EP3019639B1 - Method for improving the adherence - Google Patents

Method for improving the adherence Download PDF

Info

Publication number
EP3019639B1
EP3019639B1 EP14744292.5A EP14744292A EP3019639B1 EP 3019639 B1 EP3019639 B1 EP 3019639B1 EP 14744292 A EP14744292 A EP 14744292A EP 3019639 B1 EP3019639 B1 EP 3019639B1
Authority
EP
European Patent Office
Prior art keywords
ppm
aqueous composition
oxide layer
protective coating
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14744292.5A
Other languages
German (de)
French (fr)
Other versions
EP3019639A1 (en
Inventor
Christian Karl Riener
Daniel Roman FRITZ
Josef Hagler
Harald HASLINGER
Edmund Holzer
Gerald Luckeneder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Priority to EP14744292.5A priority Critical patent/EP3019639B1/en
Publication of EP3019639A1 publication Critical patent/EP3019639A1/en
Application granted granted Critical
Publication of EP3019639B1 publication Critical patent/EP3019639B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/24Cleaning or pickling metallic material with solutions or molten salts with neutral solutions

Definitions

  • the invention relates to a method for improving the adhesion to a protective coated steel sheet, in which a Zn-Al-Mg-based protective coating is applied to the steel sheet in a continuous process and subjected to a surface treatment in a further step, wherein an aqueous Composition, the natural, Al 2 O 3 and MgO having oxide layer, without this while decaping, is modified.
  • the suggests WO2006045570A1 To increase this adhesion to the protective coated steel strip by modifying the natural oxide layer, without depleting this natural oxide layer.
  • a cooling of the Made of steel sheet with an aqueous composition or a cooling medium which is to improve the natural oxide layer of the protective coating, for example, comprising Zn, Mg and Al.
  • Soluble salts for protecting the natural oxide layer or phosphates for stabilizing the sheet surface may be added to the aqueous composition.
  • such a process can not lead to a marked increase in adhesiveness.
  • WO 2013/027837 A discloses steel sheets having a Zn-Al-Mg based protective coating formed by hot dipping.
  • the protective coated steel sheets are dressed. Due to the contact with air, an oxide layer is formed on the protective coating after the hot dipping treatment.
  • WO 2013/027837 A addresses the problem of MgO formation in the protective coating, which can lead to undesirable changes in the surface texture.
  • the protective coated steel substrate is subjected to a cleaning process wherein the cleaning solution may be aqueous and may optionally contain acid, alkali or various etchants. This cleaning removes an MgO-containing film and dirt particles as far as the surface of the protective coating is present. This improves the adhesive properties of the protective layer.
  • the object of the invention is therefore to provide, starting from the initially described prior art, a method with which the surface of the protective coating can be modified with as little effort as possible in such a way that the adhesion to the protective-coated steel sheet is significantly increased.
  • the invention achieves the stated object by the fact that the protective coated steel sheet is trained and then the natural oxide layer reacts with an aqueous fluoride-containing composition with reduction of its MgO content in order to modify the natural oxide layer.
  • the proportion of MgO in the natural oxide layer of the protective coating can be reduced in a gentle manner.
  • This modification of the oxide layer can result in a significant increase in adhesiveness, in particular with regard to the ready-to-use and / or recoatability of a protective-coated steel sheet.
  • it can also be used to improve the connection of an adhesive so as to preclude adhesive failure at splices. But especially the invention can stand out from the prior art in that this improved adhesion can be achieved without picking the natural oxide layer.
  • the oxide film can be activated by the skin-pass coating of the present invention for fluoride-responsive depletion of MgO.
  • Al which has a comparatively high oxygen affinity, can therefore increase in its concentration primarily in the oxide layer or, due to the MgO reduction, can be exposed in the oxide layer.
  • the latter can contribute in particular to the fact that a diffusion of magnesium into the oxide layer or a magnesium breakthrough is reduced.
  • the oxide layer naturally forming on a Zn-Al-Mg protective coating can thus be shifted in terms of process engineering in an easy to handle manner in the direction of increased proportions of Al 2 O 3 and / or ZnO and reduced proportions of MgO. According to the invention, a particularly well reproducible method is thus created.
  • the unit of measurement is ppm ppm by weight.
  • adhesion-improving advantages may also result, for example, as a result of improved adhesiveness.
  • the invention may be particularly useful for improving the adhesion of an organic coating to the protective coated steel sheet.
  • the aqueous composition has 5 to 3500 ppm F (fluoride), optionally 0 to 35000 ppm Na (sodium), 0 to 4000 ppm Al (aluminum), 0 to 4000 ppm Mn (manganese), 0 to 20 ppm P (phosphorus), 0 to 10 ppm Fe (iron), 0 to 10 ppm Ni (nickel) and / or 0 to 10 ppm Si (silicon) and the remainder H 2 O (water) and inevitable impurities due to production on.
  • Al, Mn, Fe, Ni, P and / or Si may be useful for initiating MgO reduction or stabilizing the modified oxide layer. Concentrations of a total of less than 50 ppm can be considered as inevitable impurities due to production.
  • a concentration of F of from 5 to 3500 ppm or preferably from 5 to 1500 ppm in the aqueous composition may prove to be a directed attack on MgO of the oxide layer or a leaching out of Mg.
  • sufficient for this purpose may already be a concentration of F of 5 to 1500 ppm or of 10 to 500 ppm or of 20 to 150 ppm or of 30 to 1500 ppm or of 30 to 300 ppm.
  • the oxide layer naturally forming on a Zn-Al-Mg protective coating can be further shifted in terms of process engineering in the direction of increased proportions of Al 2 O 3 and reduced amounts of MgO if the aqueous composition comprises Al.
  • the protective coating can be surface-treated with the aqueous composition for 0.5 to 20 seconds (seconds), in particular 1.5 to 15 seconds (seconds).
  • a short treatment can be particularly well suited for a continuous process.
  • the duration of treatment may be shorter. For example, at 1500ppm fluoride with a treatment time of 1.5 seconds, the expense can be found, while with 20ppm fluoride a 20 second treatment time should be sought to reduce the MgO content of the natural oxide layer without depleting it.
  • the reaction rate of the aqueous composition with the Zn-Al-Mg protective coating can be relatively easily adjusted to a belt running speed of the continuous process.
  • an acidic adjustment of the pH an increased reduction of the MgO content in the oxide layer can be ascertained.
  • sufficient for this purpose may already be a pH of 5 to 7.5 or from 6 to 7.
  • a temperature of the aqueous composition of 30 to 95 ° C (degrees Celsius) may be sufficient to increase their reaction rate with the natural, so the native oxide layer on. As favorable for this, however, a temperature of the aqueous composition of 45 to 90 ° C or from 45 to 80 ° C turn out.
  • the preparation of the aqueous composition can be effected in a simple manner if NaF and / or NaHF 2 (bifluoride) is used for this purpose.
  • the preparation of the aqueous composition can be comparatively inexpensive if Na 3 [AlF 6 ] (cryolite) is used for this purpose.
  • Na also exists in the aqueous composition. It is conceivable that a concentration of Na from 5 to 35,000 ppm or more, in particular from 10 to 3500 ppm, preferably from 20 to 2000 ppm.
  • the process according to the invention can be distinguished, in particular, by a protective coating which comprises 0.1 to 7% by weight of aluminum, 0.2 to 5% by weight of magnesium and the balance zinc and unavoidable impurities due to the production.
  • a protective coating which comprises 0.1 to 7% by weight of aluminum, 0.2 to 5% by weight of magnesium and the balance zinc and unavoidable impurities due to the production.
  • Such Zn-Al-Mg protective coatings can be particularly well reduced an oxide layer with respect to unmodified oxide layers of the same alloy composition in their MgO content, which can be used for a significant increase in adhesion.
  • the protective coating specified above may contain 1 to 4% by weight of aluminum and 1 to 3% by weight of magnesium, in order to increase not only an improvement in adhesiveness but also the reproducibility of the process.
  • the activation of the oxide layer for a subsequent surface treatment can be improved if, when the steel sheet is applied by casting, dressing impressions are introduced into the protective coating.
  • these dressing impressions preferably in their edge regions, form an improved attack surface for fluoride in order to increasingly dissolve MgO from the natural oxide layer.
  • MgF 2 magnesium fluoride
  • the formation of magnesium fluoride (MgF 2 ) could be observed here or in this marginal area, which can further improve the adhesion.
  • Zn 5 (OH) 6 (CO 3 ) 2 zinc hydroxide carbonate
  • the fluoride-containing aqueous composition can be easily removed from the surface of the protective coating when the protective coating is rinsed with a second liquid immediately after the surface treatment with the first fluoride-containing aqueous composition.
  • this aftertreatment with such a liquid can additionally increase the removal of MgO, with H 2 O in particular being able to be distinguished as the second liquid.
  • the second liquid has up to 20 ppm P and / or Si, as well as the remainder H 2 O and unavoidable impurities, then the native oxide layer reduced in MgO can be further stabilized. With P it is to be expected that this occurs as phosphate in the liquid.
  • the rinsing action of the second liquid can be significantly improved if the second liquid has a temperature of 20 to 90 ° C.
  • the temperature may be in the range of 35 to 85 ° C or 40 to 75 ° C.
  • Simple process conditions can occur when the aqueous composition and / or the second liquid is applied to the protective-coated steel sheet in a spraying, dipping or rolling process.
  • the method according to the invention can prove useful if, after the surface treatment of the protective-coated steel sheet, an organic layer is provided on the protective coating.
  • An adhesion promoter may be an example of such an organic layer.
  • the invention may be distinguished from what is known when using an aqueous fluoride-containing composition for reducing the MgO content of the natural oxide layer of a Zn-Al-Mg protective coating on a dressed steel sheet, without thereby dekapieren the natural oxide layer.
  • a liquid having the composition according to one of claims 3 to 5 can be distinguished.
  • a Zn-Al-Mg-based protective coating is first applied to a moving steel sheet 2 by means of a hot-dip process 3.
  • Hot-dip galvanizing strip-galvanizing
  • the representation of the relevant plant parts of the device 1 for clarity was limited to a continuous furnace 18, a molten bath 3, a scraper 19 for adjusting the coating layer and a cooling 20.
  • the steel sheet 2 After carrying out the hot-dip process 3, the steel sheet 2 has a Zn-Al-Mg protective coating which is a natural one Oxide layer 9 forms.
  • This native oxide layer 9 is known to comprise Al 2 O 3 10, MgO 11, and also, though to a lesser extent, ZnO 12.
  • the proportion of MgO 11 in the oxide layer 9 is comparatively high, as after Fig. 2 can be recognized.
  • MgO 11 is seen on the bright surface, Al 2 O 3 10 on the dark surface, and ZnO 12 on a mixture of light and dark surfaces. Due to a predominantly bright MgO surface on the surface of the Zn-Al-Mg protective coating, a considerable reduced adhesion is to be expected.
  • such dominant MgO accumulations in the oxide layer 9 are avoided by passing the steel sheet 2 provided with a Zn-Al-Mg protective coating through a skin pass mill 5 and thus preparing it to modify its native oxide layer 9 - prepared for a surface treatment 6 with the application of an aqueous fluoride-containing composition 7 in order to reduce its MgO content without picking off the natural oxide layer 9.
  • this process step is realized with spray bars 8 arranged on both sides of the steel sheet 2, which apply or spray on the aqueous fluoride-containing composition 7 onto the steel sheet 2.
  • the spraying method 13 instead of the spraying method 13, of course, an application with a rolling or dipping method not shown is conceivable.
  • the aqueous composition subsequently dissolves MgO 11 out of the oxide layer 9 and converts this into the aqueous composition 7.
  • the amount of fluoride, measured with a fluoride-sensitive electrode, in the aqueous composition 7 is adjusted to a dissolution of Mg of the oxide layer 9.
  • the proportion of MgO 11 in the native oxide layer 9 is thus reduced, so that due to the high oxygen affinity of Al increasingly Al 2 O 3 10 can be expressed on the modified natural or native oxide layer 9.
  • Fig. 3 Although also shows MgO 11 on light surfaces, compared to Fig. 2 however, the MgO 11 content is extremely low. Thus, Al 2 O 3 10 (dark area) and ZnO 12 or Zn 5 (OH) 6 (CO 3 ) 2 (mixture of light and dark area) clearly outweigh.
  • the modified natural oxide layer 9 after Fig. 3 has substantially Al 2 O 3 10 and thus forms a barrier layer, which not only reduces a breakdown of Mg in the oxide layer 9 for the formation of MgO 11, but also the diffusion of O through the oxide layer. Even with comparatively long storage times of the steel sheet 2, this modified natural oxide layer 9 still exhibits a comparatively high adhesiveness.
  • the pH is adjusted in a range from 4 to 8, in particular slightly acidic, and in addition, the aqueous composition should have a temperature of 30 to 95 ° C (degrees Celsius).
  • aqueous composition contains 20 to 3500 ppm F (fluoride), optionally 0 to 35000 ppm Na (sodium), 0 to 4000 ppm Al (aluminum), 0 to 4000 ppm Mn (manganese), 0 to 20 ppm P (phosphorus), 0 to 10 ppm Fe (iron), 0 to 10 ppm Ni (nickel) and / or 0 to 10 ppm Si (silicon) and balance H 2 O (water ) as well as production-related unavoidable impurities.
  • F fluoride
  • optionally 0 to 35000 ppm Na (sodium) 0 to 4000 ppm Al (aluminum), 0 to 4000 ppm Mn (manganese), 0 to 20 ppm P (phosphorus), 0 to 10 ppm Fe (iron), 0 to 10 ppm Ni (nickel) and / or 0 to 10 ppm Si (silicon) and balance H 2 O (
  • a concentration of F may already be sufficient from 5 to 3500 ppm or from 5 to 1500 ppm or from 10 to 500 ppm or from 20 to 150 ppm or from 30 to 1500 ppm or from 30 to 300 ppm.
  • the presence of Al and / or Mn in the aqueous composition may prove helpful for the process.
  • Al of the aqueous composition can improve the oxide layer toward increased levels of Al 2 O 3 and reduced levels of MgO.
  • Al of the aqueous composition 7 preferentially deposits at the sites of the oxide layer reduced at Mg. Such sites can be when treating the oxide layer with the aqueous composition 7, for example, by dissolving MgO from the Oxide layer converted into MgOHF.
  • the protective-coated steel sheet 2 reacts with the aqueous fluoride-containing composition 7 to reduce its MgO content by adding Mg and / or a magnesium compound (eg MgO 11) to the oxide layer 9 with fluoride and / or a fluoride compound (eg., HF) and replaced by Al and / or Mn, thereby to modify the natural oxide layer in the direction of a reduced MgO content.
  • Mg and / or a magnesium compound eg MgO 11
  • fluoride and / or a fluoride compound eg., HF
  • the protective coating is surface treated immediately after treatment via spray bar 17 with a second liquid 15.
  • This second liquid 15 consists of H 2 O, but may also have P or Si less than 20 mg / l and unavoidable impurities, P optionally being present as a phosphate in the liquid 15.
  • a treatment time of 1 to 10 seconds has been found to be sufficient.
  • the Zn-Al-Mg protective coating Dressing Impressions 16 are present, which are introduced from the skin pass 5. After the FIGS. 2 and 3 the edges of the Dressiereindschreibe 16 emerge as a closed contour particularly. In contrast to Fig. 2 are at the edge of the dressing impression 16 after Fig.
  • the hot-dip galvanized steel sheets A (A 1 and A 2 ) and B have a deep-drawing quality DX53D and a sheet thickness of 0.75 mm.
  • ZnAl2.5Mg1.5 96 wt% Zn, 2.5 wt% Al, 1.5 wt% Mg was applied.
  • ZnAl2.4Mg2.2 (95.4 wt% Zn, 2.4 wt% Al, 2.2 wt% Mg) was applied.
  • the steel sheets A (A 1 and A 2 ) and C (C 1 or C 2 ) were as in Fig. 1 represented the modification according to the invention subjected to their oxide layers.
  • the aqueous composition 7 for the treatment of steel sheet A 1 and C 1 was added fluoride as Na 3 [AlF 6 ].
  • this aqueous composition 7 consists of fluoride, Na, Al, H 2 O and unavoidable impurities smaller than 10 ppm.
  • aqueous composition for treatment of steel sheets A 2 and C 2 was added NaF.
  • this composition can be enriched with Al.
  • NaHF 2 bifluoride
  • the steel sheets A (A 1 and A 2 ) and C (C 1 and C 2 , respectively) were treated with the respective aqueous composition for 10 seconds. Subsequently, the steel sheets A and C were 10 Rinsed with H 2 O for a few seconds. In this second liquid 15, a temperature of 35 degrees Celsius was set.
  • All of the steel sheets A, B, C and D were then provided with an organic coating, namely a one-component epoxy resin adhesive (e.g., BM1496), and the adhesiveness of the adhesive to the protective coating was determined by a tensile shear test.
  • a one-component epoxy resin adhesive e.g., BM1496
  • the method according to the invention can modify the oxide layer of the Zn-Al-Mg protective coating in such a way that the adhesiveness to an adhesive on the protective-coated steel sheet A or C is markedly improved compared to a prior art steel sheet B or D. ,

Description

Technisches GebietTechnical area

Die Erfindung betrifft ein Verfahren zur Verbesserung der Haftfähigkeit auf einem schutzbeschichteten Stahlblech, bei dem in einem kontinuierlichen Verfahren eine Schutzbeschichtung auf Zn-Al-Mg-Basis auf das Stahlblech aufgebracht und in einem weiteren Schritt einer Oberflächenbehandlung unterworfen wird, bei der unter Aufbringung einer wässrigen Zusammensetzung die natürliche, Al2O3 und MgO aufweisende Oxidschicht, ohne diese dabei zu dekapieren, modifiziert wird.The invention relates to a method for improving the adhesion to a protective coated steel sheet, in which a Zn-Al-Mg-based protective coating is applied to the steel sheet in a continuous process and subjected to a surface treatment in a further step, wherein an aqueous Composition, the natural, Al 2 O 3 and MgO having oxide layer, without this while decaping, is modified.

Stand der TechnikState of the art

Verfahren zur Passivierung von schutzbeschichteten Stahlblechen sind hinlänglich bekannt. Beispielsweise können hierzu Chromatierung oder Phosphatierung ( EP2092090B1 ) angeführt werden. All diesen Verfahren ist jedoch gemeinsam, die natürliche bzw. native Oxidschicht zu entfernen bzw. zu dekapieren und durch eine andere Passivierungsschicht zu ersetzen. Solche Passivierungsschichten können unter anderem auch zur Verbesserung der Haftung mit einer organischen Beschichtung, z.B. Lacken, beitragen. Nachteilig kann bei einer nachfolgenden Verarbeitung des schutzbeschichteten Stahlblechs ein teilweiser Abtrag der Passivierungsschicht nicht vermieden werden. Dies kann neben einem erhöhten Reinigungsbedarf in nachfolgenden Verfahrenszonen auch zu veränderten Verfahrensparametern führen, was die Reproduzierbarkeit der nachfolgenden Verarbeitung beeinträchtigen kann.Methods for passivation of protective coated steel sheets are well known. For example, chromating or phosphating ( EP2092090B1 ). However, all these methods have in common to remove the natural or native oxide layer and to replace it with another passivation layer. Among other things, such passivation layers can also contribute to improving the adhesion with an organic coating, for example paints. A disadvantage of a subsequent processing of the protective-coated steel sheet, a partial removal of the passivation layer can not be avoided. In addition to an increased need for cleaning in subsequent processing zones, this can also lead to changed process parameters, which can impair the reproducibility of the subsequent processing.

Alternativ dazu schlägt die WO2006045570A1 vor, diese Haftfähigkeit auf dem schutzbeschichteten Stahlband durch eine Modifizierung der natürlichen Oxidschicht zu erhöhen, ohne diese natürliche Oxidschicht dabei zu dekapieren. So wird im kontinuierlichen Verfahren der Schutzbeschichtung des Stahlbands eine Abkühlung des Stahlblechs mit einer wässrigen Zusammensetzung bzw. einem Kühlmedium vorgenommen, was die natürliche Oxidschicht der Schutzbeschichtung, beispielsweise aufweisend Zn, Mg und Al, verbessern soll. Der wässrigen Zusammensetzung können lösliche Salze zum Schutz der natürlichen Oxidschicht oder Phosphate zur Stabilisierung der Blechoberfläche zugegeben werden. Zu einer markanten Erhöhung der Haftfähigkeit kann solch ein Verfahren jedoch nicht führen.Alternatively, the suggests WO2006045570A1 To increase this adhesion to the protective coated steel strip by modifying the natural oxide layer, without depleting this natural oxide layer. Thus, in the continuous process of the protective coating of the steel strip, a cooling of the Made of steel sheet with an aqueous composition or a cooling medium, which is to improve the natural oxide layer of the protective coating, for example, comprising Zn, Mg and Al. Soluble salts for protecting the natural oxide layer or phosphates for stabilizing the sheet surface may be added to the aqueous composition. However, such a process can not lead to a marked increase in adhesiveness.

WO 2013/027837 A offenbart Stahlbleche mit einer durch Heißtauchen erzeugten Schutzbeschichtung auf Zn-Al-Mg-Basis. Die schutzbeschichteten Stahlbleche sind dressiert. Durch den Kontakt mit Luft kommt es nach der Heißtauchbehandlung zur Ausbildung einer Oxidschicht auf der Schutzbeschichtung. In WO 2013/027837 A wird das Problem der MgO-Bildung in der Schutzbeschichtung angesprochen, welches zu unerwünschten Veränderungen der Oberflächentextur führen kann. Das schutzbeschichtete Stahlsubstrat wird einem Reinigungsprozess unterzogen, wobei die Reinigungslosung wässrig sein und fakultativ Säure, Lauge oder verschiedene Ätzmittel enthalten kann. Durch diese Reinigung werden ein MgO-haltiger Film und Schmutzpartikel, soweit an der Oberfläche der Schutzbeschichtung vorhanden, entfernt. Dadurch werden die Hafteigenschaften der Schutzschicht verbessert. WO 2013/027837 A discloses steel sheets having a Zn-Al-Mg based protective coating formed by hot dipping. The protective coated steel sheets are dressed. Due to the contact with air, an oxide layer is formed on the protective coating after the hot dipping treatment. In WO 2013/027837 A addresses the problem of MgO formation in the protective coating, which can lead to undesirable changes in the surface texture. The protective coated steel substrate is subjected to a cleaning process wherein the cleaning solution may be aqueous and may optionally contain acid, alkali or various etchants. This cleaning removes an MgO-containing film and dirt particles as far as the surface of the protective coating is present. This improves the adhesive properties of the protective layer.

Darstellung der ErfindungPresentation of the invention

Die Erfindung hat sich daher die Aufgabe gestellt, ausgehend vom eingangs geschilderten Stand der Technik ein Verfahren zu schaffen, mit dem die Oberfläche der Schutzbeschichtung unter möglichst geringem Aufwand derart modifiziert werden kann, dass sich damit die Haftfähigkeit am schutzbeschichteten Stahlblech deutlich erhöht.The object of the invention is therefore to provide, starting from the initially described prior art, a method with which the surface of the protective coating can be modified with as little effort as possible in such a way that the adhesion to the protective-coated steel sheet is significantly increased.

Die Erfindung löst die gestellte Aufgabe dadurch, dass das schutzbeschichtete Stahlblech dressiert und anschließend die natürliche Oxidschicht mit einer wässrigen fluoridhaltigen Zusammensetzung unter Reduktion ihres MgO-Anteils reagiert, um damit die natürliche Oxidschicht zu modifizieren.The invention achieves the stated object by the fact that the protective coated steel sheet is trained and then the natural oxide layer reacts with an aqueous fluoride-containing composition with reduction of its MgO content in order to modify the natural oxide layer.

Wird das schutzbeschichtete Stahlblech dressiert und reagiert anschließend die natürliche Oxidschicht mit einer wässrigen fluoridhaltigen Zusammensetzung, so konnte überraschend festgestellt werden, dass damit der MgO-Anteil der natürlichen Oxidschicht der Schutzbeschichtung auf schonende Weise reduziert werden kann. Diese Modifizierung der Oxidschicht kann eine erhebliche Steigerung der Haftfähigkeit zur Folge haben, insbesondere hinsichtlich der Klebeignung und/oder Überlackierbarkeit eines schutzbeschichteten Stahlblechs. Beispielsweise kann damit auch die Anbindung eines Klebstoffs verbessert werden, um so ein adhäsives Versagen an Klebestellen auszuschließen. Besonders aber kann sich die Erfindung vom Stand der Technik dadurch abheben, dass diese verbesserte Haftfähigkeit ohne Dekapieren der natürlichen Oxidschicht erreicht werden kann. Die Oxidschicht kann nämlich durch das erfindungsgemäße Dressieren für eine auf Fluorid ansprechende Verarmung von MgO aktiviert werden. Al, das eine vergleichsweise hohe Sauerstoffaffinität besitzt, kann sich deshalb primär in der Oxidschicht in seiner Konzentration erhöhen bzw. die aufgrund der MgO-Reduktion frei werden Stellen der Oxidschicht besetzten. Letzteres kann insbesondere dazu beitragen, dass eine Diffusion von Magnesium in die Oxidschicht bzw. ein Magnesiumdurchbruch vermindert wird. Die sich auf einer Zn-Al-Mg-Schutzbeschichtung natürlich ausbildende Oxidschicht kann damit verfahrenstechnisch einfach handhabbar in Richtung erhöhter Anteile an Al2O3 und/oder ZnO und verminderter Anteile an MgO verschoben werden. Erfindungsgemäß ist somit ein besonders gut reproduzierbares Verfahren geschaffen.If the protective-coated steel sheet is dressed and the natural oxide layer then reacts with an aqueous fluoride-containing composition, it has surprisingly been found that the proportion of MgO in the natural oxide layer of the protective coating can be reduced in a gentle manner. This modification of the oxide layer can result in a significant increase in adhesiveness, in particular with regard to the ready-to-use and / or recoatability of a protective-coated steel sheet. For example, it can also be used to improve the connection of an adhesive so as to preclude adhesive failure at splices. But especially the invention can stand out from the prior art in that this improved adhesion can be achieved without picking the natural oxide layer. Namely, the oxide film can be activated by the skin-pass coating of the present invention for fluoride-responsive depletion of MgO. Al, which has a comparatively high oxygen affinity, can therefore increase in its concentration primarily in the oxide layer or, due to the MgO reduction, can be exposed in the oxide layer. The latter can contribute in particular to the fact that a diffusion of magnesium into the oxide layer or a magnesium breakthrough is reduced. The oxide layer naturally forming on a Zn-Al-Mg protective coating can thus be shifted in terms of process engineering in an easy to handle manner in the direction of increased proportions of Al 2 O 3 and / or ZnO and reduced proportions of MgO. According to the invention, a particularly well reproducible method is thus created.

Im Allgemeinen wird erwähnt, dass unter der Maßeinheit ppm Gewichts-ppm zu verstehen sind. Zudem wird im Allgemeinen erwähnt, dass sich durch Verbesserung der Haftfähigkeit in weiterer Folge zum Beispiel auch Vorteile hinsichtlich der Haftfestigkeit ergeben können. Es wird im Allgemeinen festgehalten, dass sich die Erfindung insbesondere zur Verbesserung der Haftfähigkeit einer organischen Beschichtung auf dem schutzbeschichteten Stahlblech eignen kann.In general it is mentioned that the unit of measurement is ppm ppm by weight. In addition, it is generally mentioned that, for example, adhesion-improving advantages may also result, for example, as a result of improved adhesiveness. It is generally stated that the invention may be particularly useful for improving the adhesion of an organic coating to the protective coated steel sheet.

Einfach kontrollierbare Verfahrensbedingungen können geschaffen werden, wenn das Fluorid MgO der Oxidschicht herauslöst und in die wässrige Zusammensetzung überführt. Zudem kann damit das Aufwachsen einer Passivierungsschicht, insbesondere von MgF2, zurückgehalten werden, wodurch der natürliche Charakter der Oxidschicht erhalten werden kann. Indem hierfür die Menge an Fluorid in der wässrigen Zusammensetzung auf das Herauslösen von Mg aus der Oxidschicht entsprechend eingestellt ist, kann eine einfach handzuhabende Verfahrensvorschrift zur reproduzierbaren Modifizierung der Oxidschicht vorgeschlagen werden.
Für den gerichteten Angriff auf das MgO der Oxidschicht weist die wässrige Zusammensetzung 5 bis 3500 ppm F (Fluorid), optional 0 bis 35000 ppm Na (Natrium), 0 bis 4000 ppm Al (Aluminium), 0 bis 4000 ppm Mn (Mangan), 0 bis 20 ppm P (Phosphor), 0 bis 10 ppm Fe (Eisen), 0 bis 10 ppm Ni (Nickel) und/oder 0 bis 10 ppm Si (Silicium) und als Rest H2O (Wasser) sowie herstellungsbedingt unvermeidbare Verunreinigungen auf. Zudem kann Al, Mn, Fe, Ni, P und/oder Si zur Einleitung der MgO-Reduktion oder der Stabilisierung der modifizierten Oxidschicht dienlich sein. Als herstellungsbedingt unvermeidbare Verunreinigungen können Konzentrationen von insgesamt kleiner 50 ppm angesehen werden.
Easily controllable process conditions can be created when the fluoride MgO of the oxide layer is dissolved out and transferred to the aqueous composition. In addition, the growth of a passivation layer, in particular of MgF 2 , can thus be retained, as a result of which the natural character of the oxide layer can be obtained. By adjusting the amount of fluoride in the aqueous composition to the extraction of Mg from the oxide layer, an easily manageable procedure for the reproducible modification of the oxide layer can be proposed.
For the directed attack on the MgO of the oxide layer, the aqueous composition has 5 to 3500 ppm F (fluoride), optionally 0 to 35000 ppm Na (sodium), 0 to 4000 ppm Al (aluminum), 0 to 4000 ppm Mn (manganese), 0 to 20 ppm P (phosphorus), 0 to 10 ppm Fe (iron), 0 to 10 ppm Ni (nickel) and / or 0 to 10 ppm Si (silicon) and the remainder H 2 O (water) and inevitable impurities due to production on. In addition, Al, Mn, Fe, Ni, P and / or Si may be useful for initiating MgO reduction or stabilizing the modified oxide layer. Concentrations of a total of less than 50 ppm can be considered as inevitable impurities due to production.

Vorteilhaft kann sich eine Konzentration an F von 5 bis 3500 ppm oder bevorzugt von 5 bis 1500 ppm in der wässrigen Zusammensetzung zum gerichteten Angriff auf MgO der Oxidschicht bzw. einem Herauslösen von Mg herausstellen. Als ausreichend hierfür kann jedoch bereits eine Konzentration an F von 5 bis 1500 ppm oder von 10 bis 500 ppm oder von 20 bis 150 ppm oder von 30 bis 1500 ppm oder von 30 bis 300 ppm sein.
Die sich auf einer Zn-Al-Mg-Schutzbeschichtung natürlich ausbildende Oxidschicht kann verfahrenstechnisch einfach handhabbar in Richtung erhöhter Anteile an Al2O3 und verminderter Anteile an MgO weiter verschoben werden, wenn die wässrige Zusammensetzung Al aufweist. Hiebei kann bereits eine Konzentration an Al von mehr als 2 ppm, insbesondere von mehr als 5 ppm, ausreichend sein. Alternativ oder zusätzlich ist Mn von mehr als 3 ppm, insbesondere von mehr als 5 ppm, vorstellbar, den MgO-Anteil der Oxidschicht zu reduzieren.
Advantageously, a concentration of F of from 5 to 3500 ppm or preferably from 5 to 1500 ppm in the aqueous composition may prove to be a directed attack on MgO of the oxide layer or a leaching out of Mg. However, sufficient for this purpose may already be a concentration of F of 5 to 1500 ppm or of 10 to 500 ppm or of 20 to 150 ppm or of 30 to 1500 ppm or of 30 to 300 ppm.
The oxide layer naturally forming on a Zn-Al-Mg protective coating can be further shifted in terms of process engineering in the direction of increased proportions of Al 2 O 3 and reduced amounts of MgO if the aqueous composition comprises Al. Hiebei already a concentration of Al of more than 2 ppm, in particular more than 5 ppm, be sufficient. Alternatively or In addition, Mn of more than 3 ppm, especially more than 5 ppm, is conceivable to reduce the MgO content of the oxide layer.

Liegt in der wässrigen Zusammensetzung eine Konzentration an Al und/oder Mn von 5 bis 4000 ppm oder von 5 bis 700 ppm oder von 10 bis 150 ppm vor, kann dies bereits ausreichend sein, vorstehend genannte Effekte zu ermöglichen.If a concentration of Al and / or Mn of 5 to 4000 ppm or of 5 to 700 ppm or of 10 to 150 ppm is present in the aqueous composition, this may already be sufficient to allow the abovementioned effects.

Für eine ausreichende Reduktion von MgO kann die Schutzbeschichtung mit der wässrigen Zusammensetzung 0,5 bis 20 sec. (Sekunden), insbesondere 1,5 bis 15 sec. (Sekunden), oberflächenbehandelt werden. Zudem kann sich eine derart kurze Behandlung für ein kontinuierliches Verfahren besonders gut eignen. Im Allgemeinen wird erwähnt, dass je nach Höhe des ppm-Werts an Fluorid in der wässrigen Zusammensetzung die Behandlungsdauer geringer ausfallen kann. So kann beispielsweise bei 1500ppm Fluorid mit einer Behandlungsdauer von 1,5 Sekunden das Auslagen gefunden werden, während bei 20ppm Fluorid eine Behandlungsdauer von 20 Sekunden angestrebt sein sollte, um der natürlichen Oxidschicht, ohne diese zu dekapieren, ihren MgO-Gehalt zu reduzieren.For a sufficient reduction of MgO, the protective coating can be surface-treated with the aqueous composition for 0.5 to 20 seconds (seconds), in particular 1.5 to 15 seconds (seconds). In addition, such a short treatment can be particularly well suited for a continuous process. Generally, it is mentioned that, depending on the level of fluoride in the aqueous composition, the duration of treatment may be shorter. For example, at 1500ppm fluoride with a treatment time of 1.5 seconds, the expense can be found, while with 20ppm fluoride a 20 second treatment time should be sought to reduce the MgO content of the natural oxide layer without depleting it.

Mit der Einstellung des pH-Werts der wässrigen Zusammensetzung von 4 bis 8 kann die Reaktionsgeschwindigkeit der wässrigen Zusammensetzung mit der Zn-Al-Mg-Schutzbeschichtung verhältnismäßig einfach an eine Bandlaufgeschwindigkeit des kontinuierlichen Verfahrens angepasst werden. Außerdem kann mit einer sauren Einstellung des pH-Werts eine erhöhte Reduktion des MgO-Anteils in der Oxidschicht festgestellt werden. Als ausreichend hierfür kann jedoch bereits ein pH-Wert von 5 bis 7,5 oder von 6 bis 7 sein.With the pH adjustment of the aqueous composition of 4 to 8, the reaction rate of the aqueous composition with the Zn-Al-Mg protective coating can be relatively easily adjusted to a belt running speed of the continuous process. In addition, with an acidic adjustment of the pH, an increased reduction of the MgO content in the oxide layer can be ascertained. However, sufficient for this purpose may already be a pH of 5 to 7.5 or from 6 to 7.

Eine Temperatur der wässrigen Zusammensetzung von 30 bis 95 °C (Grad Celsius) kann ausreichen, deren Reaktionsgeschwindigkeit mit der natürlichen, also der nativen Oxidschicht weiter zu erhöhen. Als günstig hierfür kann jedoch eine Temperatur der wässrigen Zusammensetzung von 45 bis 90 °C oder von 45 bis 80 °C herausstellen.A temperature of the aqueous composition of 30 to 95 ° C (degrees Celsius) may be sufficient to increase their reaction rate with the natural, so the native oxide layer on. As favorable for this, however, a temperature of the aqueous composition of 45 to 90 ° C or from 45 to 80 ° C turn out.

Die Herstellung der wässrigen Zusammensetzung kann auf einfache Weise erfolgen, wenn hierfür NaF und/oder NaHF2 (Bifluorid) verwendet wird.The preparation of the aqueous composition can be effected in a simple manner if NaF and / or NaHF 2 (bifluoride) is used for this purpose.

Die Herstellung der wässrigen Zusammensetzung kann zudem vergleichsweise kostengünstig erfolgen, wenn hierfür Na3[AlF6] (Kryolith) verwendet wird. Dadurch liegt in der wässrigen Zusammensetzung zudem Na vor. Vorstellbar ist dabei eine Konzentration an Na von 5 bis 35000 ppm oder mehr, insbesondere von 10 bis 3500 ppm, bevorzugt von 20 bis 2000 ppm.In addition, the preparation of the aqueous composition can be comparatively inexpensive if Na 3 [AlF 6 ] (cryolite) is used for this purpose. As a result, Na also exists in the aqueous composition. It is conceivable that a concentration of Na from 5 to 35,000 ppm or more, in particular from 10 to 3500 ppm, preferably from 20 to 2000 ppm.

Das erfindungsgemäße Verfahren kann sich insbesondere bei einer Schutzbeschichtung auszeichnen, die 0,1 bis 7 Gew.-% Aluminium, 0,2 bis 5 Gew.-% Magnesium und als Rest Zink sowie herstellungsbedingt unvermeidbare Verunreinigungen aufweist. Derartige Zn-Al-Mg-Schutzbeschichtungen können eine Oxidschicht mit gegenüber unmodifizierten Oxidschichten gleicher Legierungszusammensetzung in ihrem MgO-Anteil besonders gut reduziert werden, was für eine erhebliche Steigerung der Haftfähigkeit genutzt werden kann.The process according to the invention can be distinguished, in particular, by a protective coating which comprises 0.1 to 7% by weight of aluminum, 0.2 to 5% by weight of magnesium and the balance zinc and unavoidable impurities due to the production. Such Zn-Al-Mg protective coatings can be particularly well reduced an oxide layer with respect to unmodified oxide layers of the same alloy composition in their MgO content, which can be used for a significant increase in adhesion.

Bevorzugt kann die vorstehend spezifizierte Schutzbeschichtung 1 bis 4 Gew.-% Aluminium und 1 bis 3 Gew.-% Magnesium aufweisen, um neben einer Verbesserung der Haftfähigkeit auch die Reproduzierbarkeit des Verfahrens zu erhöhen.Preferably, the protective coating specified above may contain 1 to 4% by weight of aluminum and 1 to 3% by weight of magnesium, in order to increase not only an improvement in adhesiveness but also the reproducibility of the process.

Die Aktivierung der Oxidschicht für eine nachfolgende Oberflächenbehandlung kann verbessert werden, wenn beim Dressieren des Stahlblechs Dressiereindrücke in die Schutzbeschichtung eingebracht werden. Zudem kann sich bei diesen Dressiereindrücken, vorzugsweise in deren Randbereichen, eine verbesserte Angriffsfläche für Fluorid ausbilden, um MgO vermehrt aus der natürlichen Oxidschicht zu lösen. Weiter konnte hier bzw. in diesem Randbereich die Ausbildung von Magnesiumfluorid (MgF2) beobachtet werden, was die Haftfähigkeit noch weiter verbessern kann. Zudem kann nach der erfindungsgemäßen Oberflächenbehandlung im Bereich der Dressiereindrücke vermehrt Zn5(OH)6(CO3)2 (Zinkhydroxidcarbonat) anstelle von ZnO festgestellt werden, was die Haftfähigkeit zusätzlich verbessern kann.The activation of the oxide layer for a subsequent surface treatment can be improved if, when the steel sheet is applied by casting, dressing impressions are introduced into the protective coating. In addition, these dressing impressions, preferably in their edge regions, form an improved attack surface for fluoride in order to increasingly dissolve MgO from the natural oxide layer. Furthermore, the formation of magnesium fluoride (MgF 2 ) could be observed here or in this marginal area, which can further improve the adhesion. In addition, after the surface treatment according to the invention in the field of Dressing impressions increasingly Zn 5 (OH) 6 (CO 3 ) 2 (zinc hydroxide carbonate) are found instead of ZnO, which can further improve the adhesion.

Die Fluorid enthaltende wässrige Zusammensetzung kann auf einfache Weise von der Oberfläche der Schutzbeschichtung entfernt werden, wenn die Schutzbeschichtung unmittelbar nach der Oberflächenbehandlung mit der ersten, Fluorid enthaltenden wässrigen Zusammensetzung mit einer zweiten Flüssigkeit gespült wird. Zudem kann diese Nachbehandlung mit solch einer Flüssigkeit den Abtrag an MgO zusätzlich erhöhen, wobei sich hierfür als zweite Flüssigkeit insbesondere H2O auszeichnen kann.The fluoride-containing aqueous composition can be easily removed from the surface of the protective coating when the protective coating is rinsed with a second liquid immediately after the surface treatment with the first fluoride-containing aqueous composition. In addition, this aftertreatment with such a liquid can additionally increase the removal of MgO, with H 2 O in particular being able to be distinguished as the second liquid.

Weist die zweite Flüssigkeit bis 20 ppm P und/oder Si, sowie als Rest H2O und unvermeidbare Verunreinigungen auf, kann damit die in MgO reduzierte native Oxidschicht weiter stabilisiert werden. Bei P ist damit zu rechnen, dass dieses als Phosphat in der Flüssigkeit vorkommt.If the second liquid has up to 20 ppm P and / or Si, as well as the remainder H 2 O and unavoidable impurities, then the native oxide layer reduced in MgO can be further stabilized. With P it is to be expected that this occurs as phosphate in the liquid.

Der Spülwirkung der zweiten Flüssigkeit kann erheblich verbessert werden, wenn die zweite Flüssigkeit eine Temperatur von 20 bis 90 °C aufweist. Bevorzugt kann die Temperatur in einem Bereich von 35 bis 85 °C oder von 40 bis 75 °C liegen.The rinsing action of the second liquid can be significantly improved if the second liquid has a temperature of 20 to 90 ° C. Preferably, the temperature may be in the range of 35 to 85 ° C or 40 to 75 ° C.

Als ausreichende Spüldauer kann sich herausstellen, wenn die Schutzbeschichtung mit der zweiten Flüssigkeit 1 bis 10 sec. (Sekunden) lang gespült wird.As a sufficient rinsing time may turn out when the protective coating is rinsed with the second liquid for 1 to 10 sec. (Seconds).

Einfache Verfahrensverhältnisse können sich einstellen, wenn die wässrige Zusammensetzung und/oder die zweite Flüssigkeit im Spritz-, Tauch- oder Walzverfahren auf das schutzbeschichtete Stahlblech aufgebracht wird/werden.Simple process conditions can occur when the aqueous composition and / or the second liquid is applied to the protective-coated steel sheet in a spraying, dipping or rolling process.

Weiter kann sich das erfindungsgemäße Verfahren bewähren, wenn nach der Oberflächenbehandlung des schutzbeschichteten Stahlblechs an der Schutzbeschichtung eine organische Schicht vorgesehen wird. Ein Haftvermittler kann ein Beispiel solch einer organischen Schicht sein.Furthermore, the method according to the invention can prove useful if, after the surface treatment of the protective-coated steel sheet, an organic layer is provided on the protective coating. An adhesion promoter may be an example of such an organic layer.

Besonders kann sich die Erfindung gegenüber Bekanntem auszeichnen, wenn eine wässrige fluoridhaltige Zusammensetzung zur Reduktion des MgO-Anteils der natürlichen Oxidschicht einer Zn-Al-Mg-Schutzbeschichtung auf einem dressierten Stahlblech verwendet wird, ohne dabei die natürliche Oxidschicht zu dekapieren. Hiefür kann sich insbesondere eine Flüssigkeit mit der Zusammensetzung nach einem der Ansprüche 3 bis 5 auszeichnen.In particular, the invention may be distinguished from what is known when using an aqueous fluoride-containing composition for reducing the MgO content of the natural oxide layer of a Zn-Al-Mg protective coating on a dressed steel sheet, without thereby dekapieren the natural oxide layer. For this purpose, in particular a liquid having the composition according to one of claims 3 to 5 can be distinguished.

Kurze Beschreibung der ZeichnungShort description of the drawing

In der Figur ist beispielsweise der Erfindungsgegenstand anhand einer Ausführungsvariante näher dargestellt. Es zeigen

Fig. 1
eine schematisch dargestellte Vorrichtung zur Modifizierung der Oxid-schicht eines Stahlblechs mit Zn-Al-Mg-Schutzbeschichtung und
Fig. 2 und 3
Draufsichten auf die nativen Oxidschichten zweier schutzbeschichteter Stahlbleche.
In the figure, for example, the subject invention is illustrated in more detail with reference to a variant embodiment. Show it
Fig. 1
a schematically illustrated apparatus for modifying the oxide layer of a steel sheet with Zn-Al-Mg protective coating and
FIGS. 2 and 3
Top views of the native oxide layers of two protective coated steel sheets.

Wege zur Ausführung der ErfindungWays to carry out the invention

Nach Fig. 1 wird beispielsweise eine Vorrichtung 1 dargestellt, mit der ein kontinuierliches Verfahren zur Verbesserung der Haftfähigkeit auf einem schutzbeschichteten Stahlblech 2 ermöglicht wird. So wird zunächst in einem kontinuierlichen Verfahren auf ein bewegtes Stahlblech 2 eine Schutzbeschichtung auf Zn-Al-Mg-Basis aufgebracht, und zwar mithilfe eines Schmelztauchverfahrens 3. Als Schmelztauchverfahren 3 ist insbesondere ein kontinuierliches Feuerverzinken (Bandverzinken) angedacht - andere Beschichtungsverfahren sind jedoch vorstellbar. Zur Veranschaulichung des Schmelztauchverfahrens 3 wurde die Darstellung der diesbezüglichen Anlageteile der Vorrichtung 1 der Übersichtlichkeit halber auf einen Durchlaufofen 18, ein Schmelzbad 3, einen Abstreifer 19 zur Einstellung der Beschichtungsauflage und eine Kühlung 20 beschränkt. Nach Durchführung des Schmelztauchverfahrens 3 weist das Stahlblech 2 eine Zn-Al-Mg-Schutzbeschichtung auf, die eine natürliche Oxidschicht 9 ausbildet. Diese native Oxidschicht 9 weist bekanntermaßen Al2O3 10, MgO 11 und auch, wenngleich in geringem Ausmaß, ZnO 12 auf. Der Anteil an MgO 11 in der Oxidschicht 9 ist vergleichsweise hoch, wie dies nach Fig. 2 erkannt werden kann.To Fig. 1 For example, an apparatus 1 is shown which enables a continuous process for improving adhesiveness on a protective coated sheet steel 2. Thus, in a continuous process, a Zn-Al-Mg-based protective coating is first applied to a moving steel sheet 2 by means of a hot-dip process 3. Hot-dip galvanizing (strip-galvanizing), in particular, is envisaged as the hot-dip process 3, but other coating methods are conceivable. To illustrate the hot dip method 3, the representation of the relevant plant parts of the device 1 for clarity was limited to a continuous furnace 18, a molten bath 3, a scraper 19 for adjusting the coating layer and a cooling 20. After carrying out the hot-dip process 3, the steel sheet 2 has a Zn-Al-Mg protective coating which is a natural one Oxide layer 9 forms. This native oxide layer 9 is known to comprise Al 2 O 3 10, MgO 11, and also, though to a lesser extent, ZnO 12. The proportion of MgO 11 in the oxide layer 9 is comparatively high, as after Fig. 2 can be recognized.

Gemäß Fig. 2 ist MgO 11 an der hellen Fläche, Al2O3 10 an der dunklen Fläche und ZnO 12 an einer Mischung von heller und dunkler Fläche zu erkennen. Durch eine überwiegend helle MgO-Fläche auf der Oberfläche der Zn-Al-Mg-Schutzbeschichtung ist mit einer erheblichen reduzierten Haftfähigkeit zu rechnen.According to Fig. 2 For example, MgO 11 is seen on the bright surface, Al 2 O 3 10 on the dark surface, and ZnO 12 on a mixture of light and dark surfaces. Due to a predominantly bright MgO surface on the surface of the Zn-Al-Mg protective coating, a considerable reduced adhesion is to be expected.

Erfindungsgemäß werden solche dominanten MgO-Ansammlungen in der Oxidschicht 9 vermieden, indem das mit einer Zn-Al-Mg-Schutzbeschichtung versehene Stahlblech 2 durch ein Dressiergerüst 5 geführt und so zur Modifizierung seiner nativen Oxidschicht 9 vorbereitet wird - und zwar vorbereitet für eine Oberflächenbehandlung 6 unter Aufbringung einer wässrigen fluoridhaltigen Zusammensetzung 7, um ohne Dekapieren der natürlichen Oxidschicht 9 ihren MgO-Anteil zu reduzieren. Gemäß Fig. 1 ist dieser Verfahrensschritt mit beidseitig des Stahlblechs 2 angeordnete Spritzbalken 8 verwirklicht, die die wässrige fluoridhaltige Zusammensetzung 7 auf das Stahlblech 2 auftragen bzw. aufspritzen. Anstatt des Spritzverfahrens 13 ist selbstverständlich auch eine Applikation mit einem nicht weiter dargestellten Walz- oder Tauchverfahren vorstellbar.According to the invention, such dominant MgO accumulations in the oxide layer 9 are avoided by passing the steel sheet 2 provided with a Zn-Al-Mg protective coating through a skin pass mill 5 and thus preparing it to modify its native oxide layer 9 - prepared for a surface treatment 6 with the application of an aqueous fluoride-containing composition 7 in order to reduce its MgO content without picking off the natural oxide layer 9. According to Fig. 1 this process step is realized with spray bars 8 arranged on both sides of the steel sheet 2, which apply or spray on the aqueous fluoride-containing composition 7 onto the steel sheet 2. Instead of the spraying method 13, of course, an application with a rolling or dipping method not shown is conceivable.

Die wässrige Zusammensetzung löst in weiterer Folge MgO 11 aus der Oxidschicht 9 heraus und führt dies in die wässrige Zusammensetzung 7 über. Hierfür ist die Menge an Fluorid, gemessen mit einer fluorid-sensitiven Elektrode, in der wässrigen Zusammensetzung 7 auf ein Herauslösen von Mg der Oxidschicht 9 eingestellt. Der Anteil an MgO 11 in der nativen Oxidschicht 9 wird demnach reduziert, sodass sich aufgrund der hohen Sauerstoffaffinität von Al vermehrt Al2O3 10 auf der modifizierten natürlichen bzw. nativen Oxidschicht 9 ausprägen kann.The aqueous composition subsequently dissolves MgO 11 out of the oxide layer 9 and converts this into the aqueous composition 7. For this purpose, the amount of fluoride, measured with a fluoride-sensitive electrode, in the aqueous composition 7 is adjusted to a dissolution of Mg of the oxide layer 9. The proportion of MgO 11 in the native oxide layer 9 is thus reduced, so that due to the high oxygen affinity of Al increasingly Al 2 O 3 10 can be expressed on the modified natural or native oxide layer 9.

Dieser Umstand ist deutlich nach Fig. 3 zu erkennen. Fig. 3 zeigt zwar auch MgO 11 an hellen Flächen, im Vergleich zu Fig. 2 ist jedoch der MgO 11 Anteil äußerst gering. So überwiegen Al2O3 10 (dunkle Fläche) und ZnO 12 bzw. Zn5(OH)6(CO3)2 (Mischung von heller und dunkler Fläche) eindeutig. Die modifizierte natürliche Oxidschicht 9 nach Fig. 3 weist im Wesentlichen Al2O3 10 auf und bildet so eine Sperrschicht aus, die nicht nur einen Durchbruch von Mg in die Oxidschicht 9 zur Ausbildung von MgO 11, sondern auch die Diffusion von O durch die Oxidschicht vermindert. Selbst bei vergleichsweise langen Lagerzeiten des Stahlblechs 2 zeigt diese modifizierte natürliche Oxidschicht 9 immer noch eine vergleichsweise hohe Haftfähigkeit.This circumstance is clearly behind Fig. 3 to recognize. Fig. 3 Although also shows MgO 11 on light surfaces, compared to Fig. 2 however, the MgO 11 content is extremely low. Thus, Al 2 O 3 10 (dark area) and ZnO 12 or Zn 5 (OH) 6 (CO 3 ) 2 (mixture of light and dark area) clearly outweigh. The modified natural oxide layer 9 after Fig. 3 has substantially Al 2 O 3 10 and thus forms a barrier layer, which not only reduces a breakdown of Mg in the oxide layer 9 for the formation of MgO 11, but also the diffusion of O through the oxide layer. Even with comparatively long storage times of the steel sheet 2, this modified natural oxide layer 9 still exhibits a comparatively high adhesiveness.

Zur Erhöhung der Reaktionsgeschwindigkeit ist der pH-Wert in einem Bereich von 4 bis 8, insbesondere schwach sauer, eingestellt, wobei außerdem die wässrige Zusammensetzung eine Temperatur von 30 bis 95 °C (Grad Celsius) aufweisen soll.To increase the reaction rate, the pH is adjusted in a range from 4 to 8, in particular slightly acidic, and in addition, the aqueous composition should have a temperature of 30 to 95 ° C (degrees Celsius).

Geeignete Verfahrensverhältnisse beim gerichteten Angriff auf das MgO der Oxidschicht konnten festgestellt werden, wenn die wässrige Zusammensetzung 20 bis 3500 ppm F (Fluorid), optional 0 bis 35000 ppm Na (Natrium), 0 bis 4000 ppm Al (Aluminium), 0 bis 4000 ppm Mn (Mangan), 0 bis 20 ppm P (Phosphor), 0 bis 10 ppm Fe (Eisen), 0 bis 10 ppm Ni (Nickel) und/oder 0 bis 10 ppm Si (Silicium) und als Rest H2O (Wasser) sowie herstellungsbedingt unvermeidbare Verunreinigungen aufweisen. Als ausreichend kann sich jedoch bereits eine Konzentration an F von 5 bis 3500 ppm oder von 5 bis 1500 ppm oder von 10 bis 500 ppm oder von 20 bis 150 ppm oder von 30 bis 1500 ppm oder von 30 bis 300 ppm sein.
Weiter kann sich als hilfreich für das Verfahren bereits ein Vorliegen von Al und/oder Mn in der wässrigen Zusammensetzung herausstellen. Im Allgemeinen wird erwähnt, dass Al der wässrigen Zusammensetzung die Oxidschicht in Richtung erhöhter Anteile an Al2O3 und verminderter Anteile an MgO verbessern kann. Al der wässrigen Zusammensetzung 7 lagert sich nämlich an den an Mg reduzierten Stellen der Oxidschicht bevorzugt ein. Solche Stellen können sich bei Behandlung der Oxidschicht mit der wässrigen Zusammensetzung 7 beispielsweise durch Lösen von MgO aus der Oxidschicht unter Überführung in MgOHF ergeben. Ein ähnlicher Effekt kann auch mit Mn erreicht werden. Im Allgemeinen wird daher weiter erwähnt, dass vorstellbar sein kann, dass das schutzbeschichtete Stahlblech 2 mit der wässrigen, fluoridhaltigen Zusammensetzung 7 unter Reduktion ihres MgO-Anteils reagiert, indem Mg und/oder eine Magnesiumverbindung (z. B. MgO 11) der Oxidschicht 9 mit Fluorid und/oder einer Fluoridverbindung (z. B. HF) herausgelöst und durch Al und/oder Mn ersetzt wird, um damit die natürliche Oxidschicht in Richtung eines reduzierten MgO-Anteils zu modifizieren. Die Fluorid enthaltende wässrige Zusammensetzung 7, die über die Spritzbalken 8 auf das Stahlband 2 aufgebracht worden ist, wird mithilfe einer Spüle, die ein Spritzverfahren 14 durchführt, vom Stahlband 2 entfernt. Hierfür wird die Schutzbeschichtung unmittelbar nach der Behandlung über Spritzbalken 17 mit einer zweiten Flüssigkeit 15 oberflächenbehandelt. Diese zweite Flüssigkeit 15 besteht aus H2O, kann aber auch P oder Si kleiner 20 mg/l sowie unvermeidbare Verunreinigungen aufweisen, wobei gegebenenfalls P als Phosphat in der Flüssigkeit 15 vorliegt. Eine Behandlungsdauer von 1 bis 10 Sekunden ist als ausreichend festgestellt worden. Zudem sind in der Zn-Al-Mg-Schutzbeschichtung Dressiereindrücke 16 vorhanden, die vom Dressiergerüst 5 eingebracht werden. Nach den Figuren 2 und 3 treten die Ränder der Dressiereindrücke 16 als geschlossene Kontur besonders hervor. Im Gegensatz zur Fig. 2 sind am Rand des Dressiereindrucks 16 nach Fig. 3 MgF2-Verbindungen zu detektieren, die sich durch die erfindungsgemäße Oberflächenbehandlung des Stahlblechs 2 ergeben und die Anbindung von organischen Schichten steigern. Zum Nachweis der erfindungsgemäß erhöhten Haftfähigkeit wurden sechs Stahlbleche untersucht. Tabelle 1: die untersuchten Stahlbleche im Vergleich Stahlblech Beschichtung Zugscherfestigkeit [MPa] Bruchbild A1 DX53D ZnAl2,5Mg1,5 20,5 100% SCF A2 DX53D ZnAl2,5Mg1,5 20,4 100% SCF B DX53D ZnAl2,5Mg1,5 19,6 20% SCF und 80% AF C1 DX56D ZnAl2,4Mg2,2 19,8 100% SCF C2 DX56D ZnAl2,4Mg2,2 19,6 100% SCF D DX56D ZnAl2,4Mg2,2 18,1 20% SCF und 80% AF
Suitable process conditions for the targeted attack on the MgO of the oxide layer could be found if the aqueous composition contains 20 to 3500 ppm F (fluoride), optionally 0 to 35000 ppm Na (sodium), 0 to 4000 ppm Al (aluminum), 0 to 4000 ppm Mn (manganese), 0 to 20 ppm P (phosphorus), 0 to 10 ppm Fe (iron), 0 to 10 ppm Ni (nickel) and / or 0 to 10 ppm Si (silicon) and balance H 2 O (water ) as well as production-related unavoidable impurities. However, a concentration of F may already be sufficient from 5 to 3500 ppm or from 5 to 1500 ppm or from 10 to 500 ppm or from 20 to 150 ppm or from 30 to 1500 ppm or from 30 to 300 ppm.
Furthermore, the presence of Al and / or Mn in the aqueous composition may prove helpful for the process. In general, it is mentioned that Al of the aqueous composition can improve the oxide layer toward increased levels of Al 2 O 3 and reduced levels of MgO. Namely, Al of the aqueous composition 7 preferentially deposits at the sites of the oxide layer reduced at Mg. Such sites can be when treating the oxide layer with the aqueous composition 7, for example, by dissolving MgO from the Oxide layer converted into MgOHF. A similar effect can also be achieved with Mn. In general, therefore, it is further mentioned that it may be conceivable that the protective-coated steel sheet 2 reacts with the aqueous fluoride-containing composition 7 to reduce its MgO content by adding Mg and / or a magnesium compound (eg MgO 11) to the oxide layer 9 with fluoride and / or a fluoride compound (eg., HF) and replaced by Al and / or Mn, thereby to modify the natural oxide layer in the direction of a reduced MgO content. The fluoride-containing aqueous composition 7, which has been applied to the steel strip 2 via the spray bars 8, is removed from the steel strip 2 by means of a sink, which performs a spraying process 14. For this purpose, the protective coating is surface treated immediately after treatment via spray bar 17 with a second liquid 15. This second liquid 15 consists of H 2 O, but may also have P or Si less than 20 mg / l and unavoidable impurities, P optionally being present as a phosphate in the liquid 15. A treatment time of 1 to 10 seconds has been found to be sufficient. In addition, in the Zn-Al-Mg protective coating Dressing Impressions 16 are present, which are introduced from the skin pass 5. After the FIGS. 2 and 3 the edges of the Dressiereindrücke 16 emerge as a closed contour particularly. In contrast to Fig. 2 are at the edge of the dressing impression 16 after Fig. 3 MgF 2 compounds to be detected, resulting from the inventive surface treatment of the steel sheet 2 and increase the bonding of organic layers. To demonstrate the increased adhesion according to the invention, six steel sheets were investigated. Table 1: the examined steel sheets in comparison sheet steel coating Tensile shear strength [MPa] fracture pattern A 1 DX53D ZnAl2,5Mg1,5 20.5 100% SCF A 2 DX53D ZnAl2,5Mg1,5 20.4 100% SCF B DX53D ZnAl2,5Mg1,5 19.6 20% SCF and 80% AF C 1 DX56D ZnAl2,4Mg2,2 19.8 100% SCF C 2 DX56D ZnAl2,4Mg2,2 19.6 100% SCF D DX56D ZnAl2,4Mg2,2 18.1 20% SCF and 80% AF

Die feuerverzinkten Stahlbleche A (A1 bzw. A2) und B weisen eine Tiefziehgüte DX53D und eine Blechdicke von 0,75 mm auf. Als Schutzbeschichtung wurde ZnAl2,5Mg1,5 (96 Gew.-% Zn, 2,5 Gew.-% Al, 1,5 Gew.-% Mg) aufgebracht.The hot-dip galvanized steel sheets A (A 1 and A 2 ) and B have a deep-drawing quality DX53D and a sheet thickness of 0.75 mm. As a protective coating, ZnAl2.5Mg1.5 (96 wt% Zn, 2.5 wt% Al, 1.5 wt% Mg) was applied.

Bei feuerverzinkten Stahlbleche C (C1 bzw. C2) und D weisen eine Tiefziehgüte DX56D und eine Blechdicke von 0,7 mm auf. Als Schutzbeschichtung wurde ZnAl2,4Mg2,2 (95,4 Gew.-% Zn, 2,4 Gew.-% Al, 2,2 Gew.-% Mg) aufgebracht.For hot-dip galvanized steel sheets C (C 1 or C 2 ) and D have a deep drawing quality DX56D and a sheet thickness of 0.7 mm. As a protective coating, ZnAl2.4Mg2.2 (95.4 wt% Zn, 2.4 wt% Al, 2.2 wt% Mg) was applied.

Die Stahlbleche A (A1 bzw. A2) und C (C1 bzw. C2) wurden wie in Fig. 1 dargestellt der erfindungsgemäßen Modifikation ihrer Oxidschichten unterworfen. Diese umfasste ein Dressieren der Stahlbleche A und B und ein Aufbringen einer wässrigen Zusammensetzung 7 mit einer Konzentration von Fluorid von 30 bis 70 Gewichts-ppm, wobei die Temperatur der wässrigen Zusammensetzung 7 auf ca. 70 Grad Celsius und deren pH-Wert im Bereich zwischen 5 bis 7,5 eingestellt worden sind. Der wässrigen Zusammensetzung 7 zur Behandlung von Stahlblech A1 und C1 wurde Fluorid als Na3[AlF6] zugesetzt. Somit besteht diese wässrige Zusammensetzung 7 aus Fluorid, Na, Al, H2O und unvermeidbaren Verunreinigungen kleiner 10ppm. Der wässrigen Zusammensetzung zu Behandlung von Stahlblech A2 und C2 wurde NaF zugesetzt. Gegebenenfalls kann diese Zusammensetzung mit Al angereichert werden. Anstatt oder alternativ zu NaF ist auch NaHF2 (Bifluorid) vorstellbar. Die Stahlbleche A (A1 bzw. A2) und C (C1 bzw. C2) wurden 10 Sekunden mit der jeweiligen wässrigen Zusammensetzung behandelt. Anschließend wurden die Stahlbleche A und C 10 Sekunden mit H2O gespült. Bei dieser zweiten Flüssigkeit 15 wurde eine Temperatur von 35 Grad Celsius eingestellt.The steel sheets A (A 1 and A 2 ) and C (C 1 or C 2 ) were as in Fig. 1 represented the modification according to the invention subjected to their oxide layers. This involved a temper rolling of the steel sheets A and B and application of an aqueous composition 7 having a concentration of fluoride of 30 to 70 ppm by weight, the temperature of the aqueous composition 7 to about 70 degrees Celsius and its pH in the range between 5 to 7.5 have been set. The aqueous composition 7 for the treatment of steel sheet A 1 and C 1 was added fluoride as Na 3 [AlF 6 ]. Thus, this aqueous composition 7 consists of fluoride, Na, Al, H 2 O and unavoidable impurities smaller than 10 ppm. To the aqueous composition for treatment of steel sheets A 2 and C 2 was added NaF. Optionally, this composition can be enriched with Al. Instead of or as an alternative to NaF, NaHF 2 (bifluoride) is also conceivable. The steel sheets A (A 1 and A 2 ) and C (C 1 and C 2 , respectively) were treated with the respective aqueous composition for 10 seconds. Subsequently, the steel sheets A and C were 10 Rinsed with H 2 O for a few seconds. In this second liquid 15, a temperature of 35 degrees Celsius was set.

Die Stahlbleche B und D wurden hingegen keiner Oberflächenbehandlung unterworfen und wiesen dadurch im Wesentlichen eine nach Fig. 2 dargestellte Oxidschicht auf.On the other hand, the steel sheets B and D were not subjected to any surface treatment, and thus substantially deteriorated Fig. 2 shown oxide layer.

Alle Stahlbleche A, B, C und D wurden dann mit einer organischen Beschichtung, nämlich mit einem einkomponentigen Epoxidharzklebstoff (z. B.: BM1496), versehen und die Haftfähigkeit des Klebstoffs auf der Schutzbeschichtung über einen Zugscherversuch ermittelt.All of the steel sheets A, B, C and D were then provided with an organic coating, namely a one-component epoxy resin adhesive (e.g., BM1496), and the adhesiveness of the adhesive to the protective coating was determined by a tensile shear test.

Untersuchungen an den schutzbeschichteten Stahlblechen A, B, C und D zeigten, dass nur an den Stahlblechen A (A1 bzw. A2) und C (C1 bzw. C2) ein Bruch an der Grenzfläche zwischen Oxidschicht und Klebstoff vermieden werden kann. Dieser Bruch ist nahezu 100% SCF ("substrate close cohesive failure"), was dem im Automobilbereich geforderten Bruchszenario entspricht. An den Stahlblechen B und D zeigt sich, wie zu erwarten, ein Mischbruch, aus 80 % AF ("adhesive failure") und 20 % SCF, womit diese schutzbeschichteten Stahlbleche B und D für den Automobilbereich ungeeignet sind. Zudem ist durch das erfindungsgemäße Verfahren an den Stahlblechen A und C mit einer verbesserten Anbindung, belegt durch eine erhöhte Zugscherfestigkeit, des Klebstoffs an die Schutzbeschichtung zu erkennen.Investigations on the protective coated steel sheets A, B, C and D showed that only at the steel sheets A (A 1 and A 2 ) and C (C 1 or C 2 ) a break at the interface between the oxide layer and adhesive can be avoided , This fraction is almost 100% SCF ("substrate close cohesive failure"), which corresponds to the fracture scenario required in the automotive industry. As expected, the steel sheets B and D show a mixed fracture consisting of 80% AF ("adhesive failure") and 20% SCF, making these protective coated steel sheets B and D unsuitable for the automotive sector. In addition, it can be seen by the inventive method on the steel sheets A and C with an improved connection, evidenced by an increased tensile shear strength of the adhesive to the protective coating.

Es ist somit gezeigt, dass das erfindungsgemäße Verfahren die Oxidschicht der Zn-Al-Mg-Schutzbeschichtung derart modifizieren kann, dass damit die Haftfähigkeit für einen Klebstoff am schutzbeschichteten Stahlblech A bzw. C gegenüber einem Stand der Technik Stahlblech B bzw. D deutlich verbessert ist.It is thus shown that the method according to the invention can modify the oxide layer of the Zn-Al-Mg protective coating in such a way that the adhesiveness to an adhesive on the protective-coated steel sheet A or C is markedly improved compared to a prior art steel sheet B or D. ,

Claims (15)

  1. A method for improving the adhesive capacity of a protectively coated steel sheet (2), in which, in a continuous process, a protective coating based on Zn-AI-Mg is applied to the steel sheet (2) and, in a further step, the protective coating undergoes a surface treatment (6) in which an aqueous composition (7) is applied in order to modify the natural oxide layer (9), which contains Al2O3 and MgO, without pickling this natural oxide layer as a result, characterized in that the protectively coated steel sheet (2) is skin-pass rolled and then the natural oxide layer (9) is reacted with an aqueous fluoride-containing composition (7), reducing its MgO content in order to thus modify the natural oxide layer (9), wherein the aqueous composition (7) contains 5 to 3500 ppm F
    and optionally 0 to 35000 ppm Na, 0 to 4000 ppm Al, 0 to 4000 ppm Mn, 0 to 20 ppm P, 0 to 10 ppm Fe, 0 to 10 ppm Ni, and/or 0 to 10 ppm Si,
    and a remainder of H2O as well as inevitable impurities due to the manufacturing process.
  2. The method according to claim 1, characterized in that the fluoride dissolves MgO (11) out of the oxide layer (9) and transfers it into the aqueous composition (7); in order to accomplish this, the quantity of fluoride in the aqueous composition (7) is correspondingly set to dissolve Mg (11) out of the oxide layer (9).
  3. The method according to claim 1 or 2, characterized in that the aqueous composition (7) contains a concentration of F of 5 to 1500 ppm, 10 to 500 ppm, 20 to 150 ppm, 20 to 3500 ppm, 30 to 1500 ppm, or 30 to 300 ppm.
  4. The method according to one of claims 1 through 3, characterized in that the aqueous composition (7) contains Al and/or Mn.
  5. The method according to claim 4, characterized in that the aqueous composition (7) contains a concentration of Al and/or Mn of 5 to 4000 ppm, 5 to 700 ppm, or 10 to 150 ppm.
  6. The method according to one of claims 1 through 5, characterized in that the protective coating is surface treated with the aqueous composition (7) for 0.5 to 20 seconds or for 1.5 to 15 seconds.
  7. The method according to one of claims 1 through 6, characterized in that the aqueous composition (7) has a pH value of 4 to 8, 5 to 7.5, or 6 to 7.
  8. The method according to one of claims 1 through 7, characterized in that the aqueous composition (7) has a temperature of 30 to 95 °C, 45 to 90 °C, or 45 to 80 °C.
  9. The method according to one of claims 1 through 8, characterized in that NaF and/or NaHF2 is used when manufacturing the aqueous composition (7).
  10. The method according to one of claims 1 through 9, characterized in that Na3[AlF6] is used when manufacturing the aqueous composition (7).
  11. The method according to one of claims 1 through 10, characterized in that the protective coating contains 0.1 to 7 wt% aluminum, 0.2 to 5 wt% magnesium, and a remainder of zinc as well as inevitable impurities due to the manufacturing process.
  12. The method according to claim 11, characterized in that the protective coating contains 1 to 4 wt% aluminum and 1 to 3 wt% magnesium.
  13. The method according to one of claims 1 through 12, characterized in that immediately after the surface treatment with the first fluoride-containing aqueous composition (7), the protective coating is rinsed with a second liquid (15), for example H2O.
  14. The method according to one of claims 1 through 13, characterized in that the aqueous composition (7) and/or the second liquid (15) is/are applied to the protectively coated steel sheet (2) using a spraying, dipping, or rolling method (13, 14).
  15. A use of an aqueous fluoride-containing composition (7) according to one of the claims 1 to 14 to reduce the MgO percentage of the natural oxide layer (9) of a Zn-AI-Mg protective coating on a skin-pass rolled steel sheet (2), without pickling the natural oxide layer (9) as a result.
EP14744292.5A 2013-07-12 2014-07-11 Method for improving the adherence Active EP3019639B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14744292.5A EP3019639B1 (en) 2013-07-12 2014-07-11 Method for improving the adherence

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13176397.1A EP2824213A1 (en) 2013-07-12 2013-07-12 Method for improving adherence to a steel sheet with a protective coating
EP14744292.5A EP3019639B1 (en) 2013-07-12 2014-07-11 Method for improving the adherence
PCT/EP2014/064987 WO2015004284A1 (en) 2013-07-12 2014-07-11 Method for improving adherence

Publications (2)

Publication Number Publication Date
EP3019639A1 EP3019639A1 (en) 2016-05-18
EP3019639B1 true EP3019639B1 (en) 2019-02-27

Family

ID=48783076

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13176397.1A Withdrawn EP2824213A1 (en) 2013-07-12 2013-07-12 Method for improving adherence to a steel sheet with a protective coating
EP14744292.5A Active EP3019639B1 (en) 2013-07-12 2014-07-11 Method for improving the adherence

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13176397.1A Withdrawn EP2824213A1 (en) 2013-07-12 2013-07-12 Method for improving adherence to a steel sheet with a protective coating

Country Status (7)

Country Link
US (1) US9920430B2 (en)
EP (2) EP2824213A1 (en)
CN (1) CN105492646B (en)
ES (1) ES2727870T3 (en)
MX (1) MX2016000256A (en)
WO (1) WO2015004284A1 (en)
ZA (1) ZA201600018B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018202867A1 (en) * 2018-02-26 2019-08-29 Thyssenkrupp Ag Method for adaptation, homogenization and activation of surfaces with the aim of improved surface properties
DE102018216216A1 (en) 2018-09-24 2020-03-26 Thyssenkrupp Ag Process for improving the phosphatability of metallic surfaces, which are provided with a temporary pretreatment or aftertreatment
DE102018216317A1 (en) 2018-09-25 2020-03-26 Thyssenkrupp Ag Process for the modification of hot-dip galvanized surfaces
NL2022279B1 (en) * 2018-12-21 2020-07-15 Aquacare Europe B V Method for patinating zinc surfaces and system therefor
DE102019107933A1 (en) * 2019-03-27 2020-10-01 Thyssenkrupp Steel Europe Ag Process for modifying the surface of a metallic protective layer based on Zn-Al-Mg and a steel flat product applied to a flat steel product
DE102019204224A1 (en) * 2019-03-27 2020-10-01 Thyssenkrupp Steel Europe Ag Process for reconditioning hot-dip galvanized surfaces
US11905579B1 (en) * 2019-09-30 2024-02-20 Thyssenkrupp Steel Europe Ag Sheet steel having a deterministic surface structure
DE102019134298A1 (en) 2019-12-13 2021-06-17 Thyssenkrupp Steel Europe Ag Method for producing a flat steel product with a metallic protective layer based on zinc and a phosphate layer produced on a surface of the metallic protective layer and such a flat steel product
DE102020202171A1 (en) 2020-02-20 2021-08-26 Thyssenkrupp Steel Europe Ag Process for the production of a surface-finished steel sheet and surface-finished steel sheet
DE102021105210A1 (en) 2021-03-04 2022-09-08 Thyssenkrupp Steel Europe Ag Surface modification of metallic coating based on zinc in the hot-dip coating process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1119948C (en) * 2000-07-17 2003-09-03 陈永明 Clean seaweed as food material and its production process
JP3302680B2 (en) * 2000-12-21 2002-07-15 日新製鋼株式会社 Steel plate with excellent corrosion resistance
EP1524326B1 (en) * 2002-07-24 2010-10-13 Nisshin Steel Co., Ltd. Zinc-base hot dip galvanized steel sheet excellent in retention of gloss
DE102004052482A1 (en) * 2004-10-28 2006-05-11 Thyssenkrupp Steel Ag Method for producing a corrosion-protected steel sheet
DE102006035660B4 (en) * 2006-07-31 2009-08-20 Voestalpine Stahl Gmbh Corrosion protection layer with improved properties and process for its preparation
DE102006052919A1 (en) * 2006-11-08 2008-05-15 Henkel Kgaa Zr / Ti-containing phosphating solution for the passivation of metal composite surfaces
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
DE102008056844A1 (en) * 2008-11-12 2010-06-02 Voestalpine Stahl Gmbh Manganese steel strip and method of making the same
WO2013027837A1 (en) * 2011-08-24 2013-02-28 新日鐵住金株式会社 Coated plated steel material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015004284A1 (en) 2015-01-15
CN105492646A (en) 2016-04-13
MX2016000256A (en) 2016-04-28
EP2824213A1 (en) 2015-01-14
US9920430B2 (en) 2018-03-20
EP3019639A1 (en) 2016-05-18
CN105492646B (en) 2018-01-30
ZA201600018B (en) 2017-04-26
ES2727870T3 (en) 2019-10-21
US20160160357A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
EP3019639B1 (en) Method for improving the adherence
DE102008014465B4 (en) Optimized Ti / Zr passivation agent for metal surfaces and conversion treatment method
EP2907894B1 (en) Method for production of a substrate with a chromium VI free and cobalt-free passivation
DE3118375C2 (en)
DE2155670C3 (en) Zinc phosphating solution for aluminum, zinc or iron
DE3242625C2 (en) Process for the production of hot-dip galvanized steel sheets and hot-dip galvanizing melt
DE3444540A1 (en) FIRE-GALVANIZED STEEL AND METHOD FOR THE PRODUCTION THEREOF
EP2661517A1 (en) Method for surface-treating a protectively coated substrate
DE102019134298A1 (en) Method for producing a flat steel product with a metallic protective layer based on zinc and a phosphate layer produced on a surface of the metallic protective layer and such a flat steel product
EP2088223A1 (en) Phosphated sheet metal and method for producing such a sheet metal
EP0656957B1 (en) Process for phosphatizing steel zinc-coated on one side only
DE2232067B2 (en) Process for preparing metal surfaces for electrophoretic dip painting
DE102019204224A1 (en) Process for reconditioning hot-dip galvanized surfaces
DE69723782T2 (en) Annealed steel sheet and process for its manufacture
EP0039093B1 (en) Method of phosphating the surfaces of metals, and its use
EP1060290B1 (en) Aqueous solution and method for phosphatizing metallic surfaces
DE2632439A1 (en) PROCESS FOR PRODUCING A STEEL SHEET COATED WITH ALUMINUM OR AN ALUMINUM ALLOY
DE102020107653A1 (en) Process for producing a phosphating layer and a flat steel product provided with a phosphating layer
EP3332048A1 (en) Method for producing a zinc-magnesium-galvannealed hot-dip coating and flat steel product provided with such a coating
EP4182489A1 (en) Process for producing a hot dip-coated steel sheet and hot dip-coated steel sheet
DE2540685C2 (en) Process for the production of phosphate coatings
DE3108484A1 (en) METHOD FOR PRODUCING PHOSPHATE COATINGS ON METAL SURFACES
DE102019107933A1 (en) Process for modifying the surface of a metallic protective layer based on Zn-Al-Mg and a steel flat product applied to a flat steel product
DE3217145A1 (en) Method for cleaning, degreasing and activating metal surfaces
WO2015162304A1 (en) Metal sheet and method for improving the deformability of a metal sheet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014010958

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0002260000

Ipc: C23C0022830000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23G 1/10 20060101ALI20170807BHEP

Ipc: C23C 22/73 20060101ALI20170807BHEP

Ipc: C23C 22/34 20060101ALI20170807BHEP

Ipc: C23C 2/26 20060101ALI20170807BHEP

Ipc: C23C 22/83 20060101AFI20170807BHEP

Ipc: C23G 1/24 20060101ALI20170807BHEP

Ipc: C23C 2/40 20060101ALI20170807BHEP

Ipc: C23C 22/68 20060101ALI20170807BHEP

INTG Intention to grant announced

Effective date: 20170901

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOESTALPINE STAHL GMBH

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180309

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOESTALPINE STAHL GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180905

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOESTALPINE STAHL GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1101457

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014010958

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2727870

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014010958

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPOT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190711

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190711

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1101457

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140711

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230726

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230720

Year of fee payment: 10

Ref country code: GB

Payment date: 20230727

Year of fee payment: 10

Ref country code: ES

Payment date: 20230804

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230727

Year of fee payment: 10

Ref country code: FR

Payment date: 20230725

Year of fee payment: 10

Ref country code: DE

Payment date: 20230727

Year of fee payment: 10

Ref country code: BE

Payment date: 20230727

Year of fee payment: 10