (0%), sodium chloride (3%) and water (57%).
  • perfluoroalkyl betaines such as that marketed by DU PONT under the name Forafac ® 1157 polyfluoroamides ethoxylates (nonionic) such as that marketed by DU PONT under the name Forafac 1110 D, the ammonium salts polyfiuoroalkyl (cationic), such as that marketed by DU PONT under the name FORAFAC 179;
  • hydrophilic part contains one or more saccharide unit (s) containing from 5 to 6 carbon atoms (units derived from sugars such as fructose, glucose, mannose, galactose, talose, gulose, allose, altose, idose, arabinose, xylose, lyxose and / or ribose) and whose hydrophobic part contains a unit of formula R F (CH 2 ) n , where n can from 2 to 20, preferably from 2 to 10 and R represents a perfluoroalkyl moiety of formula C m F2m + i with m ranging from 1 to 10, preferably 4 to 8, chosen from those having the characteristics defined above above ; mention may be made of perfluoroalkylated fatty acid monoesters and sugars such as sucrose, the monoester function being able to be represented by the formula R F (CH 2) n C (O), where n may range from 2 to 10 and R F represents
  • Polyelectrolytes having fatty perfluoroalkyl side groups such as polyacrylates having R F (CH 2 ) n groups in which n can range from 2 to 20, preferably from 2 to 10, and R F represents a perfluoroalkyl unit of formula C m F 2 m + 1 with m possibly ranging from 1 to 10, preferably from 4 to 8, chosen from those having the characteristics defined above; polyacrylates having CH 2 C 7 F 5 groups described in J. Chim. Phys. (1996) 93, 887-898 and selected from those having the characteristics defined above.
  • the amount of surfactant (T) is a function of the type of each constituent present and the nature of the surfactant used.
  • the emulsion comprises from 0.5 to 10% by weight of surfactant relative to the total weight of the emulsion (better still from 0.5 to 7% by weight).
  • the water (E) is preferably present in proportions of between 10 and 90% and preferably between 20 and 60% by weight relative to the total weight of the composition.
  • aqueous dispersions or in the emulsions it is also possible to use antifoam adjuvants, biocides, rheology modifiers, coalescing agents, dispersing agents, acidifying and neutralizing agents. bases and / or thickeners.
  • the linear, cyclic or three-dimensional polyorganosiloxane (B) and as defined above can be used in a proportion of 0.01 to 10% by weight, and preferably from 0.01 to 5% by weight. % by weight and more preferably from 0.01 to 2% by weight relative to the total weight of the composition (A).
  • a second subject of the present invention relates to hydrophobized and lubricated vegetable fibers that can be obtained by the process as described above.
  • a third object of the present invention relates to the use of hydrophobized and lubricated plant fibers according to the invention for the manufacture of an insulating material.
  • the methods of applying the treatments are well known to those skilled in the art. We can particularly mention soaking, padding, spraying. By dipping, the fibers are dipped in a tray filled with the silicone composition, dewatered and then dried.
  • the padding application involves immersing the fibers in a tray filled with the silicone-based composition and squeezing them between two rolls held against each other by a measured pressure. This technique makes it possible to deposit a determined quantity of silicone. Drying is carried out continuously following padding at temperatures between 120 ° and 160 ° C. The immersion can be done in an aqueous medium or solvent.
  • the impregnation by spraying can be carried out in several passages to better penetrate the heart of the plant fibers.
  • drying step which can be natural at ambient temperature or forced at temperature. In the case of fast drying, it is advisable not to exceed 160 ° C.
  • Natural insulation comes in many forms: in panels, rolls or flakes in bulk (deposited or insufflated).
  • a final object of the present invention is to propose new insulating materials comprising the hydrophobized and lubricated vegetable fibers according to the invention.
  • BLUESIL TM FLD 47V350 sold by Bluestar Silicones: non-reactive polydimethylsiloxane oil (PDMS), viscosity approximately 350 mm 2 / s at 25 ° C.
  • BLUESIL TM WR 68 sold by Bluestar Silicones: Methyl hydrogen reactive polysiloxane (SiH) oil, viscosity approximately 25 mm 2 / s at 25 ° C.
  • Epoxy-functional silicone oil (SiEpoxy) with about 0.09 mole of epoxy for
  • (B1) polydimethylsiloxane comprising M units bearing an ethoxy function and at least one D unit carrying a function - (CH 2 ) 3 -NH 2 , with 0.2% nitrogen by weight relative to the weight oil and a viscosity of approximately 300 mm 2 / s at 25 ° C.
  • the emulsions are prepared as follows:
  • Emulsions (ED (E2) and (E3)
  • Emulsion 1 (PDMS): consisting of 56% by weight of a non-reactive poly (dimethyl) siloxane oil Bluesil 47V350.
  • Emulsion 2 (SiH): consisting of 50% by weight of a BLUESIL WR 68 reactive hydrogen polysiloxane methyl ester oil.
  • Emulsion 3 (amino silicone): consisting of 51% by weight of a silicone oil (B2).
  • the 10 g of wet plant fibers are immersed in an aqueous silicone solution containing 0.4 g of silicone emulsion in water (E1 to E3) in 100 ml of water and mixed for 1 minute.
  • Vegetable fibers treated with a PDMS oil (Comparative Nos. 1 and 4) are neither water-repellent nor lubricated.
  • Vegetable fibers treated with a polyorganosiloxane oil with SiH functions (Comparative Nos. 2 and 5) or epoxy functions (Comparative No. 6) are not water-repellent.
  • Vegetable fibers treated with an amino silane have their touch degraded.
  • Table 3 Wood Fibers - Aqueous Media
  • Polyorganosiloxane (B) (E3), Example 4 according to the invention are both water-repellent and lubricated (softening).
  • Vegetable fibers treated with a PDMS (E1) oil emulsion (Comparative No. 8) are neither water-repellent nor lubricated.
  • Plant fibers treated with an SiH (E2) functional polyorganosiloxane oil emulsion (Comparative No. 9) are not water-repellent.
  • the vegetable fibers treated with an aqueous silane amine solution (Comparative No. 10) are not water-repellent and are slightly slightly lubricated.
  • Wood fiber Water recovery (Kg / m 2 )
  • Example 5 Vegetable fibers treated with an aqueous emulsion of a polyorganosiloxane (B) (E3), Example 5 according to the invention, have a very low water recovery compared to the control (untreated fibers) and this after 2 and 24 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

La présente invention concerne un procédé d'hydrofugation et de lubrification de fibres végétales par une composition à base de silicone et l'utilisation desdites fibres végétales traitées dans un matériau isolant.

Description

Procédé d'hydrofugation et de lubrification de fibres végétales.
La présente invention concerne un procédé d'hydrofugation et de lubrification de fibres végétales par une composition à base de silicone et l'utilisation desdites fibres végétales traitées dans un matériau isolant.
Domaine technique
La présente invention se situe dans le domaine des procédés de traitement des fibres végétales.
Etat de la technique
La diminution des ressources naturelles ainsi que l'impact des différentes activités humaines sur l'environnement ont conduit à une réflexion sur le développement durable. Dans ce contexte, il est nécessaire que les constructions soient économes en énergie et aient recours à des matériaux à faible impact environnemental.
On parle ainsi souvent d'isolant naturel ou d'isolant écologique ou encore d'isolant vert pour évoquer les matériaux d'isolation non polluants et cela par opposition aux isolants issus de la pétrochimie.
Un isolant naturel est issu de matériaux renouvelables, éventuellement disponibles localement et recyclables.
Les isolants naturels à bases de fibres végétales permettent d'allier conscience écologique et performance thermique, acoustique & régulation de l'humidité et économie d'énergie.
Tous ces isolants naturels permettent d'isoler la totalité d'une maison, du sol, au plafond, en passant par l'enveloppe de la maison ou les murs extérieurs, les cloisons.
On peut citer les isolants en fibres végétales ou animales: liège, laine de lin, ouate de cellulose, feutre de bois, chanvre, laine de coco, laine de mouton, plumes.
Une fibre végétale est une expansion cellulaire morte qui est principalement composée de polymères tels que de la cellulose, de l'hémicellulose, de la lignine et des pectines. Elle est soit isolée soit regroupée avec d'autres en un faisceau. Ce sont généralement ces faisceaux de fibres qui sont communément appelés fibres végétales.
Les fibres végétales peuvent être issues de différentes parties de la plante : des graines (coton), de la tige ou du tronc (lin, chanvre, bois), des fruits (coco) ou des feuilles (agave, sisal).
Le type de plante, l'origine des fibres et les conditions de croissance sont autant de facteurs jouant sur la variabilité des performances des fibres végétales. Afin de pouvoir utiliser les fibres végétales au niveau industriel, il est nécessaire de les extraire de la plante via un processus d'extraction qui dépend de la localisation des fibres dans la plante et de l'objectif visé.
Ce processus débute au moment de la récolte. Lorsque la plante est mature, elle est fauchée ou arrachée puis soit stockée immédiatement ou soit déposée sur le champ où elle est laissée plus ou moins longtemps. Les fibres végétales sont issues pour l'essentiel de la tige des plantes. Le terme «paille» désignant communément une à plusieurs tiges entières.
Cette tige est composée de 4 zones concentriques : l'écorce extérieure, le liber dans lequel se trouvent les faisceaux de fibres, le xylem: moelle interne formée par des cellules riches en lignine et le lumen : âme creuse. Afin de pouvoir utiliser les fibres végétales au niveau industriel, il est nécessaire de les extraire de la plante via un processus d'extraction.
Le rouissage est la macération que l'on fait subir aux plantes textiles telles que le lin, le chanvre, etc., pour faciliter la séparation de l'écorce filamenteuse d'avec la tige.
Pour obtenir différentes fractions végétales à partir de la paille, le processus d'extraction dit «classique» ou «générique» est composé de trois étapes. Premièrement, la décortication consiste, par une opération mécanique exercée sur la tige entière, à désolidariser la matière ligneuse du liber. Puis, les différentes fractions végétales obtenues sont séparées. Et enfin l'affinage se focalise sur les faisceaux afin de réduire le nombre de fibres unitaires par faisceau.
On parle alors, en fonction de leur longueur moyenne, de fibres végétales décimétriques, centimétriques, millimétriques. Les farines correspondent à des broyats de fibres végétales qui sont homogènes et de faible granulométrie (μιη).
Le bois et les plantes annuelles sont constitués principalement de cellulose, hémicelluloses (substance voisine des celluloses) et de lignine. L'ensemble de ces ; polymères constitue plus de 90% de la matière sèche. Les bois résineux ou feuillus et les plantes annuelles se distinguent par les proportions de chacun de ces composants exprimés en pourcentage en poids de fibres.
La composition chimique moyenne de fibres de lin est d'au moins respectivement 60% de cellulose, 15% d'hémicellulose et 1% de lignine.
La composition chimique moyenne de fibres de chanvre est de 67% de cellulose, 16% d'hémicelluloses et 3% de lignine.
La composition chimique moyenne de fibres de résineux (par ex. sapin) est de 48% de cellulose, 20% d'hémicelluloses et 27% de lignine.
La composition chimique moyenne de fibres de feuillus (par ex. peuplier) est de 51 % de cellulose, 21 % d'hémicelluloses et 23% de lignine.
Les fibres de bois se caractérisent donc par une teneur en lignine supérieure à 10%. Contrairement au fil issu du filage, c'est-à-dire de l'agglutination de fibres pour former un ensemble long destiné par exemple au tissage ou au tricotage permettant l'obtention de tissus ou tricots, les fibres naturelles brutes sont courtes et ont peu de résistance ou solidité.
Les isolants naturels se déclinent en de multiples formes : en panneaux, rouleaux ou flocons en vrac (déposés ou insufflés).
Tous ces isolants naturels permettent d'isoler la totalité d'une maison, du sol, au plafond, en passant par l'enveloppe de la maison ou les murs extérieurs, les cloisons.
Ainsi, la demande EP2392848 concerne un matériau isolant thermiquement et acoustiquement comprenant un mélange de fibres de lin et de chanvre.
Il est connu de traiter ces fibres végétales pour en améliorer les propriétés, par exemple pour les protéger notamment des rongeurs, pour améliorer leur résistance à l'humidité, au feu et bien sûr pour faciliter leur usage.
Ainsi l'utilisation de diméthyle polysiloxane comme agent hydrofugeant est décrite dans JP57191043 et l'utilisation d'aminoalkyle silane en tant que liant est décrite dans US8039110.
Leur résistance à l'humidité doit être sans cesse améliorée.
Il est aussi important que les fibres soient lubrifiées pour améliorer leurs propriétés de glissement et ainsi apporter plus de confort pour les utilisateurs car leur toucher est alors plus agréable et la quantité de poussière émise lors des manipulations est plus faible. L'amélioration des propriétés de glissement des fibres végétales facilite aussi le transport et l'organisation des fibres dans le matériau final.
Les performances de glissement des fibres végétales doivent être aussi sans cesse améliorées.
Un objectif de la présente invention est de fournir un procédé d'hydrofugation et de lubrification de fibres végétales permettant d'obtenir des fibres végétales répondant simultanément à ces besoins à savoir avec une résistance à l'humidité et des propriétés de glissement améliorées.
A cet effet, le premier objet de l'invention concerne un procédé d'hydrofugation et de lubrification de fibres végétales contenant respectivement de 40 à 80% en poids de cellulose, de 10 à 30 % en poids d'hémicellulose et de 0,1 à 30 % en poids de lignine, exprimé en pourcentage en poids de fibres, caractérisé en ce que lesdites fibres végétales sont mises en contact avec au moins une composition (A) comprenant au moins un polyorganosiloxane linéaire, cyclique ou tridimensionnel (B) constitué des motifs suivants:
Z—
dans lesquels:
- les symboles R1, R2 et R3, identiques et/ou différents, représentent un radical hydrocarboné monovalent choisi parmi les radicaux alkyles linéaires ou ramifiés ayant de 1 à 4 atomes de carbone, les radicaux alkoxy linéaires ou ramifiés ayant de 1 à 4 atomes de carbone, un radical phényle et, de préférence un radical hydroxy, un radical éthoxy, un radical méthoxy ou un radical méthyle;
- les symboles Z, identiques ou différents, représentent R1, et/ou V;
- les symboles V, groupements fonctionnels identiques et/ou différents, représentent des radicaux de formule générale (I):
-R4-N(R5)(R6) (I)
dans laquelle:
- le symbole R4 étant un groupement divalent hydrocarboné ayant de 1 à 40 atomes de carbone,
- le symbole R5 étant un atome d'hydrogène ou un groupement monovalent hydrocarboné ayant de 1 à 40 atomes de carbone,
- le symbole R6 étant un atome d'hydrogène ou un radical de formule (II) suivante:
-[R7-N(R8)]aR8
dans laquelle:
- le symbole R7 étant un radical divalent de formule (III) suivante:
-[C(R8)(R8)-]b
- 0 < a < 40
- b= 1 , 2 ou 3,
- le symbole R8 est un atome d'hydrogène ou un groupement monovalent hydrocarboné ayant de 1 à 40 atomes de carbone;
- 10 < x< 2000, et de préférence 20 < x< 2000,
- 0≤ y< 50, de préférence 0 < y< 10,
- 0≤ w <8, et avec les conditions supplémentaires qu'au moins un des motifs Z représente V et que la composition ne contienne ni acide gras libre ni polyorganosiloxane à fonction beta ceto- carboxyle.
Le procédé de traitement des fibres végétales par une composition (A) est simple et est particulièrement efficace pour optimiser à la fois leur hydrofugation et leur lubrification.
Comme exemples de radicaux V utiles selon l'invention on peut citer les radicaux suivants:
-CH2-NH-C6H5
-CH2-NH-(C2H40)j[C2H3(CH3)0]kH
-CaHe-NH-CeHs
-03Η6-ΝΗ-(θ2Η4θ)][θ2Η3(ΟΗ3)0] kH
-C3H6-NH-(C2H4-NH)i(C2H40)j[C2H3(CH3)0]kH
-C3H6-NH-C2H4-NH-C6H5
-C3H6-NH-C2H4-NH-C6H11
-C3H6-NH-C2H4-NH-(C2H40)j [C2H3(CH3)0]kH
-C3H6-0-C5H4(CH3)4NH2
-CH2CH(CH3)CH2-NH-C2H4-NH2
-CH2CH(CH3)CH2-NH-C2H4-NH-C6H5
-CH2CH(CH3)CH2-NH-C2H4-NH-C6H
-C3H6-NH-C2H4-NH-C2H4-NH2
Les indices i, j et k sont des entiers identiques ou différents ayant une valeur supérieure ou égale à 0 et inférieure ou égale à 20 et la somme i+j+k est de préférence compris entre 0 et 30.
Selon un autre mode de réalisation préféré, le radical V est choisi parmi le groupe constitué par les radicaux suivants: -(CH2)3-NH2 et -(CH2)3-NH-(CH2)2-NH2.
Dans la nomenclature silicone, pour les décrire, on parle de motifs M, D, T. La lettre M représente l'unité monofonctionelle de formule (CH3)3SiOi/2, l'atome de silicium étant relié à un seul atome d'oxygène dans le polymère comprenant cette unité. La lettre D signifie une unité difonctionnelle (CH3)2Si02/2 dans laquelle l'atome de silicium est relié à deux atomes d'oxygène. La lettre T représente une unité trifonctionnelle de formule (CH3)Si03/2, dans laquelle l'atome de silicium est relié à trois atomes d'oxygène. Ces motifs peuvent être fonctionnalisés ce qui a pour conséquence le remplacement d'un ou plusieurs radical CH3 par un autre radical tel que mentionné ci-dessus. On parle alors de motifs M, D, T tout en précisant les radicaux spécifiques.
De préférence, le polyorganosiloxane linéaire, cyclique ou tridimensionnel (B) est un polydimethylsiloxane comprenant des motifs M porteurs d'une fonction éthoxy et en moyenne au moins un motif D porteur d'une fonction -(CH2)3-NH2.
De façon encore plus préférentielle, le polyorganosiloxane linéaire, cyclique ou tridimensionnel (B) est un polydimethylsiloxane comprenant des motifs M porteurs d'une fonction méthoxy et en moyenne au moins un motif T porteur d'une fonction -(CH2)3-NH- (CH2)2-NH2.
De préférence, les fibres végétales utilisées présentent une longueur comprise entre 0,1 et 300 mm et de manière préférentielle entre 0,1 et 250 mm et de manière encore plus préférentielle entre 0,1 et 200 mm.
De préférence, les fibres végétales utilisées sont composées respectivement de 50 à 80% de cellulose, de 10 à 25 % d'hémicellulose et de 0,01 à 10 % de lignine (exprimé en pourcentage en poids de fibres). Les fibres de lin ou de chanvre ou leur mélange sont donc utilisées de façon préférentielle.
Selon un autre mode de réalisation, le procédé d'hydrofugation et de lubrification de fibres végétales est caractérisé en ce que la composition (A) comprend:
- au moins un milieu dispersant, et
- au moins un polyorganosiloxane linéaire, cyclique ou tridimensionnel (B) et tel que défini ci-dessus.
Le milieu dispersant est un solvant organique utilisable pour l'hydrofugation des fibres végétales. De préférence le solvant organique est le "white spirit" ou l'heptane. Le solvant ou mélange de solvants est présent, de préférence, dans des proportions comprises entre 10 et 90% et de préférence, entre 20 et 60% en poids par rapport au poids total de la
composition. Selon un autre mode de réalisation, le procédé d'hydrofugation et de lubrification de fibres végétales est caractérisé en ce que lesdites fibres végétales sont mises en contact avec la composition (A) qui se présente sous la forme d'une dispersion aqueuse d'au moins un polyorganosiloxane linéaire, cyclique ou tridimensionnel (B) et tel que défini ci-dessus. L'eau est présente, de préférence, dans des proportions comprises entre 10 et 90% et de préférence, entre 20 et 60% en poids par rapport au poids total de la composition.
Selon un autre mode de réalisation particulier, la composition (A) se présente sous la forme d'une émulsion silicone dans eau qui comprend:
- au moins un polyorganosiloxane linéaire, cyclique ou tridimensionnel (B) et tel que défini ci-dessus,
- de l'eau (E), et
- éventuellement au moins un tensioactif (T).
La nature de tensioactif (T) sera facilement déterminée par l'homme du métier, l'objectif étant de préparer une émulsion stable. Les tensioactifs anioniques, cationiques, non- ioniques et zwitterioniques peuvent être employés seuls ou en mélange.
Il est à noter que la composition (A) selon l'invention peut aussi comprendre des colloïdes protecteurs tels que l'acool polyvinylique.
A titre de tensioactif anionique, on peut mentionner les agents tensio-actifs suivants:
- les alkylesters sulfonates de formule Ra-CH(S03lvl)-COORb, où Ra représente un radical alkyle en C8-C2o, de préférence en do-de, Rb un radical alkyle en Ci-Ce, de préférence en C1-C3 et M un cation alcalin (sodium, potassium, lithium), ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tétraméthylammonium, diméthylpiperidinium) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine),
- les alkylsulfates de formule ROSO3M, où Rc représente un radical alkyle ou hydroxyalkyle en C10-C24, de préférence en C12- C20, M représentant un atome d'hydrogène ou un cation de même définition que ci- dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), présentant de préférence de 1 à 20 motifs OE,
- les alkylamides sulfates de formule RdCONHROS03M où Rd représente un radical alkyle en C2-C22, de préférence en Ce-do, Re un radical alkyle en C2-C3l M représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), présentant de préférence 1 à 20 motifs OE,
- les sels d'acides gras saturés ou insaturés en C8-C24, de préférence en C14-C20, les alkylbenzènesulfonates en C9-C20, ainsi que leurs dérivés éthoxylénés (OE) et/ou propoxylénés (OP), présentant de préférence 1 à 20 motifs OE, - les alkylbenzènesulfonates en C9-C20, les alkylsulfonates primaires ou secondaires en C8-C22, les alkylglycérol sulfonates, les acides polycarboxyliques sulfonés décrits dans GB-A-1 082 179, les sulfonates de paraffine, les N-acyl N-alkyltaurates, les mono- et dialkylphosphates, les alkyliséthionates, les alkylsuccinamates, les alkylsulfosuccinates, les monoesters ou diesters de sulfosuccinates, les N-acyl sarcosinates, les sulfates d'alkylglycosides, les polyéthoxycarboxylates, le cation étant un métal alcalin (sodium, potassium, lithium), un reste ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tétraméthylammonium, diméthylpiperidinium) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine).
A titre de tensioactifs non-ioniques on peut citer les éthers alkyliques ou aryliques de poly(oxyde d'alkylène), l'hexastéarate de sorbitan polyoxyéthyléné, l'oléate de sorbitan polyoxyéthyléné et les éthers de cétylstéaryle et de poly(oxyde d'éthylène). A titre d'éther arylique de poly(oxyde d'alkylène), on peut mentionner les alkylphénols polyoxyéthylénés. A titre d'éther alkylique de poly(oxyde d'alkylène), on peut mentionner l'éther isodécylique de polyéthylèneglycol et l'éther triméthylnonylique de polyéthylèneglycol contenant de 3 à 15 unités d'oxyde d'éthylène par molécule.
On peut aussi citer à titre d'exemple de tensioactifs: les tensioactifs fluorés ioniques, non ioniques ou amphotères et leurs mélanges, par exemple:
- les perfluoroalkyles,
- - les perfluorobétaïnes,
- les polyfluoroalcools éthoxylés,
- les polyfluoroalkyles d'ammonium,
- les agents tensioactifs dont la partie hydrophile contient un ou plusieurs motif(s) saccharide(s) porteur(s) de cinq à six atomes de carbone et dont la partie hydrophobe contient un motif de formule Rf(CH2)n-, dans laquelle n = 2 à 20 et Rf représente un motif perfluoroalkyle de formule CmF2m+1 , dans laquelle m = 1 à 10; et
- les polyélectrolytes présentant des groupements latéraux perfluoroalkyles gras.
Par agent tensioactif fluoré, on entend, comme cela est parfaitement connu en soi, un composé formé d'une partie perfluorocarbonée aliphatique, comprenant au moins trois atomes de carbone, et une partie hydrophile, ionique, non ionique ou amphotère. La partie perfluorocarbonée d'au moins trois atomes de carbone peut représenter, soit l'ensemble, soit une fraction seulement de la partie fluorocarbonée de la molécule. Concernant ce type de composé, on trouve dans la littérature un grand nombre de références. L'homme du métier pourra se reporter notamment aux références suivantes: - FR-A-2 149 519, WO-A-94 21 233, US-A-3, 94,767, l'ouvrage "Fluorinated Surfactants", Erik Kissa, Editeur Marcel Dekker Inc. (1994) Chapitre 4, notamment les Tableaux 4.1 et 4.4.
On peut citer, en particulier, les produits vendus par la société Du Pont sous la dénomination ZONYL®, par exemple FSO, FSN- 00, FS-300, FSD, ainsi que les tensioactifs fluorés de dénomination FORAFAC® distribués par la société DU PONT et les produits vendus sous la dénomination FLUORAD® par la Société 3M.
Parmi ces tensioactifs, on citera, en particulier, les composés perfluoroalkylés anioniques, cationiques, non-ioniques et amphotères, et parmi eux, plus particulièrement, les tensioactifs de la classe des ZONYL® commercialisés par DU Pont, commercialisés par Du Pont respectivement sous les dénominations ZONYL® FSA, ZONYL® FSO, ZONYL® FSC et ZONYL® FSK. On peut encore préciser à leur propos :
- ZONYL® FSO 100 : CAS 65545-80-4, (non-ionique) 99 à 100 %, le reste étant du 1 ,4- dioxane,
- ZONYL® FSN : CAS 65545-80-4, 99 à 100 %, le reste étant de l'acétate de sodium et du 1 ,4-dioxane,
- ZONYL® FS-300 : CAS 65545-80-4, 40 %, le reste étant de 1 ,4-dioxane (< 0,1 %) et de l'eau
- ZONYL®FSD : CAS 70983-60-7 30 %, (cationique), le reste étant de l'hèxylèneglycol ( 0 %), du chlorure de sodium (3 %) et de l'eau (57 %).
On peut encore citer:
• les perfluoroalkyl bétaïnes (amphotères) telles que celle commercialisée par DU PONT sous la dénomination FORAFAC® 1157, les polyfluoroalcools éthoxylés (non- ioniques), tels que celui commercialisé par DU PONT sous la dénomination FORAFAC 1110 D, les sels polyfiuoroalkyl d'ammonium (cationiques), tels que celui commercialisé par DU PONT sous la dénomination FORAFAC 179;
• les agents tensioactifs dont la partie hydrophile contient un ou plusieurs motif(s) saccharide(s) contenant de 5 à 6 atomes de carbone (motifs dérivés de sucres comme le fructose, le glucose, le mannose, le galactose, le talose, le gulose, l'allose, l'altose, l'idose, l'arabinose, le xylose, le lyxose et/ou le ribose) et dont la partie hydrophobe contient un motif de formule RF(CH2)n, où n peut aller de 2 à 20, de préférence de 2 à 10 et R représente un motif perfluoroalkyle de formule CmF2m+i avec m pouvant aller de 1 à 10, de préférence de 4 à 8, choisis parmi ceux présentant les caractéristiques définies ci-dessus ; on peut mentionner les monoesters d'acides gras perfluoroalkylés et de sucres comme le sucrose, la fonction monoester pouvant être représentée par la formule RF(CH2)nC(0), où n peut aller dé 2 à 10 et RF représente un motif perfluoroalkyle de formule CmF2m+i avec m pouvant aller de 4 à 8, décrits dans journal of the american oil chemists' society (JAOCS), Vol. 69, no. 1 (janvier 1992) et choisis parmi ceux présentant les caractéristiques définies ci-dessus; et
• les polyélectrolytes présentant des groupements latéraux perfluoroalkyles gras tels que les polyacrylates présentant des groupements RF(CH2)n où n peut aller de 2 à 20, de préférence de 2 à 10 et RF représente un motif perfluoroalkyle de formule CmF2m+i avec m pouvant aller de 1 à 10, de préférence de 4 à 8, choisis parmi ceux présentant les caractéristiques définies ci-dessus ; on peut mentionner les polyacrylates présentant des groupements— CH2C7Fi5 décrits dans J. Chim. Phys. (1996) 93, 887-898 et choisis parmi ceux présentant les caractéristiques définies ci-dessus.
La quantité de tensioactif (T) est fonction du type de chacun des constituants en présence ainsi que de la nature même du tensioactif utilisé. En règle générale, l'émulsion comprend de 0,5 à 10% en poids de tensioactif par rapport au poids total de l'émulsion (mieux encore de 0,5 à 7 % en poids).
L'eau (E) est présente, de préférence, dans des proportions comprises entre 10 et 90% et de préférence, entre 20 et 60% en poids par rapport au poids total de la composition.
Par ailleurs, de manière classique, on peut également mettre en œuvre dans les dispersions aqueuses ou dans les émulsions, des adjuvants anti-mousses, des biocides, des modificateurs de rhéologie, des agents de coalescence, des agents dispersants, des agents acidifiants, neutralisants, des bases et/ou des agents épaississants.
Les concentrations en de tels adjuvants sont connues de l'homme du métier.
Selon un autre mode de réalisation, le polyorganosiloxane linéaire, cyclique ou tridimensionnel (B) et tel que défini ci-dessus, peut-être utilisé à raison de 0,01 à 10 % en poids, et de préférence de 0,01 à 5% en poids et mieux encore à raison de 0,01 à 2 % en poids par rapport au poids total de la composition (A).
Un deuxième objet de la présente invention concerne des fibres végétales hydrofugées et lubrifiées susceptibles d'être obtenues par le procédé tel que décrit ci-dessus.
Un troisième objet de la présente invention concerne l'utilisation des fibres végétales hydrofugées et lubrifiées selon l'invention pour la fabrication d'un matériau isolant.
Les méthodes d'application des traitements sont bien connues de l'homme de l'art. On peut citer particulièrement le trempage, le foulardage, la pulvérisation. Par trempage séchage, les fibres sont trempées dans un bac rempli de la composition à base de silicone, essorées et ensuite séchées.
L'application par foulardage consiste à immerger les fibres dans un bac rempli de la composition à base de silicone et à les essorer entre deux rouleaux maintenus l'un contre l'autre par une pression mesurée. Cette technique permet de déposer une quantité déterminée de silicone. Le séchage est effectué en continu à la suite du foulardage à des températures comprises entre120° et 160°C. L'immersion peut se faire en milieu aqueux ou solvant.
L'imprégnation par pulvérisation peut être réalisée en plusieurs passages afin de mieux pénétrer au cœur des fibres végétales.
Elles sont classiquement suivies d'une étape de séchage qui peut être naturel à température ambiante ou forcé en température. Dans le cas d'un séchage rapide, il est conseillé de ne pas dépasser 160°C.
Les isolants naturels se déclinent en de multiples formes: en panneaux, rouleaux ou flocons en vrac (déposés ou insufflés).
Un dernier objet de la présente invention est de proposer de nouveaux matériaux isolants comprenant les fibres végétales hydrofugées et lubrifiées selon l'invention.
Les exemples suivants qui illustrent l'invention témoignent des excellentes propriétés hydrofugeantes et adoucissantes des fibres végétales traitées selon le procédé de l'invention.
EXEMPLES
1) Matières premières utilisées
BLUESIL™ FLD 47V350 vendue par la Sté Bluestar Silicones: huile polydimethylsiloxane non réactive (PDMS), viscosité approximativement 350 mm2/s à 25°C.
BLUESIL™ WR 68 vendue par la Sté Bluestar Silicones: huile Méthyle Hydrogéno polysiloxane réactive (SiH), viscosité approximativement 25 mm2/s à 25°C.
Huile silicone réactive à fonction époxy (SiEpoxy) avec environ 0,09 mole d'époxy pour
100g d'huile et une viscosité approximativement de 300 mm2/s à 25°C.
(B1): polydimethylsiloxane comprenant des motifs M porteurs d'une fonction éthoxy et au moins un motif D porteur d'une fonction -(CH2)3-NH2, avec 0,2% d'azote en poids par rapport au poids de l'huile et une viscosité approximativement de 300 mm2/s à 25°C.
(B2): polydimethylsiloxane comprenant des motifs M porteurs d'une fonction méthoxy et au moins un motif T porteur d'une fonction -(CH2)3-NH-(CH2)2-NH2.avec 0,22% d'azote en poids par rapport au poids de l'huile et une viscosité approximativement de 2500 mPa.s à 25°C.
DYNASILANR AMEO vendue par Evonik: 3 Amino propyle triethoxysilane
SILQUESTR VS142 vendue par Momentive: amino alkyle silane en solution dans eau
2) Mode opératoire pour la préparation des dispersions de silicone
(51) 0.3g de BLUESIL FLD 47V350 sont dispersés dans 100g de white spirit.
(52) 0.3g de BLUESIL WR 68 sont dispersés dans 100g de white spirit.
(53) 0.3g de (SiEpoxy) sont dispersés dans 100g de white spirit.
(54) 0.3g d'huile silicone (B1) sont dispersés dans 100g de white spirit.
(55) 0.3g d'huile silicone (B2) sont dispersés dans 100g de white spirit.
(56) 0.3g de Dynasilan AMEO sont dispersés dans 00g de white spirit.
3) Mode opératoire pour la préparation des émulsions silicone dans eau:
Les émulsions sont préparées comme suit :
Dans un réacteur IKA®, une partie de l'eau, d'un tensioactif non ionique sont mélangés. Puis, Il est ajouté à ce mélange le ou les constituants à émulsionner sous agitation de manière à obtenir une émulsion huile dans eau ; et
en fin d'introduction du ou des constituant(s) et après homogénéisation, on procède à la dilution finale de l'émulsion et aux ajouts des additifs éventuels (acide, base, biocides...)
Emulsions (ED. (E2) et (E3)
(E1) Emulsion 1 (PDMS): constituée de 56% en poids d'une Huile poly(diméthyl)siloxane non réactive Bluesil 47V350. (E2) Emulsion 2 (SiH): constituée de 50 % en poids d'une Huile Méthyle Hydrogéno polysiloxane réactive BLUESIL WR 68.
(E3) Emulsion 3 (silicone aminé): constituée de 51% en poids d'une huile silicone (B2).
4) Traitement des fibres végétales:
- Traitement des fibres végétales en phase solvant
2g de fibres végétales sont immergés dans une dispersion de silicone en phase solvant (S1 à S6) et mélangés pendant 1 minute.
Les fibres végétales sont ensuite essorées jusqu'à ce que la solution ne goutte plus (masse finale = 6.5g environ), puis séchées à température ambiante 48h avant de réaliser les tests de lubrification (adoucissage) et d'hydrophobie.
- Traitement des fibres végétales en phase aqueuse
2g de fibres végétales sèches sont plongés dans de l'eau et essorés (jusqu'à masse essorée = 5x masse sèche, soit 10g) pour être dans les conditions industrielles.
Les 10g de fibres végétales humides sont immergées dans une solution aqueuse de silicone contenant 0.4g d'émulsion silicone dans eau (E1 à E3) dans 100ml d'eau et mélangées pendant 1 minute.
Les fibres végétales sont ensuite essorées jusqu'à ce que l'émulsion ne goutte plus (masse finale = 12g environ), puis séchées à température ambiante pendant 48h avant de réaliser les tests de lubrification (adoucissage) et d'hydrophobie.
5) Tests
Test d'hvdrofugation = flottation (figure en annexe):
On dépose 1 gramme de fibres (traitées ou non) sur de l'eau (dans un flacon de 250 ml rempli à 100ml) et on observe le comportement de ces fibres dans le temps (immédiatement, puis après 24h, 48h et 3 jours).
Si les fibres coulent:(voir figure 1a): elles ne sont pas hydrofugées alors «non» est inscrit dans le tableau de résultats.
Si les fibres ne coulent pas (voir figure 1 b): elles sont hydrofugées alors «oui» est inscrit dans le tableau de résultats.
Test de reprise en eau
40g de fibres végétales sèches sont plongés dans de l'eau et essorés.
On obtient 350g de fibres végétales humides qui sont ensuite traitées par immersion dans une solution d'émulsion silicone (E3) diluée à 0.3% de silicone. Après 1 minute d'immersion, les fibres sont essorées et une petite galette de fibres de diamètre 6,5cm et de 2cm d'épaisseur est formée. Après séchage à atmosphère ambiante jusqu'à masse constante, soit après environ 3 jours, on réalise un test de reprise d'eau. Les galettes de fibres traitées et non traitées sont déposées à la surface d'un bac (Longueur 40cm - largeur 30cm - hauteur 6cm) rempli à mi hauteur d'eau et on détermine par pesées la quantité d'eau absorbée après 2 heures et 24heures, exprimée en kg/m2.
Test lubrification = adoucissage:
On détermine par le toucher, la douceur et le glissant des fibres comparativement à des fibres non traitées ce qui permet de classer les fibres par rapport au témoin non traité.
En l'absence d'effet, le signe «=» est mentionné dans le tableau de résultats.
S'il y a dégradation du toucher, celle-ci est mentionnée dans le tableau de résultats.
S'il y a adoucissage un signe «+» voire «++» est inscrit dans le tableau de résultats.
Résultats:
Tableau 1 : Fibres de bois - Milieu Solvant (White spirit)
ND= non déterminé Tableau 2: Fibres de chanvre - Milieu Solvant (White spirit)
En milieu solvant, par rapport aux fibres végétales de bois ou de chanvre non traitées (témoins), seules les fibres végétales de bois ou de chanvre mises en contact avec une composition contenant un polyorganosiloxane (B) (exemples 1 à 3) sont à la fois hydrofugées et lubrifiées (adoucissage)
Les fibres végétales traitées par une huile PDMS (comparatifs N°1 et 4) ne sont ni hydrofugées ni lubrifiées.
Les fibres végétales traitées par une huile polyorganosiloxane à fonctions SiH (comparatifs N°2 et 5) ou fonctions époxy (comparatif N°6) ne sont pas hydrofugées.
Les fibres végétales traitées par un silane aminé (comparatifs N°3 et 7) voient leur toucher dégradé. Tableau 3: Fibres de bois - Milieu aqueux
ND= non déterminé
En milieu aqueux, par rapport aux fibres végétales non traitée (témoin), seules les fibres végétales mises en contact avec une émulsion siiicone dans eau d'un
polyorganosiloxane (B) (E3), exemple 4 selon l'invention, sont à la fois hydrofugées et lubrifiées (adoucissage).
Les fibres végétales traitées par une émulsion d'huile PDMS (E1 ) (comparatif N°8) ne sont ni hydrofugées ni lubrifiées.
Les fibres végétales traitées par une émulsion d'huile polyorganosiloxane à fonctions SiH (E2) (comparatif N°9) ne sont pas hydrofugées.
Les fibres végétales traitées par une solution aqueuse de silane aminé (comparatif N°10) ne sont pas hydrofugées et sont faiblement légèrement lubrifiées.
Tableau 4: Reprise en eau
Fibres de bois Reprise en eau (Kg/m2)
(Longueur comprise entre 0,1 et 30 mm) Après 2 heures Après 24 heures
Fibres de bois non traitées (témoin) 17 20
Fibres de bois traitées avec E3
0,5 1 ,5
(Exemple 5 selon invention) Les fibres végétales traitées avec une émulsion aqueuse d'un polyorganosiloxane (B) (E3), exemple 5 selon l'invention, présentent une très faible reprise en eau par rapport au témoin (fibres non traitées) et cela après 2 et 24 heures.
L'invention n'est pas limitée aux exemples décrits et représentés, car diverses modifications peuvent y être apportées sans sortir de son cadre.

Claims

REVENDICATIONS
1. Procédé d'hydrofugation et de lubrification de fibres végétales contenant respectivement de 40 à 80% en poids de cellulose, de 10 à 30 % en poids d'hémicellulose et de 0,1 à 30 % en poids de lignine, exprimé en pourcentage en poids de fibres, caractérisé en ce que lesdites fibres végétales sont mises en contact avec au moins une composition (A) comprenant au moins un polyorganosiloxane linéaire, cyclique ou tridimensionnel (B) constitué des motifs suiva
dans lesquels:
- les symboles R1, R2 et R3, identiques et/ou différents, représentent un radical hydrocarboné monovalent choisi parmi les radicaux aikyles linéaires ou ramifiés ayant de 1 à 4 atomes de carbone, les radicaux aikoxy linéaires ou ramifiés ayant de 1 à 4 atomes de carbone, un radical phényle et, de préférence un radical hydroxy, un radical éthoxy, un radical méthoxy ou un radical méthyle;
- les symboles Z, identiques ou différents, représentent R1, et/ou V;
- les symboles V, groupements fonctionnels identiques et/ou différents, représentent des radicaux de formule générale (I):
-R4-N(R5)(R6) (I)
dans laquelle:
- le symbole R4 étant un groupement divalent hydrocarboné ayant de 1 à 40 atomes de carbone,
- le symbole R5 étant un atome d'hydrogène ou un groupement monovalent hydrocarboné ayant de 1 à 40 atomes de carbone,
- le symbole R6 étant un atome d'hydrogène ou un radical de formule (II) suivante:
-[R7-N(R8)]aR8
dans laquelle:
- le symbole R7 étant un radical divalent de formule (III) suivante:
-[C(R8)(R8)-]b
- 0 < a < 40
- b= 1 , 2 ou 3, - le symbole R8 est un atome d'hydrogène ou un groupement monovalent hydrocarboné ayant de 1 à 40 atomes de carbone;
- 10 < x< 2000,
- 0 < y< 50,
- 0 < w <8, et
avec les conditions supplémentaires qu'au moins un des motifs Z représente V et que la composition ne contienne ni acide gras libre ni polyorganosiloxane à fonction beta ceto- carboxyle.
2. Procédé d'hydrofugation et de lubrification de fibres végétales selon la revendication 1 , caractérisé en ce que lesdites fibres végétales présentent une longueur comprise entre 0,1 et 300 mm.
3. Procédé d'hydrofugation et de lubrification de fibres végétales selon la revendication 1 ou 2, caractérisé en ce que lesdites fibres végétales sont composées respectivement de 50 à 80% de cellulose, de 10 à 25 % d'hémicellulose et de 0,01 à 10 % de lignine, exprimé en pourcentage en poids de fibres.
4. Procédé d'hydrofugation et de lubrification de fibres végétales selon la revendication 1 ou 2 ou 3, caractérisé en ce que la composition (A) comprend:
au moins un milieu dispersant, et
au moins un polyorganosiloxane linéaire, cyclique ou tridimensionnel (B) tel que décrit selon la revendication .
5. Procédé d'hydrofugation et de lubrification de fibres végétales, selon la revendication 1 ou 4, caractérisé en ce que la composition (A) se présente sous la forme d'une dispersion aqueuse de silicone.
6. Procédé d'hydrofugation et de lubrification de fibres végétales, selon la revendication 1 ou 4, caractérisé en ce que la composition (A) se présente sous la forme d'une émulsion silicone dans eau.
7. Procédé d'hydrofugation et de lubrification de fibres végétales, selon l'une quelconque des revendications 1 , 4, 5 ou 6, caractérisé en ce que la composition (A) contient de 0,01 à 0% en poids de polyorganosiloxane linéaire, cyclique ou tridimensionnel (B).
8. Procédé d'hydrofugation et de lubrification de fibres végétales, selon l'une quelconque des revendications 1 , 4, 5 ou 6, caractérisé en ce que la composition (A) contient de 0,01 à 5% en poids de polyorganosiloxane linéaire, cyclique ou tridimensionnel (B).
9. Procédé d'hydrofugation et de lubrification de fibres végétales, selon la revendication 1 , 4, 5 ou 6, caractérisé en ce que la composition (A) contient de 0,01 à 2% en poids de polyorganosiloxane linéaire, cyclique ou tridimensionnel (B).
10. Fibres végétales hydrofugées et lubrifiées susceptibles d'être obtenues par le procédé tel que décrit selon l'une quelconque des revendications 1 à 9.
11. Utilisation des fibres végétales hydrofugées et lubrifiées telles que décrites selon la revendication 10 pour la fabrication d'un matériau isolant.
12. Matériau à base de fibres végétales hydrofugées et lubrifiées telles que décrites selon la revendication 10.
EP14767044.2A 2013-09-03 2014-09-01 Procede d'hydrofugation et de lubrification de fibres vegetales Withdrawn EP3041987A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1302041 2013-09-03
PCT/FR2014/000192 WO2015033029A1 (fr) 2013-09-03 2014-09-01 Procede d'hydrofugation et de lubrification de fibres vegetales

Publications (1)

Publication Number Publication Date
EP3041987A1 true EP3041987A1 (fr) 2016-07-13

Family

ID=49667217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14767044.2A Withdrawn EP3041987A1 (fr) 2013-09-03 2014-09-01 Procede d'hydrofugation et de lubrification de fibres vegetales

Country Status (2)

Country Link
EP (1) EP3041987A1 (fr)
WO (1) WO2015033029A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015003373A1 (de) * 2015-03-17 2016-09-22 Michael Petry Verfahren zur Herstellung eines Dämmstoffes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3194840A (en) 1961-12-18 1965-07-13 Procter & Gamble N, n-diloweralkyl, 1, 1-dihydrogen perfluoroalkyl amine oxides
GB1082179A (en) 1965-07-19 1967-09-06 Citrique Belge Nv Unsaturated carboxylic salt materials and derivatives thereof
BE787502A (fr) 1971-08-18 1973-02-12 Ici Ltd Mousses
JPS57191043A (en) 1981-05-21 1982-11-24 Jujo Paper Co Ltd Flaky heat-insulating and sound-proofing material and manufacture thereof
JP2649062B2 (ja) * 1988-05-30 1997-09-03 東レ・ダウコーニング・シリコーン株式会社 繊維用処理剤組成物
FR2702676B1 (fr) 1993-03-18 1995-05-19 Oreal Emulsion huile-dans-eau contenant un perfluoropolyéther, composition en comportant, procédé de préparation et utilisation en cosmétique et dermatologie.
DE102006006654A1 (de) 2005-08-26 2007-03-01 Degussa Ag Spezielle Aminoalkylsilanverbindungen als Bindemittel für Verbundwerkstoffe
DE102006039944A1 (de) * 2006-08-25 2008-02-28 Wacker Chemie Ag Verfahren zur Hydrophobierung von Holz
FR2960937B1 (fr) 2010-06-07 2013-05-17 Cavac Biomateriaux Materiau isolant
EP2694607A1 (fr) * 2011-04-01 2014-02-12 Alfred Kärcher GmbH & Co. KG Concentré de polysiloxane et procédé pour l'hydrophobisation de surfaces à l'aide du concentré

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015033029A1 *

Also Published As

Publication number Publication date
WO2015033029A1 (fr) 2015-03-12

Similar Documents

Publication Publication Date Title
Senthamaraikannan et al. Physico-chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement
Fahma et al. Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk
Aluigi et al. Composite biomaterials from fibre wastes: Characterization of wool–cellulose acetate blends
EP2035489A1 (fr) Emulsion huile dans eau d&#39;aminosiloxanes
Davies et al. Structure and properties of fibres from sea-grass (Zostera marina)
EP0190069A1 (fr) Traitement d&#39;une feuille fibreuse obtenue par voie papetière en vue d&#39;améliorer sa stabilité dimensionnelle et application notamment dans le domaine des revêtements de sol ou muraux
EP0659930A1 (fr) Procédé d&#39;adoucissage textile non jaunissant dans lequel, on utilise une composition comprenant un polyorganosiloxane
Rehman et al. Ecofriendly isolation of cellulose from eucalyptus lenceolata: A novel approach
CN105401444B (zh) 一种油剂及其作为碳纤维生产助剂的应用
Sun et al. All-natural smart mycelium surface with tunable wettability
Ng et al. The effect of alkali treatment on tensile properties of coir/polypropylene biocomposite
Kamaruddin et al. Characterization of natural cellulosic fiber isolated from Malaysian Cymbopogan citratus leaves
EP3041987A1 (fr) Procede d&#39;hydrofugation et de lubrification de fibres vegetales
Mugaanire et al. Fibrous microcrystalline cellulose from Ficus natalensis barkcloth
Rwawiire et al. Morphology, thermal, and mechanical characterization of bark cloth from Ficus natalensis
KR960014524A (ko) 직물 섬유들, 피혁, 가죽에 기름-반발성과 물-반발성을 부여하는 공정
CA2424832C (fr) Traitement de matieres textiles avec des polyorganosiloxanes
Dias et al. Mandacaru cactus as a source of nanofibrillated cellulose for nanopaper production
Palanisamy et al. Morphological characterization of soapbark fibers
Sakuri et al. The effect of alkali and fumigation treatments on king pineapple fiber properties and interfacial bonding of king pineapple fiber/unsaturated polyester on microcrystalline cellulose reinforced composite
Yudhanto et al. Effect of Chemical Treatments on Morphological, Physical and Mechanical Properties of Bamboo/Glass Fibers Hybrid Laminated Composite
Phreecha et al. Environmentally Friendly Composites from Seabass Scale and Oil Palm Empty Fruit Bunch Waste
CN108894059A (zh) 一种抗菌壁纸
WO2008000816A1 (fr) Procede pour hydrofuger un substrat
Rwawiire et al. Research Article Morphology, Thermal, and Mechanical Characterization of Bark Cloth from Ficus natalensis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELKEM SILICONES FRANCE SAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200902

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210113