EP3017247A1 - Once-through steam generator - Google Patents

Once-through steam generator

Info

Publication number
EP3017247A1
EP3017247A1 EP14747568.5A EP14747568A EP3017247A1 EP 3017247 A1 EP3017247 A1 EP 3017247A1 EP 14747568 A EP14747568 A EP 14747568A EP 3017247 A1 EP3017247 A1 EP 3017247A1
Authority
EP
European Patent Office
Prior art keywords
pipe groups
steam generator
combustion chamber
outlet
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14747568.5A
Other languages
German (de)
French (fr)
Other versions
EP3017247B1 (en
Inventor
Joachim Brodesser
Jan BRÜCKNER
Martin Effert
Tobias Schulze
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3017247A1 publication Critical patent/EP3017247A1/en
Application granted granted Critical
Publication of EP3017247B1 publication Critical patent/EP3017247B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/061Construction of tube walls
    • F22B29/062Construction of tube walls involving vertically-disposed water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/341Vertical radiation boilers with combustion in the lower part
    • F22B21/343Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber
    • F22B21/345Vertical radiation boilers with combustion in the lower part the vertical radiation combustion chamber being connected at its upper part to a sidewards convection chamber with a tube bundle between an upper and a lower drum in the convection pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/104Control systems by injecting water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/108Control systems for steam generators having multiple flow paths

Definitions

  • the invention relates to a continuous steam generator according to the preamble of claim 1, and a method for Betrei ⁇ ben such a continuous steam generator according to claim 5.
  • the invention relates specifically to continuous or
  • each combustion chamber wall comprises substantially vertically arranged and via tube ⁇ webs together gas-tight connected evaporator tubes summarized by a flow medium from bottom to top are flowed through.
  • the evaporator tubes of the continuous steamer ⁇ zeugers can be arranged while partially or over the entire length vertically or perpendicularly and / or coiled shaped.
  • Continuous steam generators can be designed as forced flow steam generator, wherein the passage of the flow medium is forced here by a feed pump.
  • Each collector segment is assigned to a wall area with representative heating.
  • Each collector segment is provided with its own feedwater supply line in the inlet area.
  • the object of the invention is therefore to provide an improved continuous steam generator and a corresponding method for operating such a continuous steam generator.
  • the advantage of the present invention is that the fact that the evaporator tubes of the combustion chamber walls entspre ⁇ accordingly its heating level are summarized by upstream inlet header respectively to Mobeizten tube groups and less heated tube groups and in the region of the respective feed water supply at least a control valve for controllably throttling the mass flow of the feed ⁇ Water and thus of the evaporator tubes flowing through the flow medium is provided, and are provided for determining a control variable for at least one control valve in the range of downstream outlet headers temperature measuring means for measuring exit temperatures of the flow medium from the evaporator tubes, so even with virtually unchanged design of the continuous evaporator, Temperature imbalances of a vertical bored combustion chamber in the entire load range of the power plant, can be effectively minimized with little effort , In the best case, this is only an additional control valve to provide as a control valve and a corresponding control concept.
  • each of the tube groups and less Berbeizten heated tube groups each one of the inlet header and an outlet header are assigned, and each of the egress ⁇ collector has one of the temperature measuring means.
  • the temperature measuring means are preferred here in the outgoing from the outlet collectors ⁇ lines installed, since a
  • each of the four Eckwand Schemee has its own feed water supply line, each with its own control valve. Through these He ⁇ furtherance of that can be done if necessary, also modular, a further equalizing the temperature distribution at the outlet of the evaporator wall of a senkrechtberohrten
  • FIG 2 schematically illustrates a second invention Ausbil ⁇ dung.
  • the present invention is based to be segmented and then to manipulate de ⁇ ren flow rates targeted the mass flow distribution of the evaporator tubes by flowing flow medium in more heated tube groups 10 and equally heated tube groups 11 on the idea in an internal ⁇ chamber. 1
  • loading this means that wall portions large flow rates and wall areas with cu ⁇ engined heating should have correspondingly lower flow rates with high heating ver ⁇ tively.
  • the complete combustion chamber 1 in re- presentative wall regions El to E4 and Ml to M4 divided with under ⁇ retired union heating zones - For this purpose - as exemplified in FIG 1 and FIG. 2 This is done here at least by segmentation of the evaporator tubes in tube groups 10 and 11 by means not shown inlet collector at the lower end of the (forced) fürlaufdampf- generator.
  • Each combustion chamber wall are two inlet header segments at the corners and an intermediate inlet header segment zugeord ⁇ net.
  • Each of the inlet header segments is a wall ⁇ area with representative heating, assigned to the less heated Eckwand Schemeen E1-E4 and the more heated Mittenwand- areas M1-M4 herein wherein the Eckwand Schemeen E1-E4 are each associated with two inlet header segments at the corner of two be ⁇ nachbarter combustion chamber walls ,
  • Each Eckwandbe ⁇ rich El to E4 is a feedwater supply line Sl to S4 for supplying feed water associated with the corresponding inlet collectors.
  • a regulating valve R is provided, can be applied to different loads, and also to interpretation ⁇ supply uncertainties at the assumed heat distribution to the individual Eckwand Schemee El to E4, are reacted adequately by by controlled opening or closing the regulating valve R, the the feed pipe mass flow supplied to the evaporator tubes of the tube groups 11 of the corner wall regions E1 to E4 is adapted to the current operating requirements. Not shown in FIG 1, the supply of the tube groups 10 of the middle wall areas Ml to M4 with feed water from the feedwater main supply line 20th
  • the feed ⁇ water supply 20 of the underheated pipe groups 11 is reduced by throttling the control valve R extent that align the outlet temperatures of the underheated pipe groups 11 which the more stained pipe groups 10 and thus the entire temperature profile at the outlet of the
  • the simplest system consists, as shown in FIG. 1, of only one additional control valve R in the feedwater main supply line 20. It is assumed that the four corner wall regions E1 to E4 of the combustion chamber undergo almost the same heating with one another and so on the feedwater supply lines Sl to S4 and the feedwater main supply line 20 can be combined as a common tube group with a common feedwater supply. Similarly, the remaining wall center areas Ml to M4 are summarized by a corresponding, but not shown, feedwater supply to a common pipe group.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

The invention relates to a once-through steam generator, in particular forced-flow once-through steam generator, having a combustion chamber (1) of substantially rectangular cross section, the combustion chamber walls of which comprise substantially vertically arranged evaporator pipes, connected to one another in gas-tight fashion by means of pipe webs, of the once-through steam generator, through which evaporator pipes a flow medium can flow from bottom to top, wherein the evaporator pipes of the combustion chamber walls are, in accordance with their degree of heating, combined by way of upstream inlet collectors in each case to form more intensely heated pipe groups (10) and less intensely heated pipe groups (11), and wherein a feed water supply (20, S1, S2, S3, S4) is assigned to the respective inlet collectors. Here, at least one regulating valve (R, R1, R2, R3, R4) for the regulated throttling of the mass flow of the flow medium into the evaporator pipes is provided in the region of the feed water supply (20, S1, S2, S3, S4), and to determine a control variable for the at least one regulating valve (R, R1, R2, R3, R4), temperature measurement means for measuring outlet temperatures of the flow medium exiting the evaporator pipes are provided in the region of downstream outlet collectors, and wherein each of the more intensely heated pipe groups (10) and less intensely heated pipe groups (11) is assigned to in each case one of the inlet collectors and to an outlet collector, and each of the outlet collectors has one of the temperature measurement means.

Description

Beschreibung description
Durchlaufdampferzeuger Through steam generator
Die Erfindung betrifft einen Durchlaufdampferzeuger gemäß dem Oberbegriff des Anspruchs 1, sowie ein Verfahren zum Betrei¬ ben eines solchen Durchlaufdampferzeugers gemäß Anspruch 5. The invention relates to a continuous steam generator according to the preamble of claim 1, and a method for Betrei ¬ ben such a continuous steam generator according to claim 5.
Die Erfindung bezieht sich konkret auf Durchlauf- bzw. The invention relates specifically to continuous or
Zwangdurchlaufdampferzeuger für Kraftwerksanlagen, mit einer im Querschnitt rechteckigen Brennkammer, deren jede Brennkammerwand im Wesentlichen vertikal angeordnete und über Rohr¬ stege miteinander gasdicht verbundene Verdampferrohre um- fasst, die von einem Strömungsmedium von unten nach oben durchströmbar sind. Die Beheizung dieser, die Brennkammerwände bildenden Verdampferrohre, führt hier zu einer vollständi¬ gen Verdampfung des Strömungsmediums in einem Durchgang. Forced-circulation steam generators for power plants, with a rectangular in cross-section combustion chamber, each combustion chamber wall comprises substantially vertically arranged and via tube ¬ webs together gas-tight connected evaporator tubes summarized by a flow medium from bottom to top are flowed through. The heating of these, the combustion chamber walls forming evaporator tubes, leads here to a volli ¬ gene evaporation of the flow medium in one go.
Prinzipiell können die Verdampferrohre des Durchlaufdampfer¬ zeugers dabei teilweise oder über die ganze Länge vertikal bzw. senkrecht und/oder schrauben- bzw. spiralförmig angeordnet sein. Durchlaufdampferzeuger können dabei als Zwangdurchlaufdampferzeuger ausgelegt sein, wobei der Durchlauf des Strömungsmediums hier von einer Speisepumpe erzwungen wird . In principle, the evaporator tubes of the continuous steamer ¬ zeugers can be arranged while partially or over the entire length vertically or perpendicularly and / or coiled shaped. Continuous steam generators can be designed as forced flow steam generator, wherein the passage of the flow medium is forced here by a feed pump.
Wesentliche Vorteile eines reinen vertikalen Verdampferrohrkonzeptes sind eine einfache Konstruktion der Brennkammerauf¬ hängung, ein geringer Fertigungs- und Montageaufwand sowie eine größere Wartungsfreundlichkeit. Im Vergleich zu einer spiralförmig berohrten Brennkammerwand lassen sich auf diesem Weg die Investitionskosten erheblich reduzieren. Designbedingt sind aber die Temperaturschieflagen solcher senkrecht berohrten Verdampferrohrkonzepte im Vergleich zu spiralförmig berohrten Brennkammern wesentlich größer. Während die Major advantages of a pure vertical evaporator tube concept is a simple construction of Brennkammerauf ¬ hanging, low manufacturing and assembly costs and greater ease of maintenance. Compared to a spirally bored combustion chamber wall, the investment costs can be significantly reduced in this way. Due to the design, however, the temperature imbalances of such vertically drilled evaporator tube concepts are much greater in comparison to spirally bored combustion chambers. While the
Verdampferrohre in einer Spiralwicklung nahezu sämtliche Be¬ heizungszonen der Brennkammer durchlaufen und sich somit ein guter Beheizungsausgleich erzielen lässt, verbleiben die einzelnen Brennkammerrohre der Senkrechtberohrung vom vor- geschalteten Verdampfer-Eintrittssammler bis zum nachgeschalteten Verdampfer-Austrittssammler in der jeweiligen Beheizungszone. Somit erfahren Rohre in stark beheizten Brennkammerbereichen, z. B. in der Nähe der Brenner oder auch im Mit- tenwandbereich von Brennkammern mit rechteckigem Querschnitt, über der gesamten Rohrlänge eine kontinuierliche Mehrbehei¬ zung. Rohre in schwach beheizten Brennkammerbereichen, insbesondere die Eckwandrohre der Brennkammer mit rechteckigem Querschnitt, erfahren dagegen über der gesamten Rohrlänge ei- ne Minderbeheizung. Bei Konzepten mit spiralförmigen Verdampferrohren liegen die Mehr- und Minderbeizungen einzelner Rohre bzw. Rohrgruppen im niedrigen einstelligen Prozentbereich. Bei senkrecht berohrten Konzepten, sind hingegen bezogen auf die mittlere Wärmeaufnahme eines einzelnen Ver- dampferrohres , deutlich größere Mehr- und Minderbeheizungen bekannt. Die wesentliche Herausforderung bei senkrecht berohrten Brennkammerwänden liegt demnach in der Beherrsch- barkeit dieser großen Beheizungsschieflagen zwischen einzelnen Verdampferrohren. Evaporator tubes in a spiral winding through almost all Be ¬ heating zones of the combustion chamber and thus a good heat balance can be achieved, the individual combustion chamber pipes remain the perpendicular to the Vorberberohrung switched evaporator inlet collector to the downstream evaporator outlet collector in the respective heating zone. Thus, pipes in heavily heated combustion chamber areas, z. B. in the vicinity of the burner or in the middle wall region of combustion chambers with rectangular cross-section, a continuous Mehrbehei ¬ tion over the entire tube length. On the other hand, pipes in weakly heated combustion chamber areas, in particular the corner wall pipes of the combustion chamber with a rectangular cross section, experience a lower heating over the entire pipe length. In concepts with spiral-shaped evaporator tubes, the excess and minor admixtures of individual tubes or tube groups are in the low single-digit percentage range. With vertically bored concepts, however, with regard to the average heat absorption of a single evaporator tube, considerably greater increased and reduced heaters are known. The main challenge with vertically bored combustion chamber walls is therefore the controllability of these large heating imbalances between individual evaporator pipes.
Ein sehr wirksamer und bereits in der DE 4 431 185 AI offenbarter Weg, das zuvor beschriebene Problem zu lösen, ist eine Auslegung der Senkrechtberohrung nach dem sogenannten "Low- Mass-Flux" Design. Bei diesem Lösungsansatz werden in der Senkrechtberohrung geringstmögliche Massenstromdichten angestrebt, die in einer positiven Durchsatz-Charakteristik der einzelnen Verdampferrohre münden. Konkret bedeutet dies, dass Rohre mit einer Mehrbeheizung einen höheren und Rohre mit einer Minderbeheizung einen geringeren Durchsatz aufweisen. So- mit kann alleine durch eine zielgerichtete Anwendung physika¬ lischer Gesetzmäßigkeiten dem Auftreten unzulässig hoher Temperaturschieflagen wirksam entgegengetreten werden. Da aber in den letzten Jahren die Anforderungen hinsichtlich des Anlagenwirkungsgrades stetig gestiegen sind und sich somit Frischdampftemperatur und -druck ebenfalls kontinuierlich gesteigert haben und zudem auch immer größere Lastbereiche durch die Kraftwerksanlage abgedeckt werden müssen, besteht eine Notwendigkeit dieses "Low-Mass-Flux" Design weiterzuent- wickeln. Der Einsatz neuentwickelter Werkstoffe und deren Be- herrschbarkeit in der Verarbeitung und während des Betriebs der Kraftwerksanlage machen es zudem erforderlich, mögliche Temperaturschieflagen noch weiter zu reduzieren. A very effective and already disclosed in DE 4 431 185 AI way to solve the problem described above, is an interpretation of the vertical overflow according to the so-called "low-mass flux" design. In this approach, the lowest possible mass flow densities are sought in the vertical overflow, which open in a positive flow rate characteristic of the individual evaporator tubes. In concrete terms, this means that pipes with a multiple heating have a higher throughput and pipes with a lower heating have a lower throughput. With so-alone can be effectively countered the occurrence of inadmissible high temperature Misalignment by a targeted application physika ¬ Lischer laws. However, since in recent years, the requirements in terms of plant efficiency have steadily increased and thus steam temperature and pressure have also continuously increased and also increasingly larger load ranges must be covered by the power plant, there is a need of this "low-mass flux" design weiterzuent- wrap. The use of newly developed materials and their controllability during processing and during operation of the power plant also make it possible to further reduce possible temperature imbalances.
Naheliegend wäre es die Massenstromverteilung auf einzelne Brennkammerwandbereiche und damit verschiedene Gruppen von Verdampferrohren aufzuteilen und diese dann gezielt zu manipulieren. Konkret bedeutet dies, dass in bevorzugter Art und Weise Wandbereiche mit einer hohen Beheizung vergleichsweise große Durchflussraten und Wandbereiche mit niedriger Behei¬ zung entsprechend niedrigere Durchflussraten aufweisen sollten. Zu diesem Zweck muss die Brennkammer zur Berücksichtigung unterschiedlicher Beheizungszonen in repräsentative Wandbereiche unterteilt werden. Dies geschieht durch eineIt would be obvious to divide the mass flow distribution over individual combustion chamber wall regions and thus different groups of evaporator tubes and then manipulate these in a targeted manner. Specifically, this means that in a preferred manner wall regions with a high heating relatively large flow rates and wall areas of low Behei ¬ wetting should have correspondingly lower flow rates. For this purpose, the combustion chamber must be subdivided into representative wall areas to take account of different heating zones. This is done by a
Segmentierung der Ein- und Austrittssammler. Jedes Sammlersegment ist dabei einem Wandbereich mit repräsentativer Beheizung zugeordnet. Im Eintrittsbereich wird jedes Sammlersegment mit einer eigenen Speisewasserzuführungsleitung ver- sehen. Durch die Wahl einer geeigneten geometrischen Ausgestaltung dieser Zuführungsleitungen, bzw. durch die Installation zusätzlicher Drosselblenden im Bereich dieser Zuführungsleitungen, kann abhängig von der jeweiligen Beheizungssituation die Aufteilung des Gesamtspeisewassermassenstroms auf die einzelnen Sammlersegmente zielgerichtet vorgenommen werden . Segmentation of the inlet and outlet collectors. Each collector segment is assigned to a wall area with representative heating. Each collector segment is provided with its own feedwater supply line in the inlet area. By selecting a suitable geometric configuration of these supply lines, or by installing additional orifices in the region of these supply lines, the distribution of the total feed water mass flow can be made targeted to the individual collector segments depending on the particular heating situation.
Geometrisch aufeinander abgestimmte Zuführungsleitungen bzw. Drosselblenden haben aber den entscheidenden Nachteil, dass sich ihre Drosselleistung mit der Last verändert. Somit kann die Massenstromverteilung im Verdampfer und die damit verknüpften Temperaturschieflagen am Verdampferaustritt systembedingt nur für einen bestimmten Lastbereich optimiert werden. Darüber hinaus können sowohl die Zuführungsleitungen als auch die Drosselblenden nur bei genauer Kenntnis der Wärmeverteilung über dem Brennkammerumfang zielgerichtet ausgelegt und aufeinander abgestimmt werden. Weicht dann im Betrieb der Kraftwerksanlage die auftretende Wärmeverteilung von der in den Auslegungsberechnungen der Zuführungsleitungen bzw. Drosselblenden verwendeten Verteilung ab, so können im ungünstigsten Fall die Temperaturschieflagen sogar noch ansteigen. Die Idee das Design über die geometrische Anpassung der Zu¬ führungsleitungen mit oder ohne Drosselblenden weiter abzusichern kehrt sich so unter Umständen sogar in das Gegenteil um. However, geometrically matched supply lines or throttle diaphragms have the decisive disadvantage that their throttle power changes with the load. Thus, the mass flow distribution in the evaporator and the associated temperature imbalances at the evaporator outlet system can be optimized only for a specific load range. In addition, both the supply lines and the orifices can be targeted and matched to one another only with precise knowledge of the heat distribution over the combustion chamber circumference. Then differs in the operation of the power plant, the occurring heat distribution of the in From the design calculations of the supply lines or orifices used distribution, so in the worst case, the temperature imbalances may even increase. The idea of further protecting the design by means of the geometrical adaptation of the supply lines with or without orifices may in some circumstances even turn into the opposite.
Aufgabe der Erfindung ist es daher, einen verbesserten Durchlaufdampferzeuger sowie ein entsprechendes Verfahren zum Betreiben eines solchen Durchlaufdampferzeugers bereitzustel¬ len . The object of the invention is therefore to provide an improved continuous steam generator and a corresponding method for operating such a continuous steam generator.
Diese Aufgabe wird mit dem Durchlaufdampferzeuger mit den Merkmalen des Anspruchs 1 sowie dem Verfahren mit den Merkma¬ len des Anspruchs 5 gelöst. This object is achieved with the continuous steam generator with the features of claim 1 and the method with the Merkma ¬ len of claim 5.
Der Vorteil der vorliegenden Erfindung besteht darin, dass dadurch, dass Verdampferrohre der Brennkammerwände entspre¬ chend ihrem Beheizungsgrad durch stromaufwärts angeordnete Eintrittssammler jeweils zu mehrbeizten Rohrgruppen und minderbeheizten Rohrgruppen zusammengefasst sind und im Bereich der entsprechenden Speisewasserzuführung zumindest ein Regelventil zum geregelten Drosseln des Massenstroms des Speise¬ wassers und damit des die Verdampferrohre durchströmenden Strömungsmediums vorgesehen ist, und zum Bestimmen einer Regelgröße für das zumindest eine Regelventil im Bereich von stromabwärts angeordneten Austrittssammlern Temperaturmessmittel zum Messen von Austrittstemperaturen des Strömungsmediums aus den Verdampferrohren vorgesehen sind, können so auch bei nahezu unverändertem Design des DurchlaufVerdampfers, Temperaturschieflagen einer senkrecht berohrten Brennkammer im gesamten Lastbereich der Kraftwerksanlage, mit geringem Aufwand effektiv minimiert werden. Im günstigsten Fall ist hierfür nur ein zusätzliches Regelventil als Regelarmatur und ein entsprechendes Regelkonzept vorzusehen. Das erfin¬ dungsgemäße Verfahren zum Betreiben eines solchen Durchlaufdampferzeugers sieht dabei vor, dass die Speisewasserzufüh- rung der minderbeheizten Rohrgruppen durch Androsselung des zumindest einen Regelventils soweit reduziert wird, dass sich die Austrittstemperaturen der mehrbeizten Rohrgruppen denen der minderbeheizten Rohrgruppen angleichen bzw. sich auf ähnlichem Niveau befinden. The advantage of the present invention is that the fact that the evaporator tubes of the combustion chamber walls entspre ¬ accordingly its heating level are summarized by upstream inlet header respectively to mehrbeizten tube groups and less heated tube groups and in the region of the respective feed water supply at least a control valve for controllably throttling the mass flow of the feed ¬ Water and thus of the evaporator tubes flowing through the flow medium is provided, and are provided for determining a control variable for at least one control valve in the range of downstream outlet headers temperature measuring means for measuring exit temperatures of the flow medium from the evaporator tubes, so even with virtually unchanged design of the continuous evaporator, Temperature imbalances of a vertical bored combustion chamber in the entire load range of the power plant, can be effectively minimized with little effort , In the best case, this is only an additional control valve to provide as a control valve and a corresponding control concept. The dung OF INVENTION ¬ proper method of operation of such a continuous-flow steam generator in this case provides that the Speisewasserzufüh- tion of the underheated pipe groups by throttling the at least one control valve is reduced so far that the outlet temperatures of the more stained pipe groups to match those of the underheated pipe groups or are at a similar level.
Vorzugsweise sind jeder der mehrbeizten Rohrgruppen und minderbeheizten Rohrgruppen jeweils einer der Eintrittssammler und ein Austrittssammler zugeordnet, und jeder der Austritts¬ sammler weist eines der Temperaturmessmittel auf. Bevorzugt sind die Temperaturmessmittel dabei in den von den Austritts¬ sammlern abgehenden Leitungen installiert, da hier eine Preferably, each of the tube groups and less mehrbeizten heated tube groups each one of the inlet header and an outlet header are assigned, and each of the egress ¬ collector has one of the temperature measuring means. The temperature measuring means are preferred here in the outgoing from the outlet collectors ¬ lines installed, since a
Mischtemperatur gemessen wird. Mixing temperature is measured.
Gerade bei im Wesentlichen rechteckigen Brennkammern, die ausgeprägte minderbeheizte Rohrgruppen in den Eckwandberei¬ chen aufweisen, kann es vorteilhaft sein, wenn jeder der vier Eckwandbereiche eine eigene Speisewasserzuführungsleitung mit jeweils einem eigenen Regelventil aufweist. Durch diese Er¬ weiterung, die im Bedarfsfall auch modular erfolgen kann, kann eine weitere Vergleichmäßigung der Temperaturverteilung am Austritt der senkrechtberohrten Verdampferwand eines Especially with substantially rectangular combustors having less pronounced heated tube groups in the Eckwandberei ¬ Chen, it may be advantageous if each of the four Eckwandbereiche has its own feed water supply line, each with its own control valve. Through these He ¬ furtherance of that can be done if necessary, also modular, a further equalizing the temperature distribution at the outlet of the evaporator wall of a senkrechtberohrten
Durchlaufdampferzeugers erreicht werden. Unter diesen Umstän¬ den ist es sogar denkbar den Durchlaufdampferzeuger vom Eintritt bis zum Ausritt in einem kompletten Durchlauf zu berohren, so dass bislang noch vorgesehene Umkehrsammler entfallen können. Der für die dynamische Stabilität gegebenenfalls erforderliche Druckausgleich könnte hier mit einem weitaus kostengünstigeren Druckausgleichsammler realisiert werden . Continuous steam generator can be achieved. Under these circum stances ¬ it is even conceivable to through steam generator from the entrance to the ride to berohren in a complete cycle can be eliminated so far not provided reverse collector. The possibly necessary for dynamic stability pressure equalization could be realized here with a much cheaper pressure equalization collector.
Weitere vorteilhafte Weiterbildungen des erfindungsgemäßen Durchlaufdampferzeugers bzw. des zwangdurchströmten Durchlaufdampferzeugers sind den weiteren Unteransprüchen zu ent¬ nehmen . Die Erfindung soll nun anhand der nachfolgenden Figuren beispielhaft erläutert werden. Es zeigen: Other advantageous further developments of the once-through steam generator according to the invention or the forced-flow-through steam generator are taking the further dependent claims to ent ¬. The invention will now be explained by way of example with reference to the following figures. Show it:
FIG 1 schematisch im Querschnitt eine erfindungsgemäße 1 shows schematically in cross section an inventive
Ausbildung eines Durchlaufdampferzeugers mit recht¬ eckiger Brennkammer, Formation of a continuous steam generator with rectangular combustion chamber,
FIG 2 schematisch eine zweite erfindungsgemäße Ausbil¬ dung . Die vorliegende Erfindung beruht auf der Idee in einer Brenn¬ kammer 1 die Massenstromverteilung des die Verdampferrohre durchströmenden Strömungsmediums in mehrbeheizte Rohrgruppen 10 und minderbeheizte Rohrgruppen 11 zu segmentieren und de¬ ren Durchflussraten dann gezielt zu manipulieren. Konkret be- deutet dies, dass Wandbereiche mit hoher Beheizung ver¬ gleichsweise große Durchflussraten und Wandbereiche mit nied¬ riger Beheizung entsprechend niedrigere Durchflussraten aufweisen sollten. Zu diesem Zweck wird - wie in FIG 1 und FIG 2 beispielhaft dargestellt - die komplette Brennkammer 1 in re- präsentative Wandbereiche El bis E4 und Ml bis M4 mit unter¬ schiedlichen Beheizungszonen unterteilt. Dies erfolgt hier zumindest durch eine Segmentierung der Verdampferrohre in Rohrgruppen 10 und 11 mittels nicht näher dargestellter Eintrittssammler am unteren Ende des ( Zwang- ) Durchlaufdampf- erzeugers . FIG 2 schematically illustrates a second invention Ausbil ¬ dung. The present invention is based to be segmented and then to manipulate de ¬ ren flow rates targeted the mass flow distribution of the evaporator tubes by flowing flow medium in more heated tube groups 10 and equally heated tube groups 11 on the idea in an internal ¬ chamber. 1 In concrete terms, loading, this means that wall portions large flow rates and wall areas with cu ¬ engined heating should have correspondingly lower flow rates with high heating ver ¬ tively. The complete combustion chamber 1 in re- presentative wall regions El to E4 and Ml to M4 divided with under ¬ retired union heating zones - For this purpose - as exemplified in FIG 1 and FIG. 2 This is done here at least by segmentation of the evaporator tubes in tube groups 10 and 11 by means not shown inlet collector at the lower end of the (forced) Durchlaufdampf- generator.
In dem in FIG 1 schematisch dargestellten Querschnitt durch den Durchlaufdampferzeuger der Brennkammer 1 sind zwölf segmentierte Rohrgruppen 10 und 11 zu sehen. Jeder Brennkammer- wand sind dabei zwei Eintrittssammlersegmente an den Ecken und ein dazwischen liegendes Eintrittssammlersegment zugeord¬ net. Jedes der Eintrittssammlersegmente ist dabei einem Wand¬ bereich mit repräsentativer Beheizung, hier den minderbeheizten Eckwandbereichen E1-E4 und den mehrbeheizten Mittenwand- bereichen M1-M4 zugeordnet, wobei den Eckwandbereichen E1-E4 jeweils zwei Eintrittssammlersegmente an der Ecke zweier be¬ nachbarter Brennkammerwände zugeordnet ist. Jedem Eckwandbe¬ reich El bis E4 ist dabei eine Speisewasserzuführungsleitung Sl bis S4 zum Zuführen von Speisewasser zu den entsprechenden Eintrittssammlern zugeordnet. Diese können dabei, wie in FIG 1 dargestellt, von einer SpeisewasserhauptZuführungsleitung 20 aus entsprechend verzweigen und in jedem Eckwandbereich jeweils zwei Rohrgruppen benachbarter Brennkammerwände über die entsprechenden Eintrittssammlersegmente mit Speisewasser versorgen (in FIG 1 durch Pfeile angedeutet) . Die Speisewas¬ serhauptZuführungsleitung 20 und die Speisewasserzuführungs- leitungen Sl bis S4 bilden dabei die Speisewasserzuführung zu den Rohrgruppen 11 der Eckwandbereiche. Ist nun in der SpeisewasserhauptZuführungsleitung 20 ein Regelventil R vorgesehen, so kann auf unterschiedliche Lasten und auch auf Ausle¬ gungsunsicherheiten bei der angenommenen Wärmeverteilung, auf die einzelnen Eckwandbereiche El bis E4, adäquat reagiert werden, indem durch geregeltes Öffnen oder Schließen des Regelventils R, der den Verdampferrohren der Rohrgruppen 11 der Eckwandbereiche El bis E4 zugeführte Speisewassermassenstrom, den aktuellen Betriebsanforderungen angepasst wird. Nicht dargestellt ist in der FIG 1 die Versorgung der Rohrgruppen 10 der Mittenwandbereiche Ml bis M4 mit Speisewasser aus der SpeisewasserhauptZuführungsleitung 20. In the cross section through the continuous steam generator of the combustion chamber 1 shown schematically in FIG. 1, twelve segmented pipe groups 10 and 11 can be seen. Each combustion chamber wall are two inlet header segments at the corners and an intermediate inlet header segment zugeord ¬ net. Each of the inlet header segments is a wall ¬ area with representative heating, assigned to the less heated Eckwandbereichen E1-E4 and the more heated Mittenwand- areas M1-M4 herein wherein the Eckwandbereichen E1-E4 are each associated with two inlet header segments at the corner of two be ¬ nachbarter combustion chamber walls , Each Eckwandbe ¬ rich El to E4 is a feedwater supply line Sl to S4 for supplying feed water associated with the corresponding inlet collectors. These can, as shown in FIG. 1, branch out correspondingly from a feedwater main supply line 20 and supply in each corner wall region in each case two tube groups of adjacent combustion chamber walls via the corresponding inlet collector segments with feedwater (indicated by arrows in FIG. 1). The Speisewas ¬ serhauptZuführungsleitung 20 and the Speisewasserzuführungs- lines Sl to S4 form the feed water supply to the tube groups 11 of Eckwandbereiche. Is now in the feed water main supply line 20, a regulating valve R is provided, can be applied to different loads, and also to interpretation ¬ supply uncertainties at the assumed heat distribution to the individual Eckwandbereiche El to E4, are reacted adequately by by controlled opening or closing the regulating valve R, the the feed pipe mass flow supplied to the evaporator tubes of the tube groups 11 of the corner wall regions E1 to E4 is adapted to the current operating requirements. Not shown in FIG 1, the supply of the tube groups 10 of the middle wall areas Ml to M4 with feed water from the feedwater main supply line 20th
Mittels im Bereich von stromabwärts angeordneten Austritts¬ sammlern vorgesehenen Temperaturmessmitteln zum Messen der Austrittstemperaturen des Strömungsmediums kann die Speise¬ wasserzuführung 20 der minderbeheizten Rohrgruppen 11 durch Androsselung des Regelventils R soweit reduziert wird, dass sich die Austrittstemperaturen der minderbeheizten Rohrgruppen 11 denen der mehrbeizten Rohrgruppen 10 angleichen und somit sich das gesamte Temperaturprofil am Austritt des By means provided in the region of downstream outlet ¬ collectors temperature measuring means for measuring the outlet temperatures of the flow medium, the feed ¬ water supply 20 of the underheated pipe groups 11 is reduced by throttling the control valve R extent that align the outlet temperatures of the underheated pipe groups 11 which the more stained pipe groups 10 and thus the entire temperature profile at the outlet of the
Durchlaufdampferzeugers vergleichmäßigt. Unzulässig hohe Tem¬ peraturschieflagen können so effektiv und ohne großen Aufwand verhindert werden, da in Abhängigkeit der gemessenen Tempera¬ turen, Wandbereiche mit geringer Wärmeaufnahme nun geringere Durchströmungen und Wandbereiche mit großer Wärmeaufnahme ei¬ ne hohe Durchströmung aufweisen. Vorzugsweise können dabei am Verdampferaustritt die Tempera¬ turmessmittel der mehrbeheizten Rohrgruppen 10 aus den Mit- tenwandbereichen als "hoch beheiztes" und die Temperaturmess¬ mittel der minderbeheizten Rohrgruppen 11 aus den Eckwandbe- reichen als "niedrig beheiztes" System zusammengefasst wer¬ den. Ist die gemessene Temperatur des als "hoch beheizten" zusammengefassten Systems zu groß, so kann durch zusätzliche Androsselung des Regelventils der Durchfluss durch die Eck¬ wandbereiche reduziert und im Umkehrschluss in den Mitten- wandbereichen angehoben werden, so dass sich die mittlereContinuous steam generator evened. Unacceptably high Tem ¬ peraturschieflagen can be prevented as effectively and without much effort, as a function of the measured temperature ¬ tures, wall areas with low heat absorption now have lower through currents and wall areas with large heat absorption ei ¬ ne high flow. Preferably, while at the evaporator outlet tempera ¬ turmes medium of the more heated tube groups 10 from the co- tenwandbereichen as "highly heated" and the temperature measurement ¬ medium of less heated tube groups 11 are sufficient to Eckwandbe- as "low heated" system summarized ¬ to. If the measured temperature of the "high-heated" combined system is too large, it can be reduced by additional throttling of the control valve, the flow through the corner ¬ wall areas and raised in reverse in the middle wall areas, so that the middle
Temperatur der Mittenwandbereiche auf das gewünschte Niveau absenken lässt. Lower the temperature of the middle wall areas to the desired level.
Um die zusätzlichen Kosten sowie den regelungstechnischen Aufwand überschaubar zu halten bzw. zu begrenzen, sollte die maximale Anzahl der einzelnen Sammlersegmente samt zugehöri¬ ger Regelventile möglichst limitiert werden. Das einfachste System besteht dabei, wie in FIG 1 dargestellt, aus nur einem zusätzlichen Regelventil R in der Speisewasserhauptzuführlei- tung 20. Dabei wird davon ausgegangen, dass die vier Eckwand¬ bereiche El bis E4 der Brennkammer untereinander nahezu die gleiche Beheizung erfahren und so über die Speisewasserzu- führleitungen Sl bis S4 und die Speisewasserhauptzuführlei- tung 20 als eine gemeinsame Rohrgruppe mit einer gemeinsamen Speisewasserzuführung zusammengefasst werden können. Analog dazu sind die verbleibenden Wandmittenbereiche Ml bis M4 durch eine entsprechende, aber nicht näher dargestellte, Speisewasserzuführung auch zu einer gemeinsamen Rohrgruppe zusammengefasst . In order to keep the additional costs as well as control engineering effort manageable and to limit the maximum number of individual collectors segments including zugehöri ¬ ger control valves should be limited as possible. The simplest system consists, as shown in FIG. 1, of only one additional control valve R in the feedwater main supply line 20. It is assumed that the four corner wall regions E1 to E4 of the combustion chamber undergo almost the same heating with one another and so on the feedwater supply lines Sl to S4 and the feedwater main supply line 20 can be combined as a common tube group with a common feedwater supply. Similarly, the remaining wall center areas Ml to M4 are summarized by a corresponding, but not shown, feedwater supply to a common pipe group.
Sollen auch Schieflagen zwischen den einzelnen Eckwandbereichen El bis E4 (und ggf. zusätzlich auch zwischen den einzel¬ nen Mittenwandbereichen Ml bis M4) untereinander berücksichtigt und ausgeglichen werden, sind - so wie in FIG 2 darge- stellt - im Minimum vier Regelventile Rl bis R4 in jeder der Speisewasserzuführungsleitungen Sl bis S4 zu installieren. Das heißt jedem Eckwandbereich El bis E4 kann unabhängig von den anderen Eckwandbereichen Speisewasser individuell gere- gelt zugeführt werden. Vorteilhafterweise hat hier dabei je¬ des der vier Eckwandsysteme El bis E4 sein eigenes Tempera¬ turmessmittel. Je nach Temperaturverteilung des Strömungsme¬ diums am Austritt des jeweiligen Eckwandbereichs werden diese nun im Verbund derart individuell angedrosselt, dass sich ein relativ gleichmäßiges Austrittstemperaturprofil über dem ge¬ samten Wandumfang des Verdampfers des Durchlaufdampferzeugers einstellt. Hinsichtlich der Koordination der einzelnen Regelventile Rl bis R4 untereinander steigt hier aber auch erwar- tungsgemäß der regelungstechnische Aufwand. Are also imbalances between individual Eckwandbereichen El to E4 (and possibly additionally also between the individual ¬ nen center wall portions Ml to M4) are taken into account with each other and balanced, are - as in FIG 2 ones shown, is - at minimum four control valves Rl to R4 in each of the feedwater supply lines Sl to S4 to install. That is, each Eckwandbereich El to E4 can independently irrespective of the other corner wall areas individually regulated feed water. be fed. Advantageously, each of the four ¬ Eckwandsysteme El has this to E4 his own tempera ¬ turmes medium here. Depending on the temperature distribution of the Strömungsme ¬ diums at the outlet of the respective Eckwandbereichs these are now throttled individually in the composite so that sets a relatively uniform outlet temperature profile over the ge ¬ entire wall circumference of the evaporator of the continuous steam generator. With regard to the coordination of the individual control valves R1 to R4 with each other, the control engineering effort also increases, as expected.
Kombinationen der zuvor beschriebenen Ausführungsbeispiele sowie weitere Ergänzungen sind vor dem Hintergrund von zuneh¬ menden Anforderungen an die Flexibilität während des Betriebs einer Kraftwerkanlage denkbar und sind von der Erfindung mit umfasst. So können zusätzlich auch Schieflagen der einzelnen Mittenwandbereiche Ml bis M4 untereinander und in Bezug zu den Eckwandbereiche El bis E4 berücksichtigt und ausgeglichen werden, wenn entsprechende Speisewasserzuführungsleitungen und Regelventile zur Androsselung dieser hoch beheizten Mittenwandbereiche vorgesehen werden. Würde man gleichzeitig auf eigene Regelventile in den Zuführungsleitungen der Rohrgrup¬ pen der Eckwandbereiche El bis E4 verzichten, so wäre in die¬ sem speziellen Fall im Vorfeld der Durchfluss durch die Eck- wandbereiche beispielsweise mittels fest installierter Dros¬ seln soweit zu begrenzen, dass eine Regelung des Speisewas- sermassenstroms der Mittenwandbereiche überhaupt erst ermög¬ licht wird. Nur unter diesen Umständen wäre bei voll geöffne¬ ter Regelarmatur in den Zuführungsleitungen der hoch beheiz- ten Mittenwandsysteme deren Durchsatz so groß, dass trotz hö¬ herer Beheizung die Mittenwandsysteme im Vergleich zu den Eckrohrsystemen geringere Austrittstemperaturen hätten. Durch eine zusätzliche Androsselung der Regelventile der Mitten¬ wandsysteme, könnte der nun zu groß geratene Durchsatz durch die Mittenwandsysteme wieder reduziert werden, um die Aus¬ trittstemperaturen aller Systeme zu vergleichmäßigen. Neben der projektierten Auslegung des Durchlaufdampferzeugers zur Kompensation von Temperaturschieflagen können mit der erfindungsgemäßen Auslegung des Durchlaufdampferzeugers und dem erfindungsgemäßen Verfahren aber auch Fehlauslegungen des Verteilersystems der Speisewasserzuführung komfortabel abge¬ federt werden. Zudem sind Beheizungsschieflagen, die bei der Auslegung der Brennkammer nicht berücksichtigt wurden, durch die vorliegende Erfindung ohne negative Folgeerscheinungen sicher handhabbar. Zusätzlich können unter Umständen Brenn- stoffkombinationen gefahren werden, die vorher nicht möglich waren, weil flexibel auf Beheizungsschieflagen reagiert werden kann. Alles in allem erhöht die vorliegende Erfindung die Verfügbarkeit des Durchlaufdampferzeugers und damit der ge¬ samten Kraftwerksanlage. Combinations of the above-described embodiments and other additions are conceivable against the background of increas ¬ upcoming demands for flexibility during the operation of a power plant and are encompassed by the invention. Thus, in addition, inclinations of the individual middle wall regions M1 to M4 can also be taken into account and compensated for each other and with respect to the corner wall regions E1 to E4 if corresponding feedwater supply lines and control valves for throttling these highly heated central wall regions are provided. Would be dispensed simultaneously on separate control valves in the supply lines of the Rohrgrup ¬ pen of Eckwandbereiche El to E4, thus, would be to limit ¬ sem particular case in advance of the flow through the Eckwandbereiche for example by means of permanently installed Dros ¬ clauses extent in that Regulation of the feed water mass flow of Mittenwandbereiche ever made possible ¬ light. Only under these circumstances in the supply lines of the highly heatable th center wall systems whose flow would be so great that despite hö ¬ herer heating would have the center wall systems compared to the Eckrohrsystemen lower discharge temperatures at full geöffne ¬ ter control valve. An additional throttling of the control valves of the centers ¬ wall systems, the now overgrown throughput could be reduced again by the middle of wall systems to equalize the off ¬ outlet temperatures of all systems. In addition to the projected design of the continuous steam generator for the compensation of temperature imbalances can also be easily abge ¬ sprung with the inventive design of the continuous steam generator and the method according to the invention and misinterpretations of the distribution system of the feedwater supply. In addition, heating imbalances that were not taken into account in the design of the combustion chamber, by the present invention safely handled without negative consequences. In addition, under certain circumstances, fuel combinations can be run which were previously not possible because it is possible to react flexibly to heating imbalances. All in all, the present invention increases the availability of the continuous steam generator and thus of the entire power plant.

Claims

Patentansprüche claims
1. Durchlaufdampferzeuger, insbesondere Zwangdurchlauf- dampferzeuger, mit einer im Querschnitt im Wesentlichen rechteckigen Brennkammer (1), deren Brennkammerwände im We¬ sentlichen vertikal angeordnete und über Rohrstege miteinan¬ der gasdicht verbundene Verdampferrohre des Durchlaufdampfer- zeugers umfassen, die von einem Strömungsmedium von unten nach oben durchströmbar sind, wobei die Verdampferrohre der Brennkammerwände entsprechend ihrem Beheizungsgrad durch stromaufwärts angeordnete Eintrittssammler jeweils zu mehr¬ beizten Rohrgruppen (10) und minderbeheizten Rohrgruppen (11) zusammengefasst sind, und wobei den jeweiligen Eintrittssamm¬ lern eine Speisewasserzuführung (20, Sl, S2, S3, S4) zugeordnet ist, und im Bereich der Speisewasserzuführung Zeugers include 1 through steam generator, in particular Zwangdurchlauf- steam generator, with a rectangular cross-section essentially combustion chamber (1), the combustion chamber walls vertically arranged in the We ¬ sentlichen and miteinan via tube webs ¬ the gas-tight connected to the evaporator tubes of the Durchlaufdampfer- which a flow medium from below can be flowed through to the top, wherein the evaporator tubes of the combustion chamber walls are summarized according to their degree of heating by inlet collectors arranged upstream to more ¬ groups pipe groups (10) and underheated pipe groups (11), and wherein the respective Eintrittssamm ¬ learning a feedwater feed (20, Sl, S2 , S3, S4), and in the region of the feedwater supply
(20, Sl, S2, S3, S4) zumindest ein Regelventil (R, Rl , R2 , R3 , R4 ) zum geregelten Drosseln des Massenstroms des Strömungsmediums in den Verdampferrohren vorgesehen ist, und wobei zum Bestimmen einer Regelgröße für das zumindest eine Regelventil  (20, Sl, S2, S3, S4) at least one control valve (R, Rl, R2, R3, R4) is provided for the controlled throttling of the mass flow of the flow medium in the evaporator tubes, and wherein for determining a control variable for the at least one control valve
(R, Rl , R2 , R3 , R4 ) im Bereich von stromabwärts angeordneten Austrittssammlern Temperaturmessmittel zum Messen von Austritts¬ temperaturen des Strömungsmediums aus den Verdampferrohren vorgesehen sind, und wobei jede der mehrbeizten Rohrgruppen (10) und minderbeheizten Rohrgruppen (11) jeweils einem der Eintrittssammler und einem Austrittssammler zugeordnet ist, und jeder der Austrittssammler eines der Temperaturmessmittel aufweist . (R, Rl, R2, R3, R4) are provided in the region of downstream outlet headers temperature measuring means for measuring Austritts ¬ temperatures of the flow medium from the evaporator tubes, and wherein each of the more stained pipe groups (10) and underheated pipe groups (11) each one of Assigned inlet collector and an outlet header, and each of the outlet header has one of the temperature measuring means.
2. Durchlaufdampferzeuger nach Anspruch 1, 2. continuous steam generator according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , d a s s d a d u r c h e s e n c i n e s, d a s s
die minderbeheizten Rohrgruppen (11) Eckwandbereiche the less heated pipe groups (11) corner wall areas
(El , E2 , E3 , E4 ) der im Wesentlichen rechteckigen Brennkammer (1) sind und jede der vier Eckwandbereiche (El , E2 , E3 , E4 ) eine eigene Speisewasserzuführungsleitung (Sl, S2, S3, S4) mit je- weils einem Regelventil (Rl , R2 , R3 , R4 ) aufweist. (E1, E2, E3, E4) of the substantially rectangular combustion chamber (1) and each of the four corner wall portions (E1, E2, E3, E4) have their own feedwater supply line (S1, S2, S3, S4) each having a control valve (R1, R2, R3, R4).
3. Durchlaufdampferzeuger nach einem der Ansprüche 1 bis 2, d a d u r c h g e k e n n z e i c h n e t , d a s s die mehrbeheizten Rohrgruppen (10) Mittenwandbereiche 3. Continuous steam generator according to one of claims 1 to 2, characterized in that the reheated pipe groups (10) middle wall areas
(Ml , M2 , M3 , M4 ) der im Wesentlichen rechteckigen Brennkammer (1) sind und jede der vier Mittenwandbereiche (Ml , M2 , M3 , M4 ) eine eigene Speisewasserzuführung mit jeweils einem Regelven- til aufweist. (Ml, M2, M3, M4) of the substantially rectangular combustion chamber (1) and each of the four central wall regions (Ml, M2, M3, M4) has its own feedwater supply, each having a control valve.
4. Verfahren zum Betreiben eines nach einem der Ansprüche 1 bis 3 ausgebildeten Durchlaufdampferzeugers 4. A method for operating a trained according to one of claims 1 to 3 continuous steam generator
d a d u r c h g e k e n n z e i c h n e t , d a s s d a d u r c h e s e n c i n e s, d a s s
die Speisewasserzuführung (20, Sl, S2, S3, S4) der minderbeheizten Rohrgruppen (11) durch Androsselung des zumindest einen Regelventils (R, Rl , R2 , R3 , R4 ) soweit reduziert wird, dass sich Austrittstemperaturen der mehrbeizten Rohrgruppen (10) denen der minderbeheizten Rohrgruppen (11) angleichen. the feedwater supply (20, Sl, S2, S3, S4) of the sub-heated pipe groups (11) by throttling the at least one control valve (R, Rl, R2, R3, R4) is reduced so far that exit temperatures of the more stained pipe groups (10) which equalize the underheated pipe groups (11).
5. Verfahren nach Anspruch 4 5. The method according to claim 4
d a d u r c h g e k e n n z e i c h n e t , d a s s d a d u r c h e s e n c i n e s, d a s s
die Speisewasserzuführung der mehrbeheizten Rohrgruppen (10) durch Androsselung des zumindest einen Regelventils soweit reduziert wird, dass sich die Austrittstemperaturen der mehrbeizten Rohrgruppen (10) denen der minderbeheizten Rohrgruppen (11) angleichen. the feedwater supply of the reheated pipe groups (10) is reduced by throttling the at least one control valve to such an extent that the outlet temperatures of the more wetted pipe groups (10) are equal to those of the underheated pipe groups (11).
6. Verfahren nach Anspruch 4 oder 5 6. The method according to claim 4 or 5
d a d u r c h g e k e n n z e i c h n e t , d a s s d a d u r c h e s e n c i n e s, d a s s
eine Angleichung der Austrittstemperaturen zwischen den mehrbeheizten (10) und minderbeheizten (11) Rohrgruppen hergestellt wird. an alignment of the outlet temperatures between the more heated (10) and underheated (11) pipe groups is made.
EP14747568.5A 2013-08-06 2014-07-29 Once-through steam generator Active EP3017247B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013215456.9A DE102013215456A1 (en) 2013-08-06 2013-08-06 Through steam generator
PCT/EP2014/066220 WO2015018686A1 (en) 2013-08-06 2014-07-29 Once-through steam generator

Publications (2)

Publication Number Publication Date
EP3017247A1 true EP3017247A1 (en) 2016-05-11
EP3017247B1 EP3017247B1 (en) 2017-05-31

Family

ID=51266294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14747568.5A Active EP3017247B1 (en) 2013-08-06 2014-07-29 Once-through steam generator

Country Status (7)

Country Link
US (1) US9574766B2 (en)
EP (1) EP3017247B1 (en)
JP (1) JP6286548B2 (en)
KR (1) KR101795978B1 (en)
CN (1) CN105452767B (en)
DE (1) DE102013215456A1 (en)
WO (1) WO2015018686A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484396B (en) * 2020-11-13 2024-05-28 广东美的生活电器制造有限公司 Steam generator, control method thereof and household appliance

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE639975A (en) * 1962-11-15
NL130376C (en) * 1963-03-25
US3297004A (en) * 1965-08-26 1967-01-10 Riley Stoker Corp Supercritical pressure recirculating boiler
US3344777A (en) * 1965-10-22 1967-10-03 Foster Wheeler Corp Once-through vapor generator furnace buffer circuit
US3548788A (en) * 1969-01-23 1970-12-22 Foster Wheeler Corp Once-through vapor generator with division wall
DE2132454B2 (en) 1971-06-30 1979-04-12 Kraftwerk Union Ag, 4330 Muelheim Large steam generator to be operated with pulverized coal combustion
US3818872A (en) 1973-06-29 1974-06-25 Combustion Eng Economizer bypass for increased furnace wall protection
US4178881A (en) * 1977-12-16 1979-12-18 Foster Wheeler Energy Corporation Vapor generating system utilizing angularly arranged bifurcated furnace boundary wall fluid flow tubes
US4290389A (en) * 1979-09-21 1981-09-22 Combustion Engineering, Inc. Once through sliding pressure steam generator
US4473035A (en) * 1982-08-18 1984-09-25 Foster Wheeler Energy Corporation Splitter-bifurcate arrangement for a vapor generating system utilizing angularly arranged furnace boundary wall fluid flow tubes
JPS5984001A (en) * 1982-11-08 1984-05-15 バブコツク日立株式会社 Boiler device
JPS5986802A (en) * 1982-11-09 1984-05-19 バブコツク日立株式会社 Boiler device
JP3046890B2 (en) * 1993-03-26 2000-05-29 キヤノン株式会社 Electrophotographic photoreceptor and electrophotographic apparatus provided with the electrophotographic photoreceptor
US5560322A (en) * 1994-08-11 1996-10-01 Foster Wheeler Energy Corporation Continuous vertical-to-angular tube transitions
DE4431185A1 (en) * 1994-09-01 1996-03-07 Siemens Ag Continuous steam generator
DE19528438C2 (en) * 1995-08-02 1998-01-22 Siemens Ag Method and system for starting a once-through steam generator
DE19651678A1 (en) * 1996-12-12 1998-06-25 Siemens Ag Steam generator
DE19858780C2 (en) * 1998-12-18 2001-07-05 Siemens Ag Fossil-heated continuous steam generator
EP1927809A2 (en) * 2006-03-31 2008-06-04 ALSTOM Technology Ltd Steam generator
US9273865B2 (en) 2010-03-31 2016-03-01 Alstom Technology Ltd Once-through vertical evaporators for wide range of operating temperatures
DE102010038883C5 (en) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Forced once-through steam generator

Also Published As

Publication number Publication date
CN105452767A (en) 2016-03-30
JP2016530474A (en) 2016-09-29
US9574766B2 (en) 2017-02-21
JP6286548B2 (en) 2018-02-28
WO2015018686A1 (en) 2015-02-12
KR101795978B1 (en) 2017-11-08
CN105452767B (en) 2017-12-19
US20160178190A1 (en) 2016-06-23
DE102013215456A1 (en) 2015-02-12
KR20160040683A (en) 2016-04-14
EP3017247B1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
DE2808213C2 (en) Recuperative coke oven and method for operating the same
EP0425717B1 (en) Once-through steam generator
EP1848925B1 (en) Horizontally positioned steam generator
EP2324285B1 (en) Heat recovery steam generator
EP3102899A2 (en) Flow device and a method for guiding a fluid flow
DE1551448B2 (en) HEAT EXCHANGERS WITH AXLE PARALLEL PIPES WITH RECTANGULAR ENDS
DE102005035080A1 (en) Solar radiation receiver and method for controlling and / or regulating the mass flow distribution and / or for temperature compensation on a solar radiation receiver
DE69910301T2 (en) Heat exchanger coil
DE69733812T2 (en) BOILER
EP2321578B1 (en) Continuous steam generator
EP2440847A2 (en) Continuous evaporator
EP3017247A1 (en) Once-through steam generator
EP1512905A1 (en) Once-through steam generator and method of operating said once-through steam generator
DE10244256B4 (en) Heating system and / or cooling system with at least one heat source
DE2054608C3 (en) Burner arrangement in heating furnaces, especially soaking ovens
CH653758A5 (en) Once-through boiler.
EP1554522B1 (en) Operating method for a horizontal steam generator
EP2601441B1 (en) Forced-flow steam generator
EP1537358B1 (en) Horizontally assembled steam generator
DE112018007168T5 (en) Storage type hot water heater with vortex guide part
DE2731391A1 (en) DEVICE FOR USING THE RESIDUAL HEAT OF AN EXHAUST GAS
WO2010102869A2 (en) Continuous evaporator
DE4142547C2 (en) Heater for space heating and domestic hot water preparation
EP0233998A1 (en) Preset flue gas temperature-adjusting device
DE10311532A1 (en) Heat spreader module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 897840

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014004034

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170531

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170831

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014004034

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

26N No opposition filed

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 897840

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014004034

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220901 AND 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230721

Year of fee payment: 10

Ref country code: GB

Payment date: 20230725

Year of fee payment: 10

Ref country code: FI

Payment date: 20230725

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 10