EP3034587A1 - Lubrification de moteur marin - Google Patents

Lubrification de moteur marin Download PDF

Info

Publication number
EP3034587A1
EP3034587A1 EP15195670.3A EP15195670A EP3034587A1 EP 3034587 A1 EP3034587 A1 EP 3034587A1 EP 15195670 A EP15195670 A EP 15195670A EP 3034587 A1 EP3034587 A1 EP 3034587A1
Authority
EP
European Patent Office
Prior art keywords
composition
oil
range
mass
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15195670.3A
Other languages
German (de)
English (en)
Other versions
EP3034587B1 (fr
Inventor
James Dodd
Agata Sawyer
Joseph Simpkins
John Smythe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP15195670.3A priority Critical patent/EP3034587B1/fr
Publication of EP3034587A1 publication Critical patent/EP3034587A1/fr
Application granted granted Critical
Publication of EP3034587B1 publication Critical patent/EP3034587B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • C10M133/56Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M167/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines

Definitions

  • This invention relates to the lubrication of 4-stroke marine diesel internal combustion engines, usually referred to as trunk piston engines.
  • Lubricants therefor are usually known as trunk piston engine oils (“TPEO's").
  • Trunk piston engines may be used in marine, power-generation and rail traction applications and have a higher speed than cross-head engines.
  • a single lubricant (TPEO) is used for crankcase and cylinder lubrication. All major moving parts of the engine, i.e. the main and big end bearings, camshaft and valve gear, are lubricated by means of a pumped circulation system.
  • the cylinder liners are lubricated partially by splash lubrication and partially by oil from the circulation systems that finds its way to the cylinder wall through holes in the piston skirt via the connecting rod and gudgeon pin.
  • Trunk piston engines normally include a centrifuge to clean the TPEO.
  • Nitrogen-containing ashless dispersants are known in the art as additives for TPEO's. See for example EP-A-2133740 ; US-A-2009/0203559 ; US-A-2009/0011966 ; EP-A-1528099 ; and EP-A-1209218 .
  • the present invention provides the use of a nitrogen-containing ashless dispersant additive in an amount providing in the range of 50 to 150, preferably 75 to 125, ppm N by mass in a trunk piston marine lubricating oil composition for a medium-speed compression-ignited marine engine, fueled by a heavy fuel oil, and its lubrication by the composition, the composition having a BN in the range of 20 to 60, preferably 30 to 55, the use being to diminish the loss of BN and to diminish the increase in viscosity without adversely affecting deposits performance, preferably in comparison with analogous use when the amount of nitrogen-containing ashless dispersant falls outside of the above range.
  • a TPEO may employ 7-35, preferably 10-28, more preferably 12-24, mass % of a concentrate or additives package, the remainder being base stock (oil of lubricating viscosity).
  • the TPEO has a compositional TBN (using D2896) of 20-60, preferably 25 or 30-55.
  • Additive Mass% a.i. Broad
  • Preferred detergent(s) 0.5-12 2-8 dispersant(s) 0.5-5 1-3 anti-wear agent(s) 0.1-1.5 0.5-1.3 oxidation inhibitor 0.2-2 0.5-1.5 rust inhibitor 0.03-0.15 0.05-0.1 pour point dispersant 0.03-1.15 0.05-0.1 base stock balance balance
  • additive package(s) When a plurality of additives is employed it may be desirable, although not essential, to prepare one or more additive packages or concentrates comprising the additives, whereby several additives can be added simultaneously to the oil of lubricating viscosity to form the lubricating oil composition. Dissolution of the additive package(s) into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential.
  • the additive package(s) will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration, and/or to carry out the intended function, in the final formulation when the additive package(s) is/are combined with a predetermined amount of base lubricant.
  • additives in accordance with the present invention may be admixed with small amounts of base oil or other compatible solvents together with other desirable additives to form additive packages containing active ingredients in an amount, based on the additive package, of, for example, from 2.5 to 90, preferably from 5 to 75, most preferably from 8 to 60, mass % of additives in the appropriate proportions, the remainder being base oil.
  • a dispersant is an additive for a lubricating composition whose primary function is to hold solid and liquid contaminants in suspension, thereby passivating them and reducing engine deposits at the same time as reducing sludge depositions.
  • a dispersant maintains in suspension oil-insoluble substances that result from oxidation during use of the lubricant, thus preventing sludge flocculation and precipitation or deposition on metal parts of the engine.
  • Ashless means that the dispersant is a non-metallic organic material that forms substantially no ash on combustion, in contrast to metal-containing, hence ash-forming, materials.
  • Ashless dispersants comprise a long chain hydrocarbon with a polar head, the polarity being derived from inclusion of, e.g. an O, P or N atom, in this invention, a N atom.
  • the hydrocarbon is an oleophilic group that confers oil-solubility, having, for example 40 to 500 carbon atoms.
  • ashless dispersants may comprise an oil-soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed.
  • the dispersants comprise amine, alcohol, amide, or ester polar moieties attached to the polymer backbone often via a bridging group.
  • the ashless dispersant may be, for example, selected from oil-soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon-substituted mono-and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having a polyamine attached directly thereto, and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine, such as described in US-A-3,442,808 .
  • the oil-soluble polymeric hydrocarbon backbone is typically an olefin polymer or polyene, especially polymers comprising a major molar amount (i.e., greater than 50 mole %) of a C 2 to C 18 olefin (e.g., ethylene, propylene, butylene, isobutylene, pentene, octene-1, styrene), and typically a C 2 to C 5 olefin.
  • a C 2 to C 18 olefin e.g., ethylene, propylene, butylene, isobutylene, pentene, octene-1, styrene
  • the oil-soluble polymeric hydrocarbon backbone may be a homopolymer (e.g., polypropylene or polyisobutylene) or a copolymer of two or more of such olefin (e.g., copolymers of ethylene and an alpha-olefin such as propylene or butylene, or copolymers of two different alpha-olefins).
  • a homopolymer e.g., polypropylene or polyisobutylene
  • a copolymer of two or more of such olefin e.g., copolymers of ethylene and an alpha-olefin such as propylene or butylene, or copolymers of two different alpha-olefins.
  • copolymers include those in which a minor molar amount of the copolymer monomers, e.g., 1 to 10 mole %, is an ⁇ -diene; such as a C 3 to O 22 non-conjugated diolefin (e.g., a copolymer of isobutylene and butadiene, or a copolymer of ethylene, propylene and 1,4-hexadiene or 5-ethylidene-2-norbornene).
  • Atactic propylene oligomers typically having an Mn of from 700 to 5000 may also be used, as described in EP-A-490454 , as well as heteropolymers such as polyepoxides.
  • a preferred class of olefin polymers is polybutenes, specifically polyisobutenes (PIB) or poly-n-butenes, such as may be prepared by polymerization of a C 4 refinery stream.
  • Other preferred classes of olefin polymers are ethylene alpha-olefin (EAO) copolymers and alpha-olefin homo- and copolymers having in each case a high degree (e.g., >30%) of terminal vinylidene unsaturation, such as described in WO-94/13709 , which may be functionalised and aminated to give dispersants.
  • EAO ethylene alpha-olefin
  • Dispersants include, for example, derivatives of long chain hydrocarbon-substituted carboxylic acids, examples being derivatives of high molecular weight hydrocarbyl-substituted succinic acid.
  • a noteworthy group of dispersants are hydrocarbyl-substituted succinimides, made, for example, by reacting the above acids (or derivatives) with a nitrogen-containing compound, advantageously a polyalkylene polyamine, such as a polyethylene polyamine.
  • the hydrocarbyl group is a polyalkenyl group.
  • Such polyalkenyl e.g.
  • polybutenyl) moriety may have a number average molecular weight of from 200 to 3000, preferably from 350 to 1000, more preferably from 400 to 960, or 400 to 950.
  • Particularly preferred are the reaction products of polyalkylene polyamines with alkenyl succinic anhydrides, such as described in US-A-3,202,678 ; - 3,154,560 ; - 3,172,892 ; - 3,024,195 , - 3,024,237 ; - 3,219,666 ; and - 3,216,936 ; and BE-A66,875 that may be post-treated to improve their properties; such as borated (as described in US-A-3,087,936 and - 3,254,025 ); fluorinated and oxylated.
  • boration may be accomplished by treating an acyl nitrogen-containing dispersant with a boron compound selected from boron oxide, boron halides, boron acids and esters of boron
  • the dispersants provides the TPEO with 50-150 ppm by mass of N atoms.
  • a detergent is an additive that reduces formation of deposits, for example, high-temperature varnish and lacquer deposits, in engines; it has acid-neutralising properties and is capable of keeping finely-divided solids in suspension. It is based on metal "soaps", that is metal salts of acidic organic compounds, sometimes referred to as surfactants.
  • a detergent comprises a polar head with a long hydrophobic tail.
  • Large amounts of a metal base are included by reacting an excess of a metal compound, such as an oxide or hydroxide, with an acidic gas such as carbon dioxide to give an overbased detergent which comprises neutralised detergent as the outer layer of a metal base (e.g. carbonate) micelle.
  • a metal compound such as an oxide or hydroxide
  • an acidic gas such as carbon dioxide
  • the detergent is preferably an alkali metal or alkaline earth metal additive such as an overbased oil-soluble or oil-dispersible calcium, magnesium, sodium or barium salt of a surfactant selected from phenol, sulphonic acid, carboxylic acid, salicylic acid and naphthenic acid, wherein the overbasing is provided by an oil-insoluble salt of the metal, e.g. carbonate, basic carbonate, acetate, formate, hydroxide or oxalate, which is stabilised by the oil-soluble salt of the surfactant.
  • the metal of the oil-soluble surfactant salt may be the same as or different from that of the metal of the oil-insoluble salt.
  • the metal, whether the metal of the oil-soluble or oil-insoluble salt is calcium.
  • the TBN of the detergent may be low, i.e. less than 50 mg KOH/g; medium, i.e. 50-150 mg KOH/g; or high, i.e. over 150 mg KOH/g, as determined by ASTM D2896.
  • the TBN is medium or high, i.e. 50 TBN or more. More preferably, the TBN is at least 60, more preferably at least 100, more preferably at least 150, and up to 500, such as up to 350 mg KOH/g, as determined by ASTM D2896.
  • the detergent comprises an alkaline earth hydrocarbyl-substituted hydroxyl-benzoate salt such as a calcium alkylsalicylate salt.
  • 'oil-soluble' or 'oil-dispersable' do not necessarily indicate that the compounds or additives are soluble, dissolvable, miscible or capable of being suspended in the oil in all proportions. These do mean, however, that they are, for instance, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired.
  • the lubricant compositions of this invention comprise defined individual (i.e. separate) components that may or may not remain the same chemically before and after mixing.
  • the lubricating oil composition of the invention may comprise further additives.
  • additional additives may, for example, include other metal detergents, anti-wear agents such as ZDDP's, anti-oxidants such as aminic or phenolic anti-oxidants, and demulsifiers.
  • the lubricating oils present as a major proportion of the TPEO may range in viscosity from light distillate mineral oils to heavy lubricating oils. Generally, the viscosity of the oil ranges from 2 to 40 mm 2 /sec, as measured at 100°C.
  • Natural oils include animal oils and vegetable oils (e.g., caster oil, lard oil); liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale also serve as useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkybenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulphides and derivative, analogues and homologues thereof.
  • Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified such as by esterification or etherification constitute another class of known synthetic lubricating oil.
  • polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, and the alkyl and aryl ethers of polyoxyalkylene polymers (e.g., methyl-polyiso-propylene glycol ether having a molecular weight of 1000 or diphenyl ether of poly-ethylene glycol having a molecular weight of 1000 to 1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C 3 -C 8 fatty acid esters and C 13 Oxo acid diester oftetraethylene glycol.
  • Another suitable class of synthetic lubricating oil comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
  • dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linole
  • esters includes dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles oftetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol esters such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxysilicone oils and silicate oils comprise another useful class of synthetic lubricants; such oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert-butyl-phenyl) silicate, hexa-(4-methyl-2-ethylhexyl)disiloxane, poly(methyl)siloxanes and poly(methylphenyl)siloxanes.
  • oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexy
  • Other synthetic lubricating oils include liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
  • Unrefined, refined and re-refined oils can be used in lubricants of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations; petroleum oil obtained directly from distillation; or ester oil obtained directly from an esterification and used without further treatment would be an unrefined oil.
  • Refined oils are similar to unrefined oils except that the oil is further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
  • Re-refined oils are obtained by processes similar to those used to provide refined oils but begin with oil that has already been used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and are often subjected to additional processing using techniques for removing spent additives and oil breakdown products.
  • oils there may be mentioned the Group I and Group II oils. Also, there may be mentioned those of the above oils containing greater than or equal to 90% saturates and less than or equal to 0.03% sulphur as the oil of lubricating viscosity, eg Group II, III, IV or V. They also include base stocks derived from hydrocarbons synthesised by the Fischer-Tropsch process. In the Fischer-Tropsch process, synthesis gas containing carbon monoxide and hydrogen (or 'syngas') is first generated and then converted to hydrocarbons using a Fischer-Tropsch catalyst. These hydrocarbons typically require further processing in order to be useful as a base oil.
  • syngas may, for example, be made from gas such as natural gas or other gaseous hydrocarbons by steam reforming, when the base stock may be referred to as gas-to-liquid (“GTL”) base oil; or from gasification of biomass, when the base stock may be referred to as biomass-to-liquid (“BTL” or “BMTL”) base oil; or from gasification of coal, when the base stock may be referred to as coal-to-liquid (“CTL”) base oil.
  • GTL gas-to-liquid
  • BTL biomass-to-liquid
  • CTL coal-to-liquid
  • the oil of lubricating viscosity in this invention contains 50 mass % or more said base stocks. It may contain 60, such as 70, 80 or 90, mass % or more of said base stock or a mixture thereof.
  • the oil of lubricating viscosity may be substantially all of said base stock or a mixture thereof.
  • additives may be prepared, although not essential, to prepare one or more additive packages or concentrates comprising additives, whereby additives can be added simultaneously to the oil of lubricating viscosity to form the TPEO.
  • the final formulations as a trunk piston engine oil may typically contain 30, preferably 10 to 28, more preferably 12 to 24, mass % of the additive package(s), the remainder being the oil of lubricating viscosity.
  • the trunk piston engine oil may have a compositional TBN (using ASTM D2896) of 20 to 60, such as, 30 to 55. For example, it may be 40 to 55 or 35 to 50.
  • the treat rate of additives contained in the lubricating oil composition may for example be in the range of 1 to 2.5, preferably 2 to 20, more preferably 5 to 18, mass %.
  • a set of TPEO's was formulated comprising two TPEO's which differed only in that one contained a nitrogen-containing ashless dispersant and the other did not.
  • Each TPEO contained a mixture of overbased calcium salicylate detergents, a mixture of aminic and phenolic anti-oxidants, and other co-additives. They contained the same base oil to balance.
  • the dispersant was the product of reacting a polyisobutenyl succinic anhydride with a tetraethylene pentamine, and provided the TPEO with 91 ppm by mass of N.
  • the polyisobutenyl moiety had a number average molecular weight of 950.
  • TPEO TPEO was tested in a bulk oil oxidation test where the oil was contaminated with 0.5 % HFO (Heavy Fuel Oil) and subjected to oxidising conditions for 120 hours.
  • the test was the DKA oxidation test (CEC L-48-00) in which BN and viscosity change were assessed.
  • Lubricating oils may degrade on hot engine surfaces and leave deposits which will affect engine performance; the panel coker test simulates typical conditions and measures the tendency of oils to form such deposits.
  • the oil under test is splashed onto a heated metal plate by spinning a metal comb-like splasher device within a sump containing the oil. At the end of the test period, deposits are measured.
  • Tests were carried out on fresh oil (containing no HFO) and doped oil (containing 2.5 % HFO). Results are expressed on a rating scale of 1-10, where lower values indicate poorer deposits performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
EP15195670.3A 2014-12-19 2015-11-20 Lubrification de moteur marin Active EP3034587B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15195670.3A EP3034587B1 (fr) 2014-12-19 2015-11-20 Lubrification de moteur marin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14199258 2014-12-19
EP15195670.3A EP3034587B1 (fr) 2014-12-19 2015-11-20 Lubrification de moteur marin

Publications (2)

Publication Number Publication Date
EP3034587A1 true EP3034587A1 (fr) 2016-06-22
EP3034587B1 EP3034587B1 (fr) 2019-09-18

Family

ID=52231914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15195670.3A Active EP3034587B1 (fr) 2014-12-19 2015-11-20 Lubrification de moteur marin

Country Status (8)

Country Link
EP (1) EP3034587B1 (fr)
JP (1) JP2016117900A (fr)
KR (1) KR20160075361A (fr)
CN (1) CN105713703B (fr)
AU (1) AU2015271928B2 (fr)
CA (1) CA2915701C (fr)
ES (1) ES2759077T3 (fr)
SG (1) SG10201510456QA (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978243B1 (ko) * 2017-11-02 2019-05-15 주식회사 윤원 치과 핸드피스용 윤활 오일

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3024237A (en) 1959-08-24 1962-03-06 California Research Corp Alkenyl succinimides of piperazines
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3154560A (en) 1961-12-04 1964-10-27 Monsanto Co Nu, nu'-azaalkylene-bis
US3172892A (en) 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3202678A (en) 1959-08-24 1965-08-24 California Research Corp Alkenyl succinimides of tetraethylene pentamine
BE662875A (fr) 1964-05-19 1965-10-22
US3216936A (en) 1964-03-02 1965-11-09 Lubrizol Corp Process of preparing lubricant additives
US3442808A (en) 1966-11-01 1969-05-06 Standard Oil Co Lubricating oil additives
EP0490454A1 (fr) 1990-12-12 1992-06-17 Shell Internationale Researchmaatschappij B.V. Alkénylsuccinimides en tant qu'additifs pour huile lubrifiante
WO1994013709A2 (fr) 1992-12-17 1994-06-23 Exxon Chemical Patents Inc Polymeres fonctionnalises par la reaction de koch et leurs derives
EP1016706A2 (fr) * 1998-12-28 2000-07-05 Oronite Japan Limited Composition d'huile lubrifiante pour moteurs à combustion interne ayant des propriétés d'oxydation thermique et de détergence améliorées
EP1209218A1 (fr) 2000-11-27 2002-05-29 Infineum International Limited Compositions d'huiles lubrifiantes
EP1314773A1 (fr) * 2001-11-14 2003-05-28 Chevrontexaco Japan Ltd. Composition lubrifiante pour la lubrification de moteurs diesel marin ayant une performance améliorée à haute température
EP1528099A1 (fr) 2003-10-30 2005-05-04 Infineum International Limited Methode pour la réduction de la formation de dépôts dans un moteur à piston fourreau
US20090011966A1 (en) 2007-07-03 2009-01-08 James Christian Dodd Lubricating Oil Composition
EP2071009A1 (fr) * 2007-12-12 2009-06-17 Chevron Oronite Technology B.V. Compositions d'huile lubrifiante de moteur à piston-fourreau
US20090203559A1 (en) 2008-02-08 2009-08-13 Bera Tushar Kanti Engine Lubrication
EP2133740A2 (fr) 2008-06-09 2009-12-16 Seiko Epson Corporation Dispositif d'affichage électrophorétique, appareil électronique, et procédé de commande du dispositif d'affichage électrophorétique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339051B1 (en) * 1998-06-11 2002-01-15 Mobil Oil Corporation Diesel engine cylinder oils
US7875577B2 (en) * 2005-12-28 2011-01-25 Chevron Japan Ltd. Diesel engine lubricating oil composition for large-bore two-stroke cross-head diesel engines
ES2641591T3 (es) * 2008-05-20 2017-11-10 Infineum International Limited Lubricación de motor marino
US8288326B2 (en) * 2009-09-02 2012-10-16 Chevron Oronite Company Llc Natural gas engine lubricating oil compositions
DE102012223638A1 (de) * 2011-12-21 2013-06-27 Infineum International Ltd. Verfahren zur Herabsetzung der Abnahmerate der Basizität einer Schmierölzusammensetzung, die in einem Motor verwendet wird

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172892A (en) 1959-03-30 1965-03-09 Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine
US3219666A (en) 1959-03-30 1965-11-23 Derivatives of succinic acids and nitrogen compounds
US3024237A (en) 1959-08-24 1962-03-06 California Research Corp Alkenyl succinimides of piperazines
US3024195A (en) 1959-08-24 1962-03-06 California Research Corp Lubricating oil compositions of alkylpiperazine alkenyl succinimides
US3202678A (en) 1959-08-24 1965-08-24 California Research Corp Alkenyl succinimides of tetraethylene pentamine
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3254025A (en) 1961-08-18 1966-05-31 Lubrizol Corp Boron-containing acylated amine and lubricating compositions containing the same
US3154560A (en) 1961-12-04 1964-10-27 Monsanto Co Nu, nu'-azaalkylene-bis
US3216936A (en) 1964-03-02 1965-11-09 Lubrizol Corp Process of preparing lubricant additives
BE662875A (fr) 1964-05-19 1965-10-22
US3442808A (en) 1966-11-01 1969-05-06 Standard Oil Co Lubricating oil additives
EP0490454A1 (fr) 1990-12-12 1992-06-17 Shell Internationale Researchmaatschappij B.V. Alkénylsuccinimides en tant qu'additifs pour huile lubrifiante
WO1994013709A2 (fr) 1992-12-17 1994-06-23 Exxon Chemical Patents Inc Polymeres fonctionnalises par la reaction de koch et leurs derives
EP1016706A2 (fr) * 1998-12-28 2000-07-05 Oronite Japan Limited Composition d'huile lubrifiante pour moteurs à combustion interne ayant des propriétés d'oxydation thermique et de détergence améliorées
EP1209218A1 (fr) 2000-11-27 2002-05-29 Infineum International Limited Compositions d'huiles lubrifiantes
EP1314773A1 (fr) * 2001-11-14 2003-05-28 Chevrontexaco Japan Ltd. Composition lubrifiante pour la lubrification de moteurs diesel marin ayant une performance améliorée à haute température
EP1528099A1 (fr) 2003-10-30 2005-05-04 Infineum International Limited Methode pour la réduction de la formation de dépôts dans un moteur à piston fourreau
US20090011966A1 (en) 2007-07-03 2009-01-08 James Christian Dodd Lubricating Oil Composition
EP2071009A1 (fr) * 2007-12-12 2009-06-17 Chevron Oronite Technology B.V. Compositions d'huile lubrifiante de moteur à piston-fourreau
US20090203559A1 (en) 2008-02-08 2009-08-13 Bera Tushar Kanti Engine Lubrication
EP2133740A2 (fr) 2008-06-09 2009-12-16 Seiko Epson Corporation Dispositif d'affichage électrophorétique, appareil électronique, et procédé de commande du dispositif d'affichage électrophorétique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Engine Oil Licensing and Certification System", December 1996, THE AMERICAN PETROLEUM INSTITUTE, article "Addendum 1,"

Also Published As

Publication number Publication date
CA2915701A1 (fr) 2016-06-19
SG10201510456QA (en) 2016-07-28
CN105713703B (zh) 2020-05-15
CA2915701C (fr) 2022-10-18
AU2015271928A1 (en) 2016-07-07
KR20160075361A (ko) 2016-06-29
ES2759077T3 (es) 2020-05-07
EP3034587B1 (fr) 2019-09-18
CN105713703A (zh) 2016-06-29
JP2016117900A (ja) 2016-06-30
AU2015271928B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US9012382B2 (en) Lubricating oil composition
US6569821B1 (en) Overbased metal detergents
US6613724B2 (en) Gas-fuelled engine lubricating oil compositions
EP3778841B1 (fr) Procédé de réduction de dépôts de piston dans un moteur diesel marin
JP6559974B2 (ja) 潤滑油組成物
AU2014202402B2 (en) Marine engine lubrication
EP3378924B1 (fr) Lubrification de moteur marin
EP3034587B1 (fr) Lubrification de moteur marin
EP2607463A1 (fr) Lubrification de moteur marin
EP3018191A1 (fr) Lubrification de moteur marin
EP1884558B1 (fr) Composition d'huile lubrifiante
EP3112447B1 (fr) Composition d'additif pour la lubrification d'un moteur marin
EP3470499A1 (fr) Utilisation des détergents dans les huiles lubrifiantes de moteur à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015038143

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1181309

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1181309

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190918

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20190403719

Country of ref document: GR

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200120

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2759077

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015038143

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200119

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191120

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

26N No opposition filed

Effective date: 20200619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231012

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20231026

Year of fee payment: 9

Ref country code: GB

Payment date: 20231013

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231208

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231114

Year of fee payment: 9

Ref country code: FR

Payment date: 20231010

Year of fee payment: 9

Ref country code: DE

Payment date: 20231010

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231011

Year of fee payment: 9