EP2999854A1 - Pale de turbine comprenant des corps de refroidissement présentant une forme de profil de face portante - Google Patents

Pale de turbine comprenant des corps de refroidissement présentant une forme de profil de face portante

Info

Publication number
EP2999854A1
EP2999854A1 EP14739716.0A EP14739716A EP2999854A1 EP 2999854 A1 EP2999854 A1 EP 2999854A1 EP 14739716 A EP14739716 A EP 14739716A EP 2999854 A1 EP2999854 A1 EP 2999854A1
Authority
EP
European Patent Office
Prior art keywords
profile
turbine
turbine blade
turbulators
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14739716.0A
Other languages
German (de)
English (en)
Inventor
Fathi Ahmad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14739716.0A priority Critical patent/EP2999854A1/fr
Publication of EP2999854A1 publication Critical patent/EP2999854A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a turbine blade with a pressure ⁇ side, a suction side and interposed, bounded by inner surfaces of the pressure side and the suction side cooling air passage, wherein in the cooling air passage, a cylindrical heat sink with Trag vomprofile-shaped base with a profile top and a profile bottom is arranged, which extends from the pressure side to the suction side, where ⁇ in the base surface in the inner surface of the pressure side or the suction side, wherein on the inner surface of the pressure side and / or the suction side in the region of the heat sink turbulators are arranged ren.
  • a turbine is a turbomachine that converts the internal energy (enthalpy) of a flowing fluid (liquid or gas) into rotational energy and ultimately into mechanical drive energy.
  • the fluid stream is removed from a part of its internal energy through the possibility ⁇ lichst irrotational laminar flow around the turbine blades, which turns the rotor blades of the turbine.
  • the useful power is delivered to an implement coupled to the working machine, such as in egg ⁇ NEN generator.
  • Blades and shaft are parts of the movable rotor or rotor of the turbine, which is arranged within a housing. As a rule, several blades are mounted on the axle. Blades mounted in a plane each form a paddle wheel or impeller.
  • the blades are slightly curved profiled, similar to an aircraft wing.
  • ⁇ wheel Before each run ⁇ wheel is usually a stator. These guide slides protrude from the housing into the flowing medium and cause it to spin.
  • the swirl generated in the stator (kinetic energy) is used in the following impeller to the shaft on which the impeller blades are mounted in To rotate.
  • the stator and the impeller together are called stages. Often, several such stages are hintererei ⁇ nederartisan.
  • the turbine blades of a turbine are exposed to special loads. The high loads make highly resilient materials necessary. Turbine blades are therefore made of titanium alloys, nickel superalloy or tungsten-molybdenum alloys.
  • the blades are protected by coatings for higher resistance to temperatures such as erosion such as pitting, also known as “pitting corrosion.”
  • the heat-shielding coating is called Thermal Barrier Coating, or TBC for short This technology is used both in the guide vanes and in the rotor blades and is used in sophisticated cooling duct systems.
  • cooling channels are poured into the turbine blades, which extend between the pressure and the suction side of the turbine blade profile.
  • the cooling channels are limited by the inner surfaces of the pressure and suction side and other introduced boundary walls.
  • cooling body arranged so-called "pin fins", which may have ver ⁇ different forms, in particular in cross-section in the manner of an airfoil profile formed be Kgs ⁇ NEN.
  • Such heat sink to those skilled for example from EP 0 230 917, EP 0 034 961 and US 5,536,143.
  • Turbula factors are arranged so that in a region adjoining the profile ⁇ top region, a lower Heilverwirbe- lung is produced as in an adjoining the profile underside in ⁇ area.
  • the invention is based on the consideration that so far in the application of heat sinks, especially those with a wing profile, the thermal gradient caused by the heat sink is not considered.
  • a thermal gradient can mean an increase in the thermal load of the component, which reduces the life.
  • the heat transfer is improved on the underside at the top. Therefore, to avoid the thermal gradient, the heat transfer at the bottom should be increased.
  • the turbulators should be arranged on the inner surface of the cooling channel such that a lower air turbulence is generated in the region adjacent to the profile top than in the region adjacent to the profile underside.
  • a larger number of turbulators is advantageously arranged in the region adjoining the lower profile side of the heat sink than in the region adjoining the profile upper side.
  • any kind of artificially applied surface noise can be used, which lead a laminar flow in a turbulent over ⁇ , such.
  • B. transverse rails, small vertical Ble ⁇ che or holes If more turbulators are arranged on the upper side of the profile, the desired effect of larger air turbulence is achieved here.
  • no turbulators are arranged in the region adjacent to the profile top side of the heat sink. In this way, air turbulence in the region of the profile upper side can be minimized, so that the heat transfer sheet is redu ⁇ . This also contributes to a balancing of the heat transfer at the top and bottom of the profile.
  • the turbulators at an angle of more than 45 degrees to a main flow ⁇ direction in the cooling air duct aligned edges. The per ⁇ stays awhile turbulator is designed as a transversely introduced to the air flow rail. Such a shape is comparatively easy to incorporate in the casting process and reliably generates air turbulence.
  • the gain of the air turbulence can also be created in an alternative or additional advantageous embodiment is that in which arranged on the bottom face of the cooling ⁇ body region adjacent turbulators are further elevated than in the region adjoining the profile upper surface portion arranged turbulators.
  • the turbulators arranged on the underside of the profile extend farther into the interior of the cooling air channel and thus produce stronger turbulences.
  • the turbulators are arranged such that the heat discharge of the profile top corresponds to the profile ⁇ bottom. This makes the goal of Eliminations ⁇ tion of the thermal gradient is optimally achieved.
  • the design of the turbulators can be determined by model calculations or test series.
  • a plurality of heat sinks is in particular ⁇ lattice arranged in the cooling air duct. It can, for. B. a regular grid such heat sink are formed through which the cooling air flows.
  • Gitteranord ⁇ planning a flow of cooling air as little as possible behin ⁇ changed while can make a variety of heat sinks Were ⁇ me to the cooling air.
  • the cooling air channel advantageously adjoins a profile trailing edge of the turbine blade.
  • the distance between the pressure and suction side of the turbine blade or vane is lowest, since this sammen secured there at an acute angle to ⁇ . Therefore can flow less cooling air here compared to more central areas of the turbine blade so that it is precisely here advantageous to increase the standing area for heat exchange ⁇ available surface by as described ben configured heatsink with turbulators.
  • a stator or rotor for a turbine advantageously comprises such a turbine blade as a guide or running ⁇ blade.
  • a turbine advantageously comprises such a stator and / or rotor.
  • the turbine is designed as a gas turbine.
  • thermal and mechanical ⁇ American pressures are particularly high, so that the design of the turbine blade described particular benefits back clearly the cooling and thus the efficiency bie ⁇ tet.
  • a power plant advantageously comprises such a turbine.
  • the advantages achieved by the invention are, in particular, that by avoiding a thermal gradient over the heat sink with airfoil profile in the cooling duct of a turbine blade, an improvement in the cooling, in particular at the profile trailing edge of a turbine blade, is achieved.
  • the life of the turbine blade is increased so that higher temperatures are possible on the outside of the turbine blade. This increases the efficiency of the turbine.
  • FIG 4 pin fins with turbulators in the area of the profile bottom
  • FIG 5 pin fins with turbulators in different numbers at Profilunter- and top.
  • FIG. 1 shows a turbine 100, here a gas turbine, in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatable about an axis of rotation 102 (axial direction)
  • Rotor 103 which is also referred to as a turbine runner.
  • an intake housing 104 a compressor 105, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the Abgasge ⁇ housing 109th
  • the annular combustion chamber 106 communicates with an annular hot gas channel 111.
  • Each turbine stage 112 is formed from two blade rings. Seen in the flow direction of a working medium 113, in the hot-gas passage 111 a row of guide vanes 115 formed from rotor blades 120 ⁇ series 125th
  • the guide vanes 130 are secured to the stator 143, where ⁇ however, the blades 120 are mounted a row 125 by means of a turbine disk 133.
  • Rotor 103rd The running blades 120 thus form components of the rotor or runner 103. Coupled to the rotor 103 is a generator or a working machine (not shown).
  • air 105 is sucked in by the compressor 105 through the intake housing 104 and compressed.
  • the 105 ⁇ be compressed air provided at the turbine end of the compressor is ge ⁇ leads to the burners 107, where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and this drives the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the vanes 130 and blades 120 of the seen in the direction of flow of the working medium 113 first turbine stage 112 are subjected to thermal stress in addition to the heat seal stones lining the annular combustion chamber 106. In order to withstand the temperatures prevailing there, they are cooled by means of a coolant.
  • the blades 120, 130 may have coatings against corrosion
  • Each vane 130 has an inner housing 138 of the turbine 108 facing guide vane root (not Darge here provides ⁇ ) and a side opposite the guide-blade root vane root.
  • the vane head faces the rotor 103 and is fixed to a sealing ring 140 of the stator 143.
  • Each sealing ring 140 encloses the shaft of the Ro ⁇ tors 103rd
  • the profile of a blade 120 is shown by way of example.
  • the profile is similar to that of an aircraft wing. It has a rounded leading edge 144 and a rear profile ⁇ ridge 146 on. Between profile nose 144 and profile trailing edge 146, the pressure side 148 and the suction side 150 of the rotor blade extend. Between the pressure side 148 and suction side 150 cooling air channels 152 are introduced, which extend along the main direction of extension of the blade 120 leading into FIG. 2 and are delimited from one another by walls 154.
  • Cooling air outlet openings 156 are provided in the region of the profile nose 144, through which cooling air can exit and thus form a protective cooling film on the outside of the rotor blade 120.
  • cooling air passage 152 In the region adjacent to the trailing edge 146 cooling air passage 152 are additionally heat sink 158, arranged so-called "pin fins". These are zylind- driven formed, that is, as one of two parallel, flat, congruent surfaces (base and top surface) and a surface ⁇ or cylindrical surface of limited bodies, the lateral surface being formed by parallel straight lines. che lie in the boundary wall of the cooling air passage 152, that is, the inner surface of the pressure side 148 and the suction ⁇ page 150.
  • an airfoil ie the base and deck ⁇ surface are airfoil profile.
  • the given supporting surface profile shape thus results in a shell section of the heat sink corresponding to the profile of the upper side of the airfoil, and a further jacket portion corresponding to the Pro ⁇ filunterseite of the airfoil profile.
  • FIG 3 shows the rotor blade 120 in longitudinal section. It can be seen here that the three parallel cooling channels 152 adjoining the profile nose 144 are connected via openings 160 such that they form a meandering common channel. K cooling air enters at the bottom of FIG 3 and is deflected ⁇ at each aperture 160 in the opposite direction and so continues to flow along the channel, until it finally emerges from the cooling air outlet openings 156th
  • turbulators 162 are arranged on the flat outside of the moving blade 120 transversely to the main flow direction of the cooling air K, respectively.
  • Turbulators 162 are small artificially applied Oberflä ⁇ and irregularities. They create turbulence and convert a laminar boundary layer flow into a turbulent one.
  • Turbula ⁇ motors 162 for example consist of transverse rails, small vertical plates or wells. In exemplary embodiments game they are designed as fins which improve as Turbulato ⁇ ren 162 the heat transfer and thus the cooling effect.
  • the profile of the trailing edge 146 facing cooling air channel 152 is switched separately and has as described heat sink 158 on. It can be seen in FIG. 3 that the heat sinks 158 form a regular grid.
  • FIG 4 shows an enlarged detail of the of the profile trailing ⁇ edge 146 of the turbine blade 120, 130 which faces the cooling channel 152. Shown are four heat sink 158 in the cooling channel 152 with the main flow direction of the cooling air K.
  • the cooling bodies have an airfoil profile, the convexity lober page a professional 164 in Defined direction of curvature and a profile bottom 166 on the back of the vault. The direction of the curvature changes in the course of the main flow direction.
  • the turbulators 162 are configured as cooling fins, ie, elevations aligned transversely (more than 45 degrees) to the main flow direction.
  • turbulators 162 are arranged only in the region of the respective profile lower side 166. In the region of the respective profile top 164 of the heat sink 158 no turbulators 162 are arranged.
  • turbulators 162 are arranged in the region of the respective profile top side 164, but in lesser number and extent into the cooling channel 152.
  • the configuration of the turbulators 162 is thus such that air turbulences on the top side 164 of the profile are lower than on the underside of the profile 166, so that heat transfer into the cooling air K is improved on the bottom side of the profile 166.
  • the turbulators 162 are configured such that the heat transfer at the bottom face 166 and the profile ⁇ top K is 164 in the cooling air is equal, ie, the ver ⁇ strengthened heat transfer ness by the higherdeluftgeschwindig- is compensated for on the profiled top 164th As a result, a thermal gradient across the heat sink 158 is avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne une pale de turbine (120, 130) comprenant un côté de pression (148), un côté d'aspiration (150) et un canal pour air de refroidissement (152) intercalé entre ces dernières, délimité par des faces intérieures du côté de pression et du côté d'aspiration. Un corps de refroidissement (158) cylindrique comprenant une face de base présentant une forme de profil de face portante et pourvue d'un côté supérieur profilé (164) et d'un côté inférieur profilé (166) est disposé dans le canal pour air de refroidissement et s'étend depuis le côté de pression vers le côté d'aspiration. Des générateurs de turbulences (162) sont disposés sur la face intérieure du côté de pression et/ou du côté d'aspiration dans une zone jouxtant le corps de refroidissement et permettent une amélioration de l'action de l'air de refroidissement et ce faisant des températures de fonctionnement plus élevées et un degré de rendement élevé de la turbine. De plus, les générateurs de turbulences sont disposés de manière à produire, dans une zone jouxtant le côté supérieur profilé, un tourbillonnement d'air inférieur par rapport à une zone jouxtant le côté inférieur profilé.
EP14739716.0A 2013-07-29 2014-07-04 Pale de turbine comprenant des corps de refroidissement présentant une forme de profil de face portante Withdrawn EP2999854A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14739716.0A EP2999854A1 (fr) 2013-07-29 2014-07-04 Pale de turbine comprenant des corps de refroidissement présentant une forme de profil de face portante

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13178387.0A EP2832956A1 (fr) 2013-07-29 2013-07-29 Aube de turbine avec corps de refroidissement en forme de profil aérodynamique
PCT/EP2014/064288 WO2015014566A1 (fr) 2013-07-29 2014-07-04 Pale de turbine comprenant des corps de refroidissement présentant une forme de profil de face portante
EP14739716.0A EP2999854A1 (fr) 2013-07-29 2014-07-04 Pale de turbine comprenant des corps de refroidissement présentant une forme de profil de face portante

Publications (1)

Publication Number Publication Date
EP2999854A1 true EP2999854A1 (fr) 2016-03-30

Family

ID=48906114

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13178387.0A Withdrawn EP2832956A1 (fr) 2013-07-29 2013-07-29 Aube de turbine avec corps de refroidissement en forme de profil aérodynamique
EP14739716.0A Withdrawn EP2999854A1 (fr) 2013-07-29 2014-07-04 Pale de turbine comprenant des corps de refroidissement présentant une forme de profil de face portante

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13178387.0A Withdrawn EP2832956A1 (fr) 2013-07-29 2013-07-29 Aube de turbine avec corps de refroidissement en forme de profil aérodynamique

Country Status (5)

Country Link
US (1) US20160177739A1 (fr)
EP (2) EP2832956A1 (fr)
JP (1) JP6105166B2 (fr)
CN (1) CN105408586B (fr)
WO (1) WO2015014566A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10247012B2 (en) * 2014-12-18 2019-04-02 Rolls-Royce Plc Aerofoil blade or vane
US10563520B2 (en) 2017-03-31 2020-02-18 Honeywell International Inc. Turbine component with shaped cooling pins
GB201806631D0 (en) * 2018-04-24 2018-06-06 Rolls Royce Plc A combustion chamber arrangement and a gas turbine engine comprising a combustion chamber arrangement
CN111335963B (zh) * 2020-02-20 2021-06-08 西安交通大学 一种翼型扰流柱结构及涡轮叶片
CN113139236A (zh) * 2021-04-26 2021-07-20 上海攀升数字科技有限责任公司 一种基于扫掠曲线的内冷涡轮叶片扰流肋建模方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2476207A1 (fr) * 1980-02-19 1981-08-21 Snecma Perfectionnement aux aubes de turbines refroidies
JPS62271902A (ja) * 1986-01-20 1987-11-26 Hitachi Ltd ガスタ−ビン冷却翼
US5246341A (en) * 1992-07-06 1993-09-21 United Technologies Corporation Turbine blade trailing edge cooling construction
US5536143A (en) * 1995-03-31 1996-07-16 General Electric Co. Closed circuit steam cooled bucket
US5772397A (en) * 1996-05-08 1998-06-30 Alliedsignal Inc. Gas turbine airfoil with aft internal cooling
JPH11241602A (ja) * 1998-02-26 1999-09-07 Toshiba Corp ガスタービン翼
DE19846332A1 (de) * 1998-10-08 2000-04-13 Asea Brown Boveri Kühlkanal eines thermisch hochbelasteten Bauteils
DE69940948D1 (de) * 1999-01-25 2009-07-16 Gen Electric Interner Kühlkreislauf für eine Gasturbinenschaufel
DE19921644B4 (de) * 1999-05-10 2012-01-05 Alstom Kühlbare Schaufel für eine Gasturbine
GB0105814D0 (en) * 2001-03-09 2001-04-25 Rolls Royce Gas turbine engine guide vane
GB0518628D0 (en) * 2005-09-13 2005-10-19 Rolls Royce Plc Axial compressor blading
JP5436457B2 (ja) * 2008-03-07 2014-03-05 アルストム テクノロジー リミテッド ガスタービンのための翼
DE102008060424A1 (de) * 2008-12-04 2010-06-10 Rolls-Royce Deutschland Ltd & Co Kg Strömungsmaschine mit Seitenwand-Grenzschicht-Barriere
US8182224B1 (en) * 2009-02-17 2012-05-22 Florida Turbine Technologies, Inc. Turbine blade having a row of spanwise nearwall serpentine cooling circuits
EP2458148A1 (fr) * 2010-11-25 2012-05-30 Siemens Aktiengesellschaft Composant de turbomachine avec surface de refroidissement
US8840371B2 (en) * 2011-10-07 2014-09-23 General Electric Company Methods and systems for use in regulating a temperature of components

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015014566A1 *

Also Published As

Publication number Publication date
CN105408586A (zh) 2016-03-16
JP6105166B2 (ja) 2017-03-29
EP2832956A1 (fr) 2015-02-04
JP2016540151A (ja) 2016-12-22
WO2015014566A1 (fr) 2015-02-05
US20160177739A1 (en) 2016-06-23
CN105408586B (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
DE102008003412B4 (de) In einen Turbinenrotor eingebaute Turbinenschaufelabdeckung mit Prallkühlung sowie Kühlverfahren
WO2015014566A1 (fr) Pale de turbine comprenant des corps de refroidissement présentant une forme de profil de face portante
WO2006056525A1 (fr) Aube de turbine pour turbine a gaz, utilisation d'une aube de turbine et procede de refroidissement d'une aube de turbine
EP1621730A1 (fr) Element refroidi d'une turbomachine et procédé pour le moulage de cet élement
DE102008002862A1 (de) Stator-Rotor-Anordnung mit einem Oberflächenmerkmal zum verbesserten Einschluss des Gasstroms und verwandte Verfahren
CH697922A2 (de) Luftgekühlte Schaufel für eine Turbine.
DE102010046331A1 (de) Gekühlte Turbinenschaufeln für ein Gasturbinentriebwerk
DE102013224998A1 (de) Turbinenrotorschaufel einer Gasturbine und Verfahren zur Kühlung einer Schaufelspitze einer Turbinenrotorschaufel einer Gasturbine
EP1766192A1 (fr) Roue a aubes d'une turbine presentant une aube et au moins un canal refrigerant
DE102011053891A1 (de) Vorrichtung und Verfahren zur Kühlung von Plattformabschnitten von Turbinenrotorschaufeln
DE102008055567A1 (de) Gekühltes Turbinenleitapparatsegment
WO2006108764A1 (fr) Aube de turbine a gaz a refroidissement par convection
WO2014016149A1 (fr) Procédé de fabrication d'une aube directrice ainsi qu'aube directrice
WO2016087214A1 (fr) Aube mobile de turbine, rotor associé et turbomachine
DE102012017491A1 (de) Turbinenschaufel einer Gasturbine mit Drallerzeugungselement
AT512653A4 (de) Läufer und radial durchströmbare Turbine
WO2018010918A1 (fr) Aube de turbine dotée d'ailettes de refroidissement en forme de barres
EP2999853B1 (fr) Aube de turbine
WO2016188697A1 (fr) Aube mobile, notamment pour une turbine à gaz
WO2016087337A1 (fr) Procédé de fabrication d'un amortisseur de vibrations pour aube de turbine par génération de laser
EP2861829A1 (fr) Aube mobile de turbine à gaz à refroidissement par air
WO2018224574A1 (fr) Aube de turbine refroidie
WO2015055422A1 (fr) Aube de turbine, segment annulaire, ensemble d'aubes de turbine associé, stator, rotor, turbine et centrale électrique
EP2832955A1 (fr) Aube de turbine avec corps de refroidissement cylindriques et courbés
EP3333366A1 (fr) Aube de turbine avec refroidissement du bord d'attaque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20180723

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200201