EP2994935A1 - Method for bonding metallic contact areas with dissolution of a sacrificial layer applied on one of the contact areas in at least one of the contact areas - Google Patents

Method for bonding metallic contact areas with dissolution of a sacrificial layer applied on one of the contact areas in at least one of the contact areas

Info

Publication number
EP2994935A1
EP2994935A1 EP13734099.8A EP13734099A EP2994935A1 EP 2994935 A1 EP2994935 A1 EP 2994935A1 EP 13734099 A EP13734099 A EP 13734099A EP 2994935 A1 EP2994935 A1 EP 2994935A1
Authority
EP
European Patent Office
Prior art keywords
bonding
sacrificial layer
substrate
preferably less
contact areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP13734099.8A
Other languages
German (de)
French (fr)
Inventor
Bernhard REBHAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EV Group E Thallner GmbH
Original Assignee
EV Group E Thallner GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EV Group E Thallner GmbH filed Critical EV Group E Thallner GmbH
Priority to EP17172555.9A priority Critical patent/EP3301706A1/en
Publication of EP2994935A1 publication Critical patent/EP2994935A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/03444Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
    • H01L2224/0345Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/03444Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
    • H01L2224/03452Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/03602Mechanical treatment, e.g. polishing, grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/0361Physical or chemical etching
    • H01L2224/03616Chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/038Post-treatment of the bonding area
    • H01L2224/0381Cleaning, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05561On the entire surface of the internal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05563Only on parts of the surface of the internal layer
    • H01L2224/05564Only on the bonding interface of the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05567Disposition the external layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2741Manufacturing methods by blanket deposition of the material of the layer connector in liquid form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • H01L2224/2745Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • H01L2224/27452Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27464Electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/2781Cleaning, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/2783Reworking, e.g. shaping
    • H01L2224/2784Reworking, e.g. shaping involving a mechanical process, e.g. planarising the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/278Post-treatment of the layer connector
    • H01L2224/2783Reworking, e.g. shaping
    • H01L2224/27845Chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2902Disposition
    • H01L2224/29023Disposition the whole layer connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2902Disposition
    • H01L2224/29026Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body
    • H01L2224/29028Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body the layer connector being disposed on at least two separate bonding areas, e.g. bond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29187Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/8301Cleaning the layer connector, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/8301Cleaning the layer connector, e.g. oxide removal step, desmearing
    • H01L2224/83011Chemical cleaning, e.g. etching, flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/8301Cleaning the layer connector, e.g. oxide removal step, desmearing
    • H01L2224/83012Mechanical cleaning, e.g. abrasion using hydro blasting, brushes, ultrasonic cleaning, dry ice blasting, gas-flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/8301Cleaning the layer connector, e.g. oxide removal step, desmearing
    • H01L2224/83013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83026Applying a precursor material to the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/8383Solid-solid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83905Combinations of bonding methods provided for in at least two different groups from H01L2224/838 - H01L2224/83904
    • H01L2224/83907Intermediate bonding, i.e. intermediate bonding step for temporarily bonding the semiconductor or solid-state body, followed by at least a further bonding step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]

Definitions

  • the present invention relates to a method for bonding a first contact surface of a first substrate to a second contact surface of a second substrate according to claim 1.
  • the bonding technology allows a connection of two or more, usually very precisely to each other
  • prebond
  • the Prebond is an extremely useful tool for pre-fixing two substrates, especially after an alignment process, as the two substrates are not allowed to move towards each other after the alignment process.
  • the prebond is likely to be on Van der Waals
  • Substrate surfaces Under certain circumstances, isolated, covalent bonds between the substrate surfaces may even occur at room temperature, even without additional temperature and / or force loading of the substrates. The number of covalent compounds formed at room temperature, however, should be negligible.
  • liquids could increase a corresponding adhesion between substrates.
  • the liquid compensates for unevenness on the surfaces of the substrates and forms even, preferably even permanent, dipoles.
  • a pronounced Prebond merge is mainly found on non-metallic surfaces.
  • Semiconductors such as silicon, ceramics, above all oxides, metal oxides which are polished and extremely flat, show a corresponding behavior upon contacting.
  • non-metallic surfaces ie surfaces which show a predominantly covalent bonding character, such as Si, Si0 2, etc.
  • a previously applied liquid film can during through Heat treatment resulting covalent bonds even contribute to the reinforcement of the permanent bond.
  • the non-metallic surfaces are subjected to a heat treatment after the Prebond.
  • the liquid layers thus do not necessarily improve only the Prebond but also carry
  • Reactants for the oxygen are then in particular the atoms of the substrate surfaces in question.
  • Liquid directly participate in the permanent bonding process of the substrate surfaces, not necessarily occur.
  • the bonding process is completely different with pure metal surfaces. Since metals are chemically and physically completely different due to their metallic binding character, a completely different bonding strategy is required. Metals are bonded together, especially at higher temperatures and usually under very high pressure. The high temperatures, lead to increased diffusion along the surfaces and / or the grain boundaries and / or the volume. Due to the increased mobility of the atoms, different physical and chemical effects occur, which lead to a welding of the two surfaces. The disadvantage of such metal bonds is therefore particularly in the use of very high
  • Oxide layer covered metal surfaces to produce a Prebond.
  • this oxide layer is in turn undesirable if one intends to directly bond two metals together, for example, to connect two conductive contacts together.
  • the heat treatment of the substrates requires correspondingly long heating and cooling times.
  • the high temperatures can also lead to disturbances in functional units such as microchips and especially in memory chips and damage them to uselessness.
  • substrates with corresponding surfaces must be aligned with each other before the actual bonding step. This once performed alignment may not be destroyed until the final, so permanent bonding process. Especially at higher levels
  • the two substrates to be joined consist of two different materials with different thermal expansion coefficients. These shifts are the greater, ever greater is the difference in the thermal expansion coefficients of the different materials.
  • the object of the present invention is to provide a most efficient method for low-temperature and / or low-pressure bonding of materials.
  • the invention is based on the idea to deposit at least one ultrathin sacrificial layer on at least one of the contact surfaces of the substrates to be bonded, which during the inventive
  • a further aspect of the invention is that the bonding of metal surfaces by a previous wetting process with a material, in particular at least predominantly a liquid,
  • a sacrificial layer preferably at least predominantly water, is used as a sacrificial layer, in particular for producing a pre-bond between the substrates. Also conceivable is a combination of several sacrificial layers
  • Sacrificial layer and a deposited thereon liquid sacrificial layer can be applied one above the other.
  • the substrate consists in particular of silicon, wherein on the substrate a, in particular metallic, preferably consisting of Cu, bonding layer is applied at least in bonding areas.
  • bonding layer does not cover the entire substrate, the bonding regions are preferably surrounded by bulk material, in particular the substrate, and together form the, in particular flat, contact surface.
  • the material layer preferably consists of a material in which the solubility limit for the material of the sacrificial layer is never reached.
  • the material of the sacrificial layer dissolves completely in the material layer on at least one of the contact surfaces, preferably on both contact surfaces.
  • the concentration is preferably given in atomic percent (at%).
  • the solubility of the material of the sacrificial layer in, in particular metallic, material is at least one of the contact surfaces between 0 at% and 10 at%, with preference between 0 at% and 1 at%, more preferably between 0 at% and 0. 1 at %, most preferably between 0 at% and 0.01 at%, most preferably between 0 at% and 0.001 at%, most preferably between 0 at% and 0.0001 at%.
  • the thickness of the sacrificial layer is less than 10 nm, more preferably less than 10 nm, more preferably less than 1 nm, most preferably less than 1 nm.
  • the ratio of the thickness of the sacrificial layer to the thickness of the substrates, in particular bonding regions of the substrates is - 2 -4 less than 1, preferably less than 10 " , preferably less than 10 " , more preferably less than 10 "6 , even more preferably less than 10 " 8
  • the sacrificial layer can be applied to at least one of the contact surfaces by any desired deposition method. Preference is given to deposition processes which produce as coarse-grained and / or at least predominantly monocrystalline sacrificial layers. In accordance with the invention conceivable deposition methods are in particular:
  • PVD Physical Vapor Deposition
  • Resublimation such as the direct separation of water from water vapor on a surface
  • the sacrificial layer in particular Si
  • the bonding layer in particular Cu
  • the sacrificial layer according to the invention consists in particular of a material which is suitable for forming a pre-bond and has a solubility in the bonding and / or bulk region at the contact surfaces of at least one of the substrates to be contacted.
  • the sacrificial layer consists in particular at least partially, preferably predominantly, of at least one of the following materials or substances:
  • metals in particular o Cu, Ag, Au, Al, Fe, Ni, Co, Pt, W, Cr, Pb, Ti, Te, Sn and / or Zn,
  • the bonding region is a layer extending over the entire contact surface of the substrate.
  • the roughness of the surface of the bond area is reduced in particular by known methods. It is preferred to use a chemical-mechanical polishing (CMP) process.
  • CMP chemical-mechanical polishing
  • the entire bond area surface is covered with the sacrificial layer according to the invention.
  • the sacrificial layer is applied in such a way or after the application that the average roughness values are less than ⁇ ⁇ , preferably less than 500nm, more preferably less than 1 ⁇ m, even more preferably less than 1 mm, most preferably less than 1nm.
  • a plurality of bonding regions distributed over the entire contact surface are provided.
  • the bonding regions form a topography which projects beyond the contact surface of at least one of the substrates, ie project beyond its surface.
  • the bond areas are preferably surrounded by any bulk material.
  • the surfaces of the bulk material and the bond area surface form a common plane E.
  • the surfaces consisting of conductive areas and surrounded by non-conductive areas are also known as hybrid surfaces.
  • Areas consist of a dielectric and insulate the conductive ones
  • the simplest conceivable embodiment would be contact pads isolated by dielectrics for charge transport. By bonding these hybrid surfaces, a conductive connection between the substrates via the allied contact points can be achieved.
  • the local bond areas are, in particular, copper plugs (copper pads),
  • Cu pads are used in particular for the electrical connection between functional units in the different layer systems.
  • Metal j oints could in particular be silicon vias (TSVs).
  • TSVs silicon vias
  • a metal frame may be a micro package for a MEMS device.
  • the two substrates formed as arbitrary layer systems are approximated so that the sacrificial layer (s) applied on the contact surfaces touch each other and form a prebond.
  • the roughness of the sacrificial layer surfaces can be largely reduced by chemical and / or mechanical methods, preferably eliminated.
  • the layer systems can be aligned with one another in an alignment unit in front of the prebond.
  • the sacrificial layer surfaces can, according to the invention, be wetted with a liquid, preferably with water.
  • a liquid preferably with water.
  • the applied liquid layer is thinner than 10 nm, more preferably thinner than 1 nm, most preferably thinner than 1 nm, most preferably only one monolayer.
  • hydrophilic surfaces it is sufficient to expose the substrate to the ambient atmosphere. The surface is then wetted by the water vapor from the atmosphere.
  • the liquid can be applied according to the invention in particular by condensation.
  • the substrate to be coated preferably in the cooled state, in a
  • Sacrificial layer in particular as a liquid, by a
  • the material of the sacrificial layer in particular as a liquid, by a
  • Sprühbelackungsstrom sprayed onto the contact surface of at least one of the substrates.
  • the water is through a
  • the water is evaporated in a simple evaporator and passed to the surface of the substrate.
  • the temperature of the water is brought as close to the boiling point to increase the kinetic energy of the water and thus to accelerate the evaporation. By evacuating the reaction chamber, the boiling point can be reduced accordingly and the process can thus be optimized.
  • reaction chambers which can deposit the sacrificial layers according to the invention precisely results accordingly also a system according to the invention, referred to in the further course of the patent as a reaction chamber.
  • the Prebond is preferably initiated at a contact point of the contact surfaces and spreads over the entire surface by a bonding wave.
  • the contact of both sacrificial layer surfaces can be produced in particular by a pin which bends one of the two substrates, so that the contact surface of this substrate convexly deformed and with the sacrificial layer surface of the second, in particular plan on one
  • Receiving surface resting substrate is brought into contact.
  • the two bonded substrates are heat treated.
  • the heat treatment takes place at the lowest possible temperatures, ideally at room temperature.
  • the temperature is less than 500 ° C, more preferably less than 400 ° C, more preferably less than 300 ° C, even more preferably less than 200 ° C, most preferably less than 100 ° C, most preferably less than 50 ° C.
  • a rapid diffusion of atoms of the sacrificial layer, in particular exclusively, in the bond areas is made possible.
  • the diffusion according to the invention is accelerated and / or promoted by a heat treatment.
  • the atoms of the sacrificial layer dissolve
  • the pressure on the surface is between 0.10 MPa and 10MPa, preferably between 0.1 MPa and 8MPa, more preferably between I MPa and 5MPa, most preferably between 1.5MPa and 3MPa. These values correspond approximately to a load of 1 kN to 320 kN for a 200 mm substrate.
  • the surface of the sacrificial layer should be before the invention
  • Prebondvorgang free of contamination and / or at least predominantly, preferably completely, free of oxides.
  • a cleaning of the sacrificial layer surface is made.
  • the removal of oxides can be carried out by physical and / or chemical methods known to those skilled in the art. These include chemical reduction by gases and / or
  • Chemical removal of oxides is the removal of the oxide by a chemical process.
  • a chemical process is a matter of transformation.
  • the oxide is reduced by a reducing agent in the gaseous and / or liquid phase and oxidizes the reducing agent corresponding to the new compound.
  • the oxidized reducing agent, ie the reaction product is removed accordingly.
  • a typical reducing agent is, for example, hydrogen.
  • Physical oxide removal is the removal of the oxide by a physical process. In a physical process, there is no material conversion but a purely mechanical removal of the oxide from the surface of the substrate.
  • the most commonly used physical reduction technology is plasma technology. In this case, a plasma is generated, which is accelerated by appropriate fields on the surface of the substrate and a corresponding physical oxide removal accomplished. It is also conceivable
  • a sputtering technology In contrast to the plasma, a statistical many-body system is not generated in the reaction chamber, but instead ions are generated in an antechamber and accelerated to a substrate. Finally, grinding and polishing would be called oxide removal processes. By a grinding or polishing tool, the oxide is gradually removed. Sanding and polishing is particularly suitable as a pretreatment process when dealing with very thick oxide layers in the micrometer range. For the correct removal of oxide layers in the nanometer range, these methods are less suitable.
  • the resulting oxides are preferably before coating the bond area surfaces and / or Bulkmaterialoberfest with the Sacrificial layer surfaces and / or before bonding the
  • Contact angle measuring devices can be placed in corresponding module groups of the
  • a bonding process is carried out between the bond area surfaces with water as the sacrificial layer.
  • the reaction chamber can be evacuated.
  • The, in particular continuous, evacuation of the reaction chamber is also advantageous to allow a targeted adjustment of the atmosphere.
  • the reaction chamber is part of a module of a vacuum cluster, preferably part of a low vacuum cluster, more preferably a high vacuum cluster, most preferably part of a vacuum cluster
  • Ultrahigh vacuum cluster The pressure in the reaction chamber is less than 1 bar, more preferably less than 10 1 mbar, more preferably less than 10 - " 3 mbar, most preferably less than 10 - " 5 mbar, most preferably less than 10 - " 8 mbar.
  • FIG. 1 shows a side view of a first embodiment according to the invention with a full area bonding area
  • FIG. 2 shows a side view of a second embodiment according to the invention with a plurality of local bonding areas
  • FIG. 3 shows a side view of a third embodiment according to the invention with a plurality of local bond areas in the substrate
  • Fig. 5 is a schematic plan view of a device containing the
  • FIG. 1 shows a layer system 7, comprising a first substrate 1 with an interface lo, a bonding region 3 with a bond region surface 3o, and the sacrificial layer 4 with the sacrificial layer surface 4o.
  • the Bonding region 3 extends in the first embodiment over the entire interface area lo of the substrate 1.
  • the bonding area surface 3o forms a first contact area of the first substrate 1.
  • the bonding region 3 may be a component of the first substrate 1, in particular material-integral (ie consisting of the same material) and / or monolithic.
  • the sacrificial layer 4 is applied over the entire area on the first contact surface.
  • FIG. 2 shows a layer system 7 'in which several, preferably
  • the bond areas 3 'thus form a topography over the surface 10 of the substrate 1. In the shown, preferred
  • the bonding regions 3 'surrounded by a bulk material 5 may be any metal, non-metal, ceramic or polymer, such as a resist. However, preference will be given to a ceramic, in particular S1 3 N 4 or Si x O x N x , even more preferably an oxide ceramic, in particular Si0 2 .
  • the bonding area surfaces 3 'and the bulk material surfaces 5o form a common plane E, namely the first contact area. The flatness of the bond area surfaces 3 'and the bulk material surfaces 5 o and their coplanarity allow optimal deposition of the
  • Sacrificial layer 4 on the first contact surface is
  • FIG. 3 shows a layer system 7 "comprising a structured first substrate 1 'with an interface l o' and a plurality of bonding regions 3 ', preferably distributed regularly in the substrate 1'
  • Bonding area surfaces 3o ' The substrate 1 has been patterned by etching, so that cavities 2 have formed in the substrate 1 '. The resulting cavities 2 are filled with the material for the bond areas 3 ', in particular with a PVD or CVD process. The deposited over the common plane E material of the bond areas 3 'is then removed by a scrubletonnrea. It would be conceivable Removal down to the level E by grinding processes, polishing processes, chemical-mechanical polishing, etc. The substrate 1 'produced in this way with the cavities 2, which form the bonding areas 3' and thus jointly the contact area by filling with material, is subsequently
  • the deposition of the sacrificial layers 4 can take place in such a way that material for the sacrificial layer 4 is deposited until the required layer thickness is reached.
  • the second method is to form the sacrificial layer 4 thicker than desired in a first step and in a second step, a
  • Re-thinning process to reduce to the desired thickness. Also conceivable in this case would be the use of grinding processes and / or
  • the sacrificial layer surfaces 4o may be filled with a
  • the applied water layers are thinner than 10 nm, more preferably thinner than 1 nm, most preferably thinner than 1 nm, most preferably only one monolayer.
  • the Si0 2 layer is approx. 1 .5 nm thick, the water layer on the Si0 2 layer is formed solely by the condensation of the water molecules in the atmosphere.
  • the two substrates 7, 7 ', 7 can be aligned in the x and / or y direction via alignment marks and / or other alignment features along the plane E.
  • the contact of the two sacrificial layers 4 takes place with each other Preferably at a point where one of the two substrates 1, 1 'is convexly formed by a pin
  • a bonding wave is formed which connects both sacrificial layer surfaces firmly together by a prebond.
  • Heat treatment and / or a bonding step performed at low temperatures.
  • the elevated temperature and / or the force leads to a diffusion of the atoms of the sacrificial layers 4 in the bond areas 3, 3 '.
  • the atoms of the sacrificial layers 4 are preferably completely dissolved in the bond areas 3, 3 'and / or the surrounding bulk material 5 and thus lead to a direct bond according to the invention
  • direct bond can be obtained by one of the methods in the
  • the embodiment according to the invention for producing the sacrificial layers is preferably part of a module 8 (sacrificial layer module) of a cluster 9, in particular a low-vacuum, preferably a high-vacuum, with the greatest advantage of an ultra-high vacuum cluster.
  • the cluster 9 consists of an evacuable interior 1 0, which is hermetically separable to all existing modules via module lock gates 1 1.
  • a robot 12 transports the product wafer 1 from module to module.
  • the product wafers 1 arrive via a cluster lock 15 of an input FOUP 1 3 for the incoming product wafer 1 in the Interior 10.
  • the robot 12 sets the product wafer 1 again a FOUP lock 15 in an output FOUP 14 from.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Switches (AREA)
  • Wire Bonding (AREA)
  • Micromachines (AREA)

Abstract

The present invention relates to a method for bonding a first at least partly metallic contact area of a first substrate (1, 1') with a second at least partly metallic contact area of a second substrate with the following steps, more particularly the following sequence: - applying to at least one of the contact areas a sacrificial layer (4) which is soluble at least partly, more particularly predominantly, in the material of at least one of the contact areas, - bonding the contact areas with at least partial dissolution of the sacrificial layer (4) in at least one of the contact areas. The contact areas can be arranged over the whole area on a bonding region (3). Alternatively, the contact areas can be formed from a plurality of bonding regions (3') which are surrounded by bulk material (5) or arranged in substrate cavities (2). A liquid (e.g. water) can be used to produce a pre-bond between the substrates.

Description

VERFAHREN ZUM BONDEN VON METALLISCHEN KONTAKTFLÄCHEN UNTER LÖSEN EINER AUF  METHOD OF BONDING METALLIC CONTACT SURFACES UNDER SOLVING ONE
EINER DER KONTAKTFLÄCHEN AUFGEBRACHTEN OPFERSCHICHT IN MINDESTENS EINER DER ONE OF THE CONTACT SURFACES OPERATED LAYER IN AT LEAST ONE OF THE
KONTAKTFLÄCHEN CONTACT SURFACES
B e s c h r e i b u n g Description
Die vorliegende Erfindung betrifft ein Verfahren zum Bonden einer ersten Kontaktfläche eines ersten Substrats mit einer zweiten Kontaktfläche eines zweiten Substrats gemäß Anspruch 1 . The present invention relates to a method for bonding a first contact surface of a first substrate to a second contact surface of a second substrate according to claim 1.
Seit mehreren Jahren kommt in der Halbleiterindustrie die sogenannte Bonding-Technologie zum Einsatz . Die Bonding-Technologie erlaubt eine Verbindung zweier oder mehrerer, meist sehr präzise zueinander For several years, the so-called bonding technology has been used in the semiconductor industry. The bonding technology allows a connection of two or more, usually very precisely to each other
ausgerichteter, Substrate. Diese Verbindung erfolgt in den meisten Fällen permanent, also irreversibel. Irreversibel bedeutet, dass die Trennung der beiden Substrate nach dem Bondvorgang nicht mehr ohne deren Zerstörung oder zumindest deren teilweiser Zerstörung möglich ist. Beim Verbinden der Substrate zeigt sich, dass unterschiedliche chemische und physikalische Mechanismen existieren, die eine permanente Verbindung hervorrufen. aligned, substrates. This connection is permanent in most cases, so irreversible. Irreversible means that the separation of the two substrates after the bonding process is no longer possible without their destruction or at least their partial destruction. Connecting the substrates reveals that there are different chemical and physical mechanisms that create a permanent bond.
Besonders interessant sind nichtmetallische Oberflächen. Bei Of particular interest are non-metallic surfaces. at
nichtmetallischen Oberflächen kommt es durch reine Kontaktierung zur Ausbildung eines sogenannten Prebonds . non-metallic surfaces, it comes by pure contact to form a so-called prebond.
Diese sich spontan ausbildende, reversible, über Oberflächeneffekte hervorgerufene, Verbindung der beiden Substrate nennt man Prebond, um sie vom späteren, durch eine zusätzliche Wärmebehandlung hervorgerufenen wirklichen, nicht mehr trennbaren, also irreversiblen, eigentlichen Bond zu unterscheiden. Der so erzeugte Prebond zeichnet sich dennoch durch eine nicht zu unterschätzende Festigkeit aus . Obwohl derartig miteinander verbundene Wafer für einen permanenten Bond noch bei höheren This spontaneous forming, reversible, caused by surface effects, compound of the two substrates is called Prebond to them of the later, caused by an additional heat treatment real, no longer separable, so irreversible, actual Bond too differ. Nevertheless, the Prebond produced in this way is characterized by a strength that can not be underestimated. Although such interconnected wafers for a permanent bond even at higher
Temperaturen wärmebehandelt werden müssen, reicht die Festigkeit des Prebonds bereits aus, um die zwei Substrate bis zum nächsten Prozessschritt zu fixieren. Der Prebond ist ein extrem nützliches Mittel für die Vorfixierung zweier Substrate, vor allem nach einem Ausrichtungsprozess, da sich die beiden Substrate nach dem Ausrichtungsprozess nicht mehr zueinander bewegen dürfen. Der Prebond dürfte hauptsächlich auf Van der Waals Temperatures must be heat treated, the strength of the Prebonds already sufficient to fix the two substrates until the next process step. The Prebond is an extremely useful tool for pre-fixing two substrates, especially after an alignment process, as the two substrates are not allowed to move towards each other after the alignment process. The prebond is likely to be on Van der Waals
Kräften beruhen, die durch permanente und induzierte Dipole an der Forces due to permanent and induced dipoles at the
Oberfläche der Substrate vorhanden sind. Da die Van der Waals Kräfte sehr schwach sind, ist eine entsprechend hohe Kotaktfläche erforderlich, damit es zu einer nennenswerten Haftwirkung zwischen den Substraten kommt. Surface of the substrates are present. Since the Van der Waals forces are very weak, a correspondingly large contact surface is required, so that there is a significant adhesion between the substrates.
Unpolierte Festkörperoberflächen kontaktieren bei entsprechend hoher Rauigkeit allerdings nicht optimal. Im Fall von reinem Festkörperkontakt entstehen Prebonds daher vorwiegend zwischen sehr ebenen, polierten Unpolished solid surfaces, however, do not optimally contact with correspondingly high roughness. In the case of pure solid state contact, prebonds are therefore predominantly between very flat, polished ones
Substratoberflächen. Bei Raumtemperatur können unter Umständen auch bereits vereinzelte, kovalente Bindungen zwischen den Substratoberflächen entstehen, sogar ohne zusätzliche Temperatur- und/oder Kraftbeaufschlagung der Substrate. Die Anzahl der bei Raumtemperatur gebildeten kovalenten Verbindungen dürfte aber vernachlässigbar gering sein. Substrate surfaces. Under certain circumstances, isolated, covalent bonds between the substrate surfaces may even occur at room temperature, even without additional temperature and / or force loading of the substrates. The number of covalent compounds formed at room temperature, however, should be negligible.
Vor allem die Verwendung von Flüssigkeiten könnte eine entsprechende Haftwirkung zwischen Substraten erhöhen. Die Flüssigkeit gleicht einerseits Unebenheiten an den Oberflächen der Substrate aus und bildet selbst, mit Vorzug sogar permanente, Dipole aus . Eine ausgeprägte Prebondfähigkeit stellt man vor allem an nichtmetallischen Oberflächen fest. Halbleiter wie Silizium, Keramiken, hier vor allem Oxide, Metalloxide die poliert und extrem eben sind, zeigen bei Kontaktierung ein entsprechendes Verhalten. In particular, the use of liquids could increase a corresponding adhesion between substrates. On the one hand, the liquid compensates for unevenness on the surfaces of the substrates and forms even, preferably even permanent, dipoles. A pronounced Prebondfähigkeit is mainly found on non-metallic surfaces. Semiconductors such as silicon, ceramics, above all oxides, metal oxides which are polished and extremely flat, show a corresponding behavior upon contacting.
Bei nichtmetallischen Oberflächen, also Oberflächen die einen vorwiegend kovalenten Bindungscharakter aufzeigen, wie beispielsweise Si, Si02 etc. kann ein vorher aufgetragener Flüssigkeitsfilm durch während der Wärmebehandlung entstehende kovalente Bindungen sogar zur Verstärkung des permanenten Bonds beitragen. Die nichtmetallischen Oberflächen, werden nach dem Prebond einer Wärmebehandlung unterzogen. Die For non-metallic surfaces, ie surfaces which show a predominantly covalent bonding character, such as Si, Si0 2, etc., a previously applied liquid film can during through Heat treatment resulting covalent bonds even contribute to the reinforcement of the permanent bond. The non-metallic surfaces are subjected to a heat treatment after the Prebond. The
thermische Aktivierung erzeugt kovalente Bindungen zwischen den Thermal activation creates covalent bonds between the two
Oberflächen und erzeugt so eine irreversible Verbindung. So werden einkristalline, hoch präzise geschnittene und geschliffene Siliziumwafer vor allem durch die Ausbildung kovalenter Verbindungen zwischen den Surfaces and thus creates an irreversible connection. For example, single crystal, high precision cut and ground silicon wafers are mainly formed by the formation of covalent connections between the two silicon wafers
Siliziumatomen miteinander verschweißt. Befindet sich ein Siliziumoxid auf einem Siliziumwafer, kommt es vorwiegend zur Ausbildung von kovalenten Silizium-Oxid- und/oder Oxid-Oxid-Bindungen. Es hat sich gezeigt, dass die Verwendung von sehr dünnen Flüssigkeitsschichten, meistens von Wasser, die Ausbildung der kovalenten Bindungen zwischen den Oberflächen hervorruft oder zumindest verbessert. Die Flüssigkeitsschichten sind dabei nur einige Nanometer dick oder bestehen sogar nur aus einer einzigen Silicon atoms welded together. If a silicon oxide is located on a silicon wafer, the formation of covalent silicon-oxide and / or oxide-oxide bonds is predominant. It has been found that the use of very thin layers of liquid, mostly water, causes or at least improves the formation of the covalent bonds between the surfaces. The liquid layers are only a few nanometers thick or even consist of only one
Monolage der Flüssigkeit. Die Flüssigkeitsschichten verbessern damit nicht notwendigerweise nur das Prebondverhalten sondern tragen auch Monolayer of the liquid. The liquid layers thus do not necessarily improve only the Prebondverhalten but also carry
entscheidend zur Bildung kovalenter Verbindungen bei. Der Grund liegt, im Fall von Wasser hauptsächlich in der Bereitstellung von Sauerstoff als crucial for the formation of covalent compounds. The reason is, in the case of water mainly in the provision of oxygen as
Verbindungsatom zwischen den Atomen der Substratoberflächen, die miteinander verbondet werden sollen. Die Bindungsenergie zwischen dem Wasserstoff und dem Sauerstoff eines Wassermoleküls ist gering genug um mit der eingebrachten Energie gebrochen zu werden. Als neue Connecting atom between the atoms of the substrate surfaces to be bonded together. The binding energy between the hydrogen and the oxygen of a water molecule is small enough to be refracted with the introduced energy. As new
Reaktionspartner für den Sauerstoff kommen dann vor allem die Atome der Substratoberflächen in Frage . Man muss allerdings erwähnen, dass es Reactants for the oxygen are then in particular the atoms of the substrate surfaces in question. One has to mention, however, that it is
Oberflächen gibt, bei denen derartige Vorgänge, bei denen Atome der There are surfaces in which such processes in which atoms of the
Flüssigkeit am permanenten Bondprozess der Substratoberflächen direkt teilnehmen, nicht notwendigerweise vorkommen müssen. Liquid directly participate in the permanent bonding process of the substrate surfaces, not necessarily occur.
Gänzlich anders verläuft der Bondprozess bei reinen Metalloberflächen. Da sich Metalle durch ihren metallischen Bindungscharakter chemisch und physikalisch vollkommen anders verhalten, bedarf es einer völlig anderen Bondstrategie. Metalle werden vor allem bei höheren Temperaturen und meist unter sehr hohem Druck miteinander verbondet. Die hohen Temperaturen, führen zu einer verstärkten Diffusion entlang der Oberflächen und/oder der Korngrenzen und/oder des Volumens. Durch die erhöhte Mobilität der Atome treten unterschiedliche physikalische und chemische Effekte ein, die zu einer Verschweißung der beiden Oberflächen führen. Der Nachteil bei derartigen Metallbonds besteht also vor allem in der Verwendung sehr hoher The bonding process is completely different with pure metal surfaces. Since metals are chemically and physically completely different due to their metallic binding character, a completely different bonding strategy is required. Metals are bonded together, especially at higher temperatures and usually under very high pressure. The high temperatures, lead to increased diffusion along the surfaces and / or the grain boundaries and / or the volume. Due to the increased mobility of the atoms, different physical and chemical effects occur, which lead to a welding of the two surfaces. The disadvantage of such metal bonds is therefore particularly in the use of very high
Temperaturen und Drücke, um überhaupt eine Verbindung beider Substrate zu gewährleisten. In der überwiegenden Anzahl der Fälle wird man allerdings keine reinen Metalloberflächen vorfinden. Beinahe alle Metalle (mit Temperatures and pressures to ensure a connection of both substrates. In the vast majority of cases, however, you will not find pure metal surfaces. Almost all metals (with
Ausnahme von sehr inerten Metallen wie Pt, Au und Ag) überziehen sich in der Atmosphäre mit einer, wenn auch nur sehr dünnen, Oxidschicht. Diese Oxidschicht reicht aus, um auch zwischen den mit einer sehr dünnen Exception of very inert metals such as Pt, Au and Ag) coat in the atmosphere with a, albeit very thin, oxide layer. This oxide layer is sufficient to also between those with a very thin
Oxidschicht bedeckten Metalloberflächen einen Prebond zu erzeugen. Oxide layer covered metal surfaces to produce a Prebond.
Allerdings ist diese Oxidschicht wiederum ungewollt, wenn man vorhat, zwei Metalle direkt miteinander zu verbonden, beispielsweise um zwei leitfähige Kontakte miteinander zu verbinden. However, this oxide layer is in turn undesirable if one intends to directly bond two metals together, for example, to connect two conductive contacts together.
Die Wärmebehandlung der Substrate bedingt entsprechend lange Aufheiz- und Abkühlzeiten. Die hohen Temperaturen können außerdem zu Störungen in funktionalen Einheiten wie beispielsweise Mikrochips und vor allem in Speicherchips führen und diese bis zur Unbrauchbarkeit beschädigen. The heat treatment of the substrates requires correspondingly long heating and cooling times. The high temperatures can also lead to disturbances in functional units such as microchips and especially in memory chips and damage them to uselessness.
Des Weiteren müssen Substrate mit entsprechenden Oberflächen vor dem eigentlichen Bondschritt zueinander ausgerichtet werden. Diese einmal durchgeführte Ausrichtung darf bis zum endgültigen, also permanenten Bondprozess nicht mehr zerstört werden. Vor allem bei höheren Furthermore, substrates with corresponding surfaces must be aligned with each other before the actual bonding step. This once performed alignment may not be destroyed until the final, so permanent bonding process. Especially at higher levels
Temperaturen kommt es im Allgemeinen allerdings, auf Grund der Temperatures are generally, however, due to the
unterschiedlichen thermischen Ausdehnungskoeffizienten unterschiedlicher Materialien und den daraus resultierenden thermischen Dehnungen, zu einer Verschiebung unterschiedlicher Teilbereiche der Substrate zueinander. Im schlimmsten Fall bestehen die beiden zueinander zu verbindenden Substrate aus zwei unterschiedlichen Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten. Diese Verschiebungen sind umso größer, j e größer die Differenz der thermischen Ausdehnungskoeffizienten der unterschiedlichen Materialien ist. different thermal expansion coefficients of different materials and the resulting thermal expansions, to a shift of different subregions of the substrates to each other. In the worst case, the two substrates to be joined consist of two different materials with different thermal expansion coefficients. These shifts are the greater, ever greater is the difference in the thermal expansion coefficients of the different materials.
Aufgabe der vorliegenden Erfindung ist es, eine möglichst effiziente Methode zum Niedertemperatur- und/oder Niederdruckbonden von Materialien aufzuzeigen. The object of the present invention is to provide a most efficient method for low-temperature and / or low-pressure bonding of materials.
Die vorliegende Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen auch sämtliche The present object is achieved with the features of claim 1. Advantageous developments of the invention are specified in the subclaims. The scope of the invention also includes all
Kombinationen aus zumindest zwei in der Beschreibung, in den Ansprüchen und/oder den Zeichnungen angegebenen Merkmalen. Bei angegebenen Combinations of at least two features specified in the description, in the claims and / or the drawings. At specified
Wertebereichen sollen auch innerhalb der genannten Grenzen liegende Werte als Grenzwerte offenbart gelten und in beliebiger Kombination beanspruchbar sein. Value ranges are also within the limits mentioned values as limit values disclosed and be claimed in any combination claimable.
Der Erfindung liegt der Gedanke zugrunde, mindestens eine ultradünne Opferschicht auf mindestens einer der Kontaktflächen der zu bondenden Substraten abzuscheiden, welche während des erfindungsgemäßen The invention is based on the idea to deposit at least one ultrathin sacrificial layer on at least one of the contact surfaces of the substrates to be bonded, which during the inventive
Bondschritts im sie umgebenden Material gelöst oder am Interface verbraucht wird. Ein weiterer Aspekt der Erfindung besteht darin, dass das Bonden von Metalloberflächen durch einen vorherigen Benetzungsprozess mit einem Material, insbesondere zumindest überwiegend einer Flüssigkeit, Bonding step dissolved in the surrounding material or consumed at the interface. A further aspect of the invention is that the bonding of metal surfaces by a previous wetting process with a material, in particular at least predominantly a liquid,
vorzugsweise zumindest überwiegend Wasser, als Opferschicht, insbesondere zur Erzeugung eines Pre-Bonds zwischen den Substraten, verwendet wird. Denkbar ist auch eine Kombination aus mehreren Opferschichten preferably at least predominantly water, is used as a sacrificial layer, in particular for producing a pre-bond between the substrates. Also conceivable is a combination of several sacrificial layers
übereinander, mit besonderem Vorzug die Abscheidung einer festen on top of each other, with particular preference the deposition of a solid
Opferschicht und einer darauf abgeschiedenen flüssigen Opferschicht. Im Allgemeinen können also auch mehrere Opferschichten übereinander aufgebracht werden. Sacrificial layer and a deposited thereon liquid sacrificial layer. In general, therefore, several sacrificial layers can be applied one above the other.
Obwohl die offenbarte Erfindung sich grundsätzlich für alle Materialklassen eignet, welche die notwendigen Voraussetzungen erfüllen, sind vor allem Metalle für die erfindungsgemäße Ausführungsform geeignet. Daher wird in der weiteren Offenbarung die erfindungsgemäße Ausführungsform Although the disclosed invention is basically suitable for all classes of materials that meet the necessary requirements, above all Metals suitable for the embodiment of the invention. Therefore, in the further disclosure, the embodiment of the invention
exemplarisch an Metalloberflächen veranschaulicht. exemplified on metal surfaces.
Das Substrat besteht insbesondere aus Silizium, wobei auf dem Substrat eine, insbesondere metallische, vorzugsweise aus Cu bestehende, Bondschicht zumindest in Bondbereichen aufgebracht ist. Soweit die Bondschicht nicht das gesamte Substrat bedeckt, sind die Bondbereiche vorzugsweise von Bulkmaterial, insbesondere des Substrats, umgeben und bilden gemeinsam die, insbesondere ebene, Kontaktfläche. The substrate consists in particular of silicon, wherein on the substrate a, in particular metallic, preferably consisting of Cu, bonding layer is applied at least in bonding areas. As far as the bonding layer does not cover the entire substrate, the bonding regions are preferably surrounded by bulk material, in particular the substrate, and together form the, in particular flat, contact surface.
Gemäß einem weiteren, insbesondere eigenständigen, Aspekt der According to another, in particular independent, aspect of
vorliegenden Erfindung werden die miteinander zu verbündenden present invention are to be joined together
Bondbereiche mit einer Opferschicht beschichtet, die einerseits fähig ist, einen Prebond zu erzeugen, deren Atome andererseits nach dem Prebond bei möglichst geringer Temperaturbehandlung vom/im Material der Bondbereiche gelöst werden. Die Materialschicht besteht dabei mit Vorzug aus einem Material, in welchem zu keinem Zeitpunkt die Löslichkeitsgrenze für das Material der Opferschicht erreicht wird. Erfindungsgemäß löst sich das Material der Opferschicht vollständig in der Materialschicht an mindestens einer der Kontaktflächen, vorzugsweise an beiden Kontaktflächen, auf. Die Konzentration wird mit Vorzug in Atomprozent (at%) angegeben. Bonding areas coated with a sacrificial layer, which on the one hand is able to produce a Prebond, the atoms are solved on the other hand after the Prebond with the lowest possible temperature treatment of / in the material of the bond areas. The material layer preferably consists of a material in which the solubility limit for the material of the sacrificial layer is never reached. According to the invention, the material of the sacrificial layer dissolves completely in the material layer on at least one of the contact surfaces, preferably on both contact surfaces. The concentration is preferably given in atomic percent (at%).
Erfindungsgemäß liegt die Löslichkeit des Materials der Opferschicht im, insbesondere metallischen, Material mindestens einer der Kontaktflächen zwischen 0 at% und 10 at%, mit Vorzug zwischen 0 at% und 1 at%, mit größerem Vorzug zwischen 0 at% und 0. 1 at%, mit größtem Vorzug zwischen 0 at% und 0.01 at%, mit allergrößtem Vorzug zwischen 0 at% und 0.001 at%, am bevorzugtesten zwischen 0 at% und 0.0001 at%. . According to the invention, the solubility of the material of the sacrificial layer in, in particular metallic, material is at least one of the contact surfaces between 0 at% and 10 at%, with preference between 0 at% and 1 at%, more preferably between 0 at% and 0. 1 at %, most preferably between 0 at% and 0.01 at%, most preferably between 0 at% and 0.001 at%, most preferably between 0 at% and 0.0001 at%. ,
Die Dicke der Opferschicht ist erfindungsgemäß kleiner als l OOOnm, mit Vorzug kleiner als l OOnm, mit größerem Vorzug kleiner als l Onm, mit größtem Vorzug kleiner als l nm. Das Verhältnis der Dicke der Opferschicht zur Dicke der Substrate, insbesondere von Bondbereichen der Substrate, ist - 2 -4 kleiner als 1 , mit Vorzug kleiner als 10" , mit Vorzug kleiner als 10" , mit größerem Vorzug kleiner als 10"6, mit noch größerem Vorzug kleiner als 10"8 According to the invention, the thickness of the sacrificial layer is less than 10 nm, more preferably less than 10 nm, more preferably less than 1 nm, most preferably less than 1 nm. The ratio of the thickness of the sacrificial layer to the thickness of the substrates, in particular bonding regions of the substrates , is - 2 -4 less than 1, preferably less than 10 " , preferably less than 10 " , more preferably less than 10 "6 , even more preferably less than 10 " 8
Die Opferschicht kann durch j edes beliebige Abscheideverfahren auf mindestens eine der Kontaktflächen aufgebracht werden. Bevorzugt sind Abscheideverfahren, die eine möglichst grobkörnige und/oder zumindest überwiegend einkristalline Opferschicht erzeugen. Erfindungsgemäß denkbare Abscheideverfahren sind insbesondere : The sacrificial layer can be applied to at least one of the contact surfaces by any desired deposition method. Preference is given to deposition processes which produce as coarse-grained and / or at least predominantly monocrystalline sacrificial layers. In accordance with the invention conceivable deposition methods are in particular:
• Atomic Layer Deposition,  • Atomic Layer Deposition,
• Elektrochemische Abscheidung,  Electrochemical deposition,
• Physical Vapour Deposition (PVD) ,  Physical Vapor Deposition (PVD),
• Chemical Vapour Deposition (CVD),  Chemical Vapor Deposition (CVD),
• Dampfphasenabscheidungen durch Kondensation und/oder  Vapor deposition by condensation and / or
Resublimation wie beispielsweise die direkte Abscheidung von Wasser aus Wasserdampf auf einer Oberfläche,  Resublimation such as the direct separation of water from water vapor on a surface,
• Plasma Abscheidung,  Plasma deposition,
• Naschemische Abscheideverfahren,  • Nashemic deposition processes,
• Sputtern und/oder  • sputtering and / or
• Molekularstrahlepitaxie .  Molecular Beam Epitaxy.
Erfindungsgemäß ist es von Vorteil, wenn die Opferschicht, insbesondere Si, in-situ gemeinsam mit der Bondschicht, insbesondere Cu, auf das Substrat aufgebracht wird. Hierdurch wird die Bildung von Oxid auf der Bondschicht vermieden. According to the invention, it is advantageous if the sacrificial layer, in particular Si, is applied to the substrate in situ together with the bonding layer, in particular Cu. As a result, the formation of oxide on the bonding layer is avoided.
Die Opferschicht besteht erfindungsgemäß insbesondere aus einem Material, welches zur Ausbildung eines Pre-bonds geeignet ist und eine Löslichkeit im Bond- und/oder Bulkbereich an den Kontaktflächen mindestens eines der zu kontaktierenden Substrate aufweist. Die Opferschicht besteht insbesondere zumindest teilweise, vorzugsweise überwiegend, aus wenigstens einem der folgenden Materialen bzw. Stoffe : The sacrificial layer according to the invention consists in particular of a material which is suitable for forming a pre-bond and has a solubility in the bonding and / or bulk region at the contact surfaces of at least one of the substrates to be contacted. The sacrificial layer consists in particular at least partially, preferably predominantly, of at least one of the following materials or substances:
• Metalle, insbesondere o Cu, Ag, Au, AI, Fe, Ni, Co, Pt, W, Cr, Pb, Ti, Te, Sn und/oder Zn, • metals, in particular o Cu, Ag, Au, Al, Fe, Ni, Co, Pt, W, Cr, Pb, Ti, Te, Sn and / or Zn,
• Legierungen,  • alloys,
• Halbleiter (mit entsprechender Dotierung), insbesondere  • Semiconductors (with appropriate doping), in particular
o Elementhalbleiter, vorzugsweise  Elementary semiconductors, preferably
Si, Ge, Se, Te, B und/oder a-Sn, Si, Ge, Se, Te, B and / or a-Sn,
o Verbindungshalbleiter, vorzugsweise  o compound semiconductors, preferably
GaAs, GaN, InP, InxGai_xN,InSb , InAs, GaSb, A1N, InN, GaP , BeTe, ZnO , CuInGaSe2, ZnS , ZnS e, ZnTe, CdS , CdSe, CdTe, Hg( l -x)Cd(x)Te, BeSe, HgS , AlxGai_xAs, GaS , GaSe, GaTe, InS , InSe, InTe, CuInSe2, CuInS2, CuInGaS2, SiC und/oder SiGe, GaAs, GaN, InP, In x Ga x N, InSb, InAs, GaSb, A1N, InN, GaP, BeTe, ZnO, CuInGaSe 2, ZnS, ZnS e, ZnTe, CdS, CdSe, CdTe, Hg (l -x ) Cd (x) Te, BeSe, HgS, Al x Gai x As, GaS, GaSe, GaTe, InS, InSe, InTe, CuInSe 2 , CuInS 2 , CuInGaS 2 , SiC and / or SiGe,
o Organische Hlableiter, vorzugsweise  o Organic Hlableiter, preferably
Flavanthron, Perinon, Alq3 , Perinon, Tetracen, flavanthrone, perinone, Alq3, perinone, tetracene,
Chinacridon, Pentacen, Phthalocyanine, Polythiophene, PTCDA, MePTCDI, Acridon und/oder Indanthron, Quinacridone, pentacene, phthalocyanines, polythiophene, PTCDA, MePTCDI, acridone and / or indanthrone,
• Flüssigkeiten, insbesondere • Liquids, in particular
o Wasser,  o water,
o Alkohole,  o alcohols,
o Aldehyde,  o aldehydes,
o Ketone,  o ketones,
o Ether,  o Ether,
o Säuren,  o acids,
o Basen.  o bases.
In einer ersten erfindungsgemäßen Ausführungsform handelt es sich bei dem Bondbereich um eine sich über die gesamte Kontaktfläche des Substrats erstreckende Schicht. Die Rauigkeit der Oberfläche des Bondbereichs wird insbesondere durch bekannte Verfahren reduziert. Mit Vorzug wird ein chemisch-mechanischer Polierprozess (CMP) verwendet. Danach wird die gesamte Bondbereichsoberfläche mit der erfindungsgemäßen Opferschicht bedeckt. Die Opferschicht wird derart aufgebracht oder nach der Aufbringung behandelt, dass die mittleren Rauhigkeitswerte kleiner als Ι μιη, mit Vorzug kleiner als 500nm, mit größerem Vorzug kleiner als l OOnm, mit noch größerem Vorzug kleiner als l Onm, mit größtem Vorzug kleiner als l nm, sind. In a first embodiment according to the invention, the bonding region is a layer extending over the entire contact surface of the substrate. The roughness of the surface of the bond area is reduced in particular by known methods. It is preferred to use a chemical-mechanical polishing (CMP) process. Thereafter, the entire bond area surface is covered with the sacrificial layer according to the invention. The sacrificial layer is applied in such a way or after the application that the average roughness values are less than Ι μιη, preferably less than 500nm, more preferably less than 1 Ωm, even more preferably less than 1 mm, most preferably less than 1nm.
In einer zweiten erfindungsgemäßen Ausführungsform sind mehrere, über die gesamte Kontaktfläche verteilte Bondbereiche vorgesehen. Die Bondbereiche bilden insbesondere eine die Kontaktfläche mindestens eines der Substrate überragende Topographie, ragen also über dessen Oberfläche hinaus . Die Bondbereiche werden vorzugsweise von einem beliebigen Bulkmaterial umgeben. Die Oberflächen des Bulkmaterials und die Bondbereichsoberfläche bilden insbesondere eine gemeinsame Ebene E. Die aus leitenden Bereichen bestehenden, von nichtleitenden Bereichen umgebenen, Oberflächen sind auch unter dem Namen Hybridoberflächen bekannt. Die nichtleitenden In a second embodiment according to the invention, a plurality of bonding regions distributed over the entire contact surface are provided. In particular, the bonding regions form a topography which projects beyond the contact surface of at least one of the substrates, ie project beyond its surface. The bond areas are preferably surrounded by any bulk material. In particular, the surfaces of the bulk material and the bond area surface form a common plane E. The surfaces consisting of conductive areas and surrounded by non-conductive areas are also known as hybrid surfaces. The non-conductive
Bereiche bestehen aus einem Dielektrikum und isolieren die leitenden Areas consist of a dielectric and insulate the conductive ones
Bereiche. Die denkbar einfachste Ausführungsform wären durch Dielektrika isolierte Kontaktstellen für den Ladungstransport. Durch das Bonden dieser Hybridoberflächen kann eine leitende Verbindung zwischen den Substraten über die verbündeten Kontaktstellen erreicht werden. Areas. The simplest conceivable embodiment would be contact pads isolated by dielectrics for charge transport. By bonding these hybrid surfaces, a conductive connection between the substrates via the allied contact points can be achieved.
Die Opferschicht wird erfindungsgemäß vollflächig auf den Kontaktflächen, also sowohl auf der Bulkmaterialoberfläche als auch den The sacrificial layer according to the invention over the entire surface on the contact surfaces, so both on the Bulkmaterialoberfläche and the
Bondbereichsoberflächen abgeschieden. Bei den lokalen Bondbereichen handelt es sich insbesondere um Kupferstecker (engl. : Cu pads), Bonding area surfaces deposited. The local bond areas are, in particular, copper plugs (copper pads),
Metallverbindungen (engl. : metal joints) oder Metallrahmen für das Metal joints or metal frames for the
Packaging. Cu pads dienen insbesondere der elektrischen Verbindung zwischen funktionalen Einheiten in den unterschiedlichen Schichtsystemen. Metal j oints könnten insbesondere Siliziumdurchkontakte (engl. : through Silicon vias, TSVs) sein. Bei einem Metallrahmen kann es sich beispielsweise um eine Mikroverpackung für ein MEMS Device handeln. Diese funktionellen Einheiten wurden in den Zeichnungen der Übersicht halber nicht dargestellt. In einer dritten erfindungsgemäßen Ausführungsform sind mehrere über die gesamte Kontaktfläche verteilte Bondbereiche unmittelbar innerhalb des Substrats vorgesehen, wobei das Substrat zuerst durch Ätztechniken strukturiert und danach mit dem entsprechenden Bondbereichsmaterial aufgefüllt und anschließend vom Opfermaterial bedeckt wird. Packaging. Cu pads are used in particular for the electrical connection between functional units in the different layer systems. Metal j oints could in particular be silicon vias (TSVs). For example, a metal frame may be a micro package for a MEMS device. These functional units have not been shown in the drawings for the sake of clarity. In a third embodiment according to the invention, a plurality of bond regions distributed over the entire contact surface are provided directly within the substrate, wherein the substrate is first patterned by etching techniques and then filled with the corresponding bond region material and subsequently covered by the sacrificial material.
In einem erfindungsgemäßen Bondschritt werden die zwei als beliebige Schichtsysteme ausgebildeten Substrate einander angenähert, sodass die, auf den Kontaktflächen aufgebrachten Opferschicht(en) einander berühren und einen Prebond bilden. Die Rauigkeiten der Opferschichtoberflächen können durch chemische und/oder mechanische Verfahren weitgehend reduziert, vorzugsweise beseitigt werden. Bei bestimmten Schichtsystemen kann eine Ausrichtung der Schichtsysteme zueinander in einer Ausrichtungseinheit (engl. : aligner) vor dem prebond erfolgen. In a bonding step according to the invention, the two substrates formed as arbitrary layer systems are approximated so that the sacrificial layer (s) applied on the contact surfaces touch each other and form a prebond. The roughness of the sacrificial layer surfaces can be largely reduced by chemical and / or mechanical methods, preferably eliminated. In certain layer systems, the layer systems can be aligned with one another in an alignment unit in front of the prebond.
Vor dem Prebonden können die Opferschichtoberflächen erfindungsgemäß mit einer Flüssigkeit, mit Vorzug Wasser, benetzt werden. Mit Vorzug ist die aufgetragene Flüssigkeitsschicht dünner als l OOnm, mit größerem Vorzug dünner als l Onm, mit größtem Vorzug dünner als l nm, mit allergrößtem Vorzug nur eine Monolage . Bei hydrophilen Oberflächen ist es ausreichend, das Substrat der Umgebungsatmosphäre auszusetzen. Die Oberfläche wird dann durch den Wasserdampf aus der Atmosphäre benetzt. Before the pre-bonding, the sacrificial layer surfaces can, according to the invention, be wetted with a liquid, preferably with water. With preference the applied liquid layer is thinner than 10 nm, more preferably thinner than 1 nm, most preferably thinner than 1 nm, most preferably only one monolayer. For hydrophilic surfaces, it is sufficient to expose the substrate to the ambient atmosphere. The surface is then wetted by the water vapor from the atmosphere.
Die Flüssigkeit kann erfindungsgemäß insbesondere durch Kondensation aufgebracht werden. In einer besonderen Ausführungsform wird das zu beschichtende Substrat, mit Vorzug in gekühltem Zustand, in einen The liquid can be applied according to the invention in particular by condensation. In a particular embodiment, the substrate to be coated, preferably in the cooled state, in a
aufgeheizten Raum mit dampfgesättigter Atmosphäre eingebracht. Durch die geringe Temperatur des Substrats kondensiert die Flüssigkeit schlagartig an dessen Oberfläche. heated room with vapor-saturated atmosphere introduced. Due to the low temperature of the substrate, the liquid condenses abruptly on its surface.
In einer alternativen Ausführung der Erfindung wird das Material der In an alternative embodiment of the invention, the material of the
Opferschicht, insbesondere als Flüssigkeit, durch einen Sacrificial layer, in particular as a liquid, by a
Schleuderbelackungsprozess aufgebracht. In einer weiteren alternativen Ausführung der Erfindung wird das Material der Opferschicht, insbesondere als Flüssigkeit, durch eine Schleuderbelackungsprozess applied. In a further alternative embodiment of the invention, the material of the sacrificial layer, in particular as a liquid, by a
Sprühbelackungsanlage auf die Kontaktfläche mindestens eines der Substrate gesprüht. Sprühbelackungsanlage sprayed onto the contact surface of at least one of the substrates.
In besonderen Ausführungsformen wird das Wasser durch einen In particular embodiments, the water is through a
Dampfdrucksättiger (engl. : Bubbler) in die Reaktionskammer eingeführt, in der sich das Substrat befindet. Dazu werden Inertgase wie beispielsweise Argon, Helium, Stickstoff durch ein Wasserbad getrieben. Das Inertgas unterstützt das Wasser beim Verdampfen und sättigt die Reaktionskammer mit Wasserdampf. Das Wasser kondensiert an der Oberfläche des Substrats und bildet einen sehr dünnen Wasserfilm. Durch Kühlung des Substrats kann die Kondensation des Wassers unterstützt werden. Steam pressure (bubbler) introduced into the reaction chamber in which the substrate is located. For this purpose, inert gases such as argon, helium, nitrogen are driven through a water bath. The inert gas supports the water during evaporation and saturates the reaction chamber with water vapor. The water condenses on the surface of the substrate and forms a very thin film of water. By cooling the substrate, the condensation of the water can be supported.
In einer weiteren besonderen Ausführungsform wird das Wasser in einem einfachen Verdampfer verdampft und auf die Oberfläche des Substrats geleitet. Im Gegensatz zum Bubbler wird hier nicht notwendigerweise mit einem Inertgas gearbeitet, sondern die Temperatur des Wassers wird möglichst nahe an den Siedepunkt gebracht um die kinetische Energie des Wassers zu erhöhen und damit die Verdampfung zu beschleunigen. Durch eine Evakuierung der Reaktionskammer kann der Siedepunkt entsprechend gesenkt und der Vorgang damit optimiert werden. In a further particular embodiment, the water is evaporated in a simple evaporator and passed to the surface of the substrate. In contrast to the bubbler is not necessarily working with an inert gas, but the temperature of the water is brought as close to the boiling point to increase the kinetic energy of the water and thus to accelerate the evaporation. By evacuating the reaction chamber, the boiling point can be reduced accordingly and the process can thus be optimized.
Aus der Überlegung, dass spezielle Reaktionskammern gebaut werden können, die die erfindungsgemäßen Opferschichten präzise abscheiden können ergibt sich dementsprechend auch eine erfindungsgemäße Anlage, im weiteren Verlauf der Patentschrift als Reaktionskammer bezeichnet. From the consideration that special reaction chambers can be built, which can deposit the sacrificial layers according to the invention precisely results accordingly also a system according to the invention, referred to in the further course of the patent as a reaction chamber.
Der Prebond wird mit Vorzug in einem Kontaktpunkt der Kontaktflächen initiiert und breitet sich durch eine Bondwelle über die gesamte Oberfläche aus . Der Kontakt beider Opferschichtoberflächen kann dabei insbesondere durch einen Pin hergestellt werden, der eines der beiden Substrate verbiegt, sodass sich die Kontaktfläche dieses Substrats konvex verformt und mit der Opferschichtoberfläche des zweiten, insbesondere plan auf einer The Prebond is preferably initiated at a contact point of the contact surfaces and spreads over the entire surface by a bonding wave. The contact of both sacrificial layer surfaces can be produced in particular by a pin which bends one of the two substrates, so that the contact surface of this substrate convexly deformed and with the sacrificial layer surface of the second, in particular plan on one
Aufnahmefläche aufliegenden Substrats, in Kontakt gebracht wird. Receiving surface resting substrate is brought into contact.
Nach der Ausbildung des Prebonds werden die beiden gebondeten Substrate wärmebehandelt. Die Wärmebehandlung erfolgt bei möglichst niedrigen Temperaturen, im Idealfall bei Raumtemperatur. Die Temperatur ist dabei kleiner als 500°C , mit Vorzug kleiner als 400°C, bevorzugter kleiner als 300°C , noch bevorzugter kleiner als 200°C , am bevorzugtesten kleiner als 100°C , am allerbevorzugtesten kleiner als 50°C . After the formation of the prebond, the two bonded substrates are heat treated. The heat treatment takes place at the lowest possible temperatures, ideally at room temperature. The temperature is less than 500 ° C, more preferably less than 400 ° C, more preferably less than 300 ° C, even more preferably less than 200 ° C, most preferably less than 100 ° C, most preferably less than 50 ° C.
Durch eine erfindungsgemäß sehr dünne Ausführung der Opferschicht wird eine schnelle Diffusion von Atomen der Opferschicht, insbesondere ausschließlich, in den Bondbereichen ermöglicht. Die erfindungsgemäße Diffusion wird durch eine Wärmebehandlung beschleunigt und/oder begünstigt. Mit Vorzug lösen sich die Atome der Opferschicht By a very thin embodiment of the sacrificial layer according to the invention, a rapid diffusion of atoms of the sacrificial layer, in particular exclusively, in the bond areas is made possible. The diffusion according to the invention is accelerated and / or promoted by a heat treatment. With preference, the atoms of the sacrificial layer dissolve
erfindungsgemäß vollständig im Material des Bondbereichs und/oder des Bulkmaterials auf. Erfindungsgemäß denkbar ist auch ein Vorgang, bei dem die Atome der Bondbereiche sich in der Opferschicht lösen, was auf Grund der extrem geringen Dicke der Opferschicht technisch gesehen identisch mit der oben beschriebenen Ausführung ist. According to the invention completely in the material of the bonding area and / or the bulk material. Also conceivable in accordance with the invention is a process in which the atoms of the bonding regions dissolve in the sacrificial layer, which is technically identical to the embodiment described above due to the extremely small thickness of the sacrificial layer.
Mit Vorzug werden die Substrate während des erfindungsgemäßen With preference, the substrates during the inventive
Diffusionsvorganges der Atome der Opferschicht in die Bondbereiche mit Druck beaufschlagt. Der Druck auf die Oberfläche liegt insbesondere zwischen 0 ,01 MPa und l OMPa, mit Vorzug zwischen 0 , l MPa und 8MPa, mit größerem Vorzug zwischen I MPa und 5MPa, mit größtem Vorzug zwischen l ,5MPa und 3MPa. Diese Werte entsprechen etwa einer Kraftbeaufschlagung von l kN bis 320kN für ein 200mm-Substrat. Diffusion process of the atoms of the sacrificial layer in the bond areas pressurized. In particular, the pressure on the surface is between 0.10 MPa and 10MPa, preferably between 0.1 MPa and 8MPa, more preferably between I MPa and 5MPa, most preferably between 1.5MPa and 3MPa. These values correspond approximately to a load of 1 kN to 320 kN for a 200 mm substrate.
Die Oberfläche der Opferschicht sollte vor dem erfindungsgemäßen The surface of the sacrificial layer should be before the invention
Prebondvorgang frei von Kontaminationen und/oder zumindest überwiegend, vorzugsweise vollständig, frei von Oxiden sein. Insbesondere kann es auch nötig sein, das Material, auf dem die Opferschicht aufgebracht wird, von Oxid zu befreien, bevor die Opferschicht aufgebracht wird. Vor einem erfindungsgemäßen Prebondvorgang wird daher vorzugsweise eine Reinigung der Opferschichtoberfläche vorgenommen. Die Entfernung von Oxiden kann durch dem Fachmann bekannte physikalische und/oder chemische Methoden erfolgen. Dazu zählen chemische Reduktion durch Gase und/oder Prebondvorgang free of contamination and / or at least predominantly, preferably completely, free of oxides. In particular, it can also be necessary to rid the material on which the sacrificial layer is applied, of oxide before the sacrificial layer is applied. Before a Prebondvorgang invention therefore preferably a cleaning of the sacrificial layer surface is made. The removal of oxides can be carried out by physical and / or chemical methods known to those skilled in the art. These include chemical reduction by gases and / or
Flüssigkeiten mit entsprechendem Abtransport der Abfallprodukte, Liquids with appropriate removal of the waste products,
mechanisches Abtragen der Oxide durch Sputtern und/oder Plasma und/oder CMP und/oder einer oder mehrere der nachfolgenden Methoden: mechanical removal of the oxides by sputtering and / or plasma and / or CMP and / or one or more of the following methods:
• Chemische Oxidentfernung, insbesondere  • Chemical oxide removal, in particular
o Gasförmiges Reduktionsmittel,  o gaseous reducing agent,
o Flüssiges Reduktionsmittel,  o liquid reducing agent,
• Physikalische Oxidentfernung, insbesondere  • Physical oxide removal, in particular
o Plasma,  plasma,
o Ion Assisted Chemical Etching,  o Ion Assisted Chemical Etching,
o Fast Ion Bombardement (FAB , Sputtern),  o Fast Ion Bombardment (FAB, sputtering),
o Schleifen,  o loops,
o Polieren.  o polishing.
Unter einer chemischen Oxidentfernung versteht man die Entfernung des Oxids durch einen chemischen Vorgang. Unter einem chemischen Vorgang versteht man eine Stoffumwandlung. In diesem Fall wird das Oxid durch ein Reduktionsmittel in gasförmiger und/oder flüssiger Phase reduziert und das Reduktionsmittel entsprechend zur neuen Verbindung oxidiert. Das oxidierte Reduktionsmittel, also das Reaktionsprodukt wird entsprechend abgeführt. Eines typisches Reduktionsmittel ist beispielsweise Wasserstoff.  Chemical removal of oxides is the removal of the oxide by a chemical process. A chemical process is a matter of transformation. In this case, the oxide is reduced by a reducing agent in the gaseous and / or liquid phase and oxidizes the reducing agent corresponding to the new compound. The oxidized reducing agent, ie the reaction product is removed accordingly. A typical reducing agent is, for example, hydrogen.
Unter physikalischer Oxidentfernung versteht man die Entfernung des Oxids durch einen physikalischen Prozess . Bei einem physikalischen Prozess kommt es nicht zu einer Stoffumwandlung sondern zu einer rein mechanischen Entfernung des Oxids von der Oberfläche des Substrats . Die am häufigsten verwendete physikalische Reduktionstechnologie ist die Plasmatechnologie. Dabei wird ein Plasma erzeugt, welches durch entsprechende Felder auf die Oberfläche des Substrats beschleunigt wird und eine entsprechende physikalische Oxidentfernung bewerkstelligt. Denkbar ist auch die Physical oxide removal is the removal of the oxide by a physical process. In a physical process, there is no material conversion but a purely mechanical removal of the oxide from the surface of the substrate. The most commonly used physical reduction technology is plasma technology. In this case, a plasma is generated, which is accelerated by appropriate fields on the surface of the substrate and a corresponding physical oxide removal accomplished. It is also conceivable
Verwendung einer Sputtertechnologie. Im Gegensatz zum Plasma wird dabei nicht ein statistisches Vielteilchensystem in der Reaktionskammer erzeugt, sondern man erzeugt Ionen in einer Vorkammer und beschleunigt diese gezielt auf ein Substrat. S chließlich wären noch das Schleifen und das Polieren als Oxidentfernungsprozesse zu nennen. Durch ein Schleif- bzw. Polierwerkzeug wird das Oxid schrittweise entfernt. Schleifen und Polieren eignet sich vor allem als Vorbehandlungsprozess wenn man es mit sehr dicken Oxidschichten im Mikrometerbereich zu tun hat. Für die korrekte Entfernung von Oxidschichten im Nanometerbereich sind diese Methoden weniger geeignet. Using a sputtering technology. In contrast to the plasma, a statistical many-body system is not generated in the reaction chamber, but instead ions are generated in an antechamber and accelerated to a substrate. Finally, grinding and polishing would be called oxide removal processes. By a grinding or polishing tool, the oxide is gradually removed. Sanding and polishing is particularly suitable as a pretreatment process when dealing with very thick oxide layers in the micrometer range. For the correct removal of oxide layers in the nanometer range, these methods are less suitable.
Ein Nachweis der Oberflächenreinheit kann sehr schnell und einfach mit der Kontaktwinkelmethode durchgeführt werden. Es ist bekannt, dass nicht oxidische Oberflächen, vor allem reines Kupfer, eher hydrophile Evidence of surface cleanliness can be made very quickly and easily with the contact angle method. It is known that non-oxidic surfaces, especially pure copper, are more hydrophilic
Eigenschaften besitzen. Das zeigt sich vor allem durch einen sehr kleinen Kontaktwinkel. Oxidiert die Oberfläche zum Oxid, im Speziellen Kupfer zu Kupferoxid, werden die Oberflächeneigenschaften immer hydrophober. Ein gemessener Kontaktwinkel ist entsprechend groß . Um die Änderung des Kontaktwinkels als Funktion der Zeit, und damit als Funktion fortschreiten der Kupferoxid-Dicke, darzustellen, wurde der Kontaktwinkel eines Own properties. This is reflected above all by a very small contact angle. When the surface oxidizes to the oxide, especially copper to copper oxide, the surface properties become more and more hydrophobic. A measured contact angle is correspondingly large. To illustrate the change in the contact angle as a function of time, and thus as a function of the copper oxide thickness, the contact angle of a
Wassertropfens nach definierten Zeiteinheiten, ausgehend vom Zeitpunkt der völligen Oxidentfernung des nativen Kupferoxids, gemessen. Der Water drop after defined time units, starting from the time of complete oxide removal of the native copper oxide, measured. Of the
Kontaktwinkel nähert sich mit zunehmender Zeit einem S ättigungswert. Dieser Zusammenhang könnte mit der Änderung der Elektronenstruktur der Oberfläche durch das rasch wachsende Kupferoxid erklärt werden. Ab einer gewissen Kupferoxidschichtdicke trägt eine weitere Vermehrung des Oxids nicht mehr maßgeblich zur Änderung der Elektronenstruktur der Oberfläche bei, was sich in einem logarithmischen Abklingen des Kontaktwinkels wiederspiegelt (siehe Figur 4) . Contact angle approaches a saturation value with increasing time. This relationship could be explained by the change in the electronic structure of the surface due to the rapidly growing copper oxide. From a certain copper oxide layer thickness further increase of the oxide no longer contributes significantly to the change in the electronic structure of the surface, which is reflected in a logarithmic decay of the contact angle (see Figure 4).
Die so entstehenden Oxide werden bevorzugt vor der Beschichtung der Bondbereichoberflächen und/oder Bulkmaterialoberflächen mit den Opferschichtoberflächen und/oder vor dem Bonden der The resulting oxides are preferably before coating the bond area surfaces and / or Bulkmaterialoberflächen with the Sacrificial layer surfaces and / or before bonding the
Opferschichtoberflächen miteinander entfernt. Die hier genannte Sacrificial layer surfaces removed together. The one mentioned here
Kontaktwinkelmethode dient dabei der schnellen, präzisen und Contact angle method serves the fast, precise and
kosteneffizienten Evaluierung des Oxidzustandes. Sie kommt ohne cost-efficient evaluation of the oxide state. She comes without
komplizierte chemische und/oder physikalische Analyseapparate aus . complicated chemical and / or physical analysis apparatus.
Kontaktwinkelmessgeräte können in entsprechende Modulgruppen der Contact angle measuring devices can be placed in corresponding module groups of the
Vorrichtung zur vollautomatischen Messung und Charakterisierung der Oberflächen eingebaut werden. Alternative Messmethoden wären die Device for fully automatic measurement and characterization of the surfaces to be installed. Alternative measuring methods would be the
Ellipsometrie oder j edes andere bekannte optische und/oder elektrische Verfahren. Ellipsometry or any other known optical and / or electrical method.
In einer weiteren erfindungsgemäßen Ausführungsform wird ein Bondvorgang zwischen den Bondbereichsoberflächen mit Wasser als Opferschicht durchgeführt. Der erfindungsgemäße Gedanke besteht darin, die In a further embodiment according to the invention, a bonding process is carried out between the bond area surfaces with water as the sacrificial layer. The idea according to the invention is that of
Bondbereichsoberflächen vollständig von Oxid zu reinigen und in einem anschließenden, direkt auf die Oxidentfernung folgenden Schritt, eine Bond surface surfaces completely clean of oxide and in a subsequent, directly on the Oxidenfernung following step, a
Benetzung der Bondbereichsoberflächen mit Wasser durchzuführen, welches einen Prebond zwischen den Bondbereichsoberflächen bei Raumtemperatur erlaubt. Die Benetzung erfolgt dabei durch eine der bereits erwähnten Wetting the bonding surface surfaces with water, which allows a Prebond between the Bondbereichsoberflächen at room temperature. The wetting takes place by one of the already mentioned
Möglichkeiten wie PVD, CVD, Schleuderbelackung, Possibilities like PVD, CVD, spin coating,
Dampfphasenabscheidung oder dem Aussetzen der Substratoberfläche in einer Atmosphäre die eine genügend hohe Luftfeuchtigkeit besitzt, mit Vorzug sogar an Wasserdampf gesättigt ist.  Vapor phase deposition or exposure of the substrate surface in an atmosphere which has a sufficiently high humidity, with preference even saturated with water vapor.
Die Aufbringung der Opferschichten erfolgt in einer Reaktionskammer. Mit Vorzug kann die Reaktionskammer evakuiert werden. Die, insbesondere kontinuierliche, Evakuierung der Reaktionskammer ist des Weiteren von Vorteil, um eine gezielte Einstellung der Atmosphäre zu ermöglichen. Mit Vorzug ist die Reaktionskammer Teil eines Moduls eines Vakuumclusters, mit Vorzug Teil eines Niedervakuumcluster, mit größerem Vorzug eines Hochvakuumclusters, mit größtem Vorzug Teil eines The application of the sacrificial layers takes place in a reaction chamber. With preference, the reaction chamber can be evacuated. The, in particular continuous, evacuation of the reaction chamber is also advantageous to allow a targeted adjustment of the atmosphere. Preferably, the reaction chamber is part of a module of a vacuum cluster, preferably part of a low vacuum cluster, more preferably a high vacuum cluster, most preferably part of a vacuum cluster
Ultrahochvakuumclusters . Der Druck in der Reaktionskammer beträgt weniger als 1 bar, mit Vorzug weniger als 10 1 mbar, mit größerem Vorzug weniger als 10 -" 3 mbar, mit größtem Vorzug weniger als 10 -" 5 mbar, mit allergrößtem Vorzug weniger als 10 -" 8 mbar. Ultrahigh vacuum cluster. The pressure in the reaction chamber is less than 1 bar, more preferably less than 10 1 mbar, more preferably less than 10 - " 3 mbar, most preferably less than 10 - " 5 mbar, most preferably less than 10 - " 8 mbar.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Diese zeigen in: Further advantages, features and details of the invention will become apparent from the description of preferred embodiments and from the drawings. These show in:
Fig. l eine S eitenansicht einer erfindungsgemäßen ersten Ausführungsform mit vollflächigem Bondbereich, 1 shows a side view of a first embodiment according to the invention with a full area bonding area,
Fig.2 eine S eitenansicht einer erfindungsgemäßen zweiten Ausführungsform mit mehreren, lokalen Bondbereichen, 2 shows a side view of a second embodiment according to the invention with a plurality of local bonding areas,
Fig.3 eine S eitenansicht einer erfindungsgemäßen dritten Ausführungsform mit mehreren, lokalen Bondbereichen im Substrat, 3 shows a side view of a third embodiment according to the invention with a plurality of local bond areas in the substrate,
Fig.4 empirische Messdaten des Kontaktwinkels (engl. : contact angle) 4 empirical measurement data of the contact angle
zwischen der Flüssigkeitstropfenkante und der Oberfläche von  between the liquid drop edge and the surface of
Kupfer/Kupferoxid, als Funktion der Zeit (engl . : time) und  Copper / copper oxide, as a function of time and
Fig. 5 eine schematische Aufsicht auf ein die Vorrichtung enthaltendes Fig. 5 is a schematic plan view of a device containing the
Clustersystem.  Cluster system.
In den Figuren sind gleiche oder gleichwirkende Bauteile mit den gleichen Bezugszeichen gekennzeichnet. Die Zeichnungen zeigen nur schematisch die erfindungsgemäßen Ausführungsformen und sind nicht maßstabsgetreu. So sind vor allem die relativen Dicken der Opferschicht, der Bondbereiche und der Substrate unverhältnismäßig zueinander, genauso wie das Verhältnis der genannten Dicken zum Durchmesser der Substrate . In the figures, identical or equivalent components are identified by the same reference numerals. The drawings show only schematically the embodiments of the invention and are not to scale. In particular, the relative thicknesses of the sacrificial layer, the bonding areas and the substrates are disproportionate to each other, as is the ratio of the mentioned thicknesses to the diameter of the substrates.
Figur 1 zeigt ein Schichtsystem 7, bestehend aus einem ersten Substrat 1 mit einer Grenzfläche l o , einem Bondbereich 3 mit einer Bondbereichsoberfläche 3o, sowie die Opferschicht 4 mit der Opferschichtoberfläche 4o . Der Bondbereich 3 erstreckt sich bei der ersten Ausführungsform über die gesamte Grenzfläche l o des Substrats 1 . Die Bondbereichsoberfläche 3o bildet in diesem Fall eine erste Kontaktfläche des ersten Substrats 1 . Der Bondbereich 3 kann, insbesondere materialeinstückiger (also aus demselben Material bestehender) und/oder monotlithischer, Bestandteil des ersten Substrats 1 sein. Die Opferschicht 4 ist auf der ersten Kontaktfläche vollflächig aufgebracht. FIG. 1 shows a layer system 7, comprising a first substrate 1 with an interface lo, a bonding region 3 with a bond region surface 3o, and the sacrificial layer 4 with the sacrificial layer surface 4o. Of the Bonding region 3 extends in the first embodiment over the entire interface area lo of the substrate 1. In this case, the bonding area surface 3o forms a first contact area of the first substrate 1. The bonding region 3 may be a component of the first substrate 1, in particular material-integral (ie consisting of the same material) and / or monolithic. The sacrificial layer 4 is applied over the entire area on the first contact surface.
Figur 2 zeigt ein Schichtsystem 7 ' , bei dem mehrere, vorzugsweise FIG. 2 shows a layer system 7 'in which several, preferably
regelmäßig über die Grenzfläche l o verteilte Bondbereiche 3 ' mit regularly distributed over the interface l o bond areas 3 'with
entsprechenden Bondbereichsoberflächen 3o ' auf dem ersten Substrat aufgebracht sind. Die Bondbereiche 3 ' bilden somit eine Topographie über der Oberfläche l o des Substrats 1 . In der gezeigten, bevorzugten corresponding bond area surfaces 3o 'are applied to the first substrate. The bond areas 3 'thus form a topography over the surface 10 of the substrate 1. In the shown, preferred
Ausführungsform werden die Bondbereiche 3 ' von einem Bulkmaterial 5 umgeben. Das Bulkmaterial kann ein beliebiges Metall, Nichtmetall, eine Keramik oder ein Polymer, wie beispielsweise ein Resist sein. Mit Vorzug wird es sich allerdings um eine Keramik handeln, insbesondere S13N4 oder SixOxNx, mit noch größerem Vorzug um eine Oxidkeramik, insbesondere um Si02. Die Bondbereichsoberflächen 3 ' und die Bulkmaterialoberflächen 5o bilden eine gemeinsame Ebene E , nämlich die erste Kontaktfläche . Die Ebenheit der Bondbereichsoberflächen 3 ' und der Bulkmaterialoberflächen 5 o sowie deren Koplanarität erlauben eine optimale Abscheidung der Embodiment, the bonding regions 3 'surrounded by a bulk material 5. The bulk material may be any metal, non-metal, ceramic or polymer, such as a resist. However, preference will be given to a ceramic, in particular S1 3 N 4 or Si x O x N x , even more preferably an oxide ceramic, in particular Si0 2 . The bonding area surfaces 3 'and the bulk material surfaces 5o form a common plane E, namely the first contact area. The flatness of the bond area surfaces 3 'and the bulk material surfaces 5 o and their coplanarity allow optimal deposition of the
Opferschicht 4 auf der ersten Kontaktfläche. Sacrificial layer 4 on the first contact surface.
Figur 3 zeigt ein Schichtsystem 7 " , bestehend aus einem strukturierten ersten Substrat 1 ' mit einer Grenzfläche l o ' und mehreren, vorzugsweise regelmäßig im Substrat 1 ' verteilten Bondbereichen 3 ' mit FIG. 3 shows a layer system 7 "comprising a structured first substrate 1 'with an interface l o' and a plurality of bonding regions 3 ', preferably distributed regularly in the substrate 1'
Bondbereichsoberflächen 3o ' . Das Substrat 1 ist durch Ätzen strukturiert worden, sodass sich im Substrat 1 ' Kavitäten 2 geformt haben. Die so entstandenen Kavitäten 2 werden mit dem Material für die Bondbereiche 3 ' aufgefüllt, insbesondere mit einem PVD oder CVD Prozess . Das über die gemeinsame Ebene E abgeschiedene Material der Bondbereiche 3 ' wird anschließend durch einen Rückdünnprozess entfernt. Denkbar wäre die Entfernung bis auf die Ebene E durch S chleifprozesse, Polierprozesse, Chemisch-Mechanisches Polieren etc . Das so hergestellte Substrat 1 ' mit den Kavitäten 2, die durch das Auffüllen mit Material die Bondbereiche 3 ' und somit gemeinsam die Kontaktfläche bilden, wird anschließend Bonding area surfaces 3o '. The substrate 1 has been patterned by etching, so that cavities 2 have formed in the substrate 1 '. The resulting cavities 2 are filled with the material for the bond areas 3 ', in particular with a PVD or CVD process. The deposited over the common plane E material of the bond areas 3 'is then removed by a Rückdünnprozess. It would be conceivable Removal down to the level E by grinding processes, polishing processes, chemical-mechanical polishing, etc. The substrate 1 'produced in this way with the cavities 2, which form the bonding areas 3' and thus jointly the contact area by filling with material, is subsequently
erfindungsgemäß an dieser mit der Opferschicht 4 bedeckt. According to the invention covered at this with the sacrificial layer 4.
Die Abscheidung der Opferschichten 4 kann für alle erfindungsgemäßen Ausführungsformen so erfolgen, dass Material für die Opferschicht 4 solange abgeschieden wird, bis die nötige Schichtdicke erreicht wird. Die zweite Methode besteht darin, in einem ersten Schritt die Opferschicht 4 dicker auszubilden als erwünscht und sie in einem zweiten Schritt, einem For all the embodiments according to the invention, the deposition of the sacrificial layers 4 can take place in such a way that material for the sacrificial layer 4 is deposited until the required layer thickness is reached. The second method is to form the sacrificial layer 4 thicker than desired in a first step and in a second step, a
Rückdünnprozess, auf die gewünschte Dicke zu reduzieren. Denkbar wären auch in diesem Fall die Anwendung von Schleifprozessen und/oder Re-thinning process to reduce to the desired thickness. Also conceivable in this case would be the use of grinding processes and / or
Polierprozessen und/oder Chemisch-Mechanischem Polieren. Im Falle flüssiger Opferschichten kann die erforderliche Schichtdicke auch Polishing processes and / or chemical mechanical polishing. In the case of liquid sacrificial layers, the required layer thickness can also
kontinuierlich aufgebaut werden, indem man die Opferschicht wachsen lässt. So weiß man beispielsweise, welche Gleichgewichtsschichtdicke an der Oberfläche eines Substrats entsteht, wenn eine Atmosphäre mit be continuously built by growing the sacrificial layer. For example, we know which equilibrium layer thickness is formed on the surface of a substrate when an atmosphere with
entsprechender Luftfeuchtigkeit erzeugt wird. Durch die gezielte Steuerung von Temperatur, Druck, und Feuchtigkeit, kann man eine wohldefinierte Schichtdicke an der Substratoberfläche erzeugen. corresponding humidity is generated. Through the targeted control of temperature, pressure, and humidity, one can create a well-defined layer thickness at the substrate surface.
Nachdem zwei S chichtsysteme 7, 7 ' , 7 " hergestellt sind, werden diese bei niedrigen Temperaturen und/oder mit niedrigen Drücken an den After two layer systems 7, 7 ', 7 "are produced, they are at low temperatures and / or with low pressures on the
Bondbereichen unter Ausbildung eines Prebond miteinander gebondet. Bond areas bonded together to form a Prebond.
Vor dem Prebonden können die Opferschichtoberflächen 4o mit einer Before pre-bonding, the sacrificial layer surfaces 4o may be filled with a
Flüssigkeit, mit Vorzug Wasser, zusätzlich benetzt werden. Mit Vorzug sind die aufgetragenen Wasserschichten dünner als l OOnm, mit größerem Vorzug dünner als l Onm, mit größtem Vorzug dünner als l nm, mit allergrößtem Vorzug nur eine Monolage . Beispielsweise wäre die Verwendung eines Zweischichtsystems, bestehend aus einer Si02-Schicht und einer darauf befindlichen Wasserschicht, denkbar. Die Si02-Schicht ist beispielsweise ca. 1 .5 nm dick, die Wasserschicht auf der Si02-Schicht entsteht alleine durch die Kondensation der Wassermoleküle in der Atmosphäre . Liquid, with preference water, additionally wetted. With preference, the applied water layers are thinner than 10 nm, more preferably thinner than 1 nm, most preferably thinner than 1 nm, most preferably only one monolayer. For example, the use of a two-layer system, consisting of a Si0 2 layer and a water layer thereon, would be conceivable. The Si0 2 layer is approx. 1 .5 nm thick, the water layer on the Si0 2 layer is formed solely by the condensation of the water molecules in the atmosphere.
Während und/oder vor dem Annäherungsprozess können die beiden Substrate 7, 7 ' , 7 " über Ausrichtungsmarken und/oder andere Ausrichtungsmerkmale entlang der Ebene E in x- und/oder y-Richtung ausgerichtet werden. Der Kontakt der beiden Opferschichten 4 zueinander erfolgt mit Vorzug an einem Punkt, indem eines der beiden Substrate 1 , 1 ' durch einen Pin konvex geformt wird. Nach der Kontaktierung der beiden Opferschichtoberflächen 4o entsteht eine Bondwelle, die beide Opferschichtoberflächen durch einen Prebond fest miteinander verbindet. During and / or before the approach process, the two substrates 7, 7 ', 7 "can be aligned in the x and / or y direction via alignment marks and / or other alignment features along the plane E. The contact of the two sacrificial layers 4 takes place with each other Preferably at a point where one of the two substrates 1, 1 'is convexly formed by a pin After contacting the two sacrificial layer surfaces 4o, a bonding wave is formed which connects both sacrificial layer surfaces firmly together by a prebond.
In einem weiteren erfindungsgemäßen Verfahrensschritt wird eine In a further method step according to the invention, a
Wärmebehandlung und/oder ein Bondschritt bei niedrigen Temperaturen durchgeführt. Die erhöhte Temperatur und/oder die Krafteinwirkung führt zu einer Diffusion der Atome der Opferschichten 4 in die Bondbereiche 3 , 3 ' . Die Atome der Opferschichten 4 werden mit Vorzug vollständig in den Bondbereichen 3 , 3 ' und/oder dem sie umgebenden Bulkmaterial 5 gelöst und führen somit zu einem erfindungsgemäßen Direktbond der Heat treatment and / or a bonding step performed at low temperatures. The elevated temperature and / or the force leads to a diffusion of the atoms of the sacrificial layers 4 in the bond areas 3, 3 '. The atoms of the sacrificial layers 4 are preferably completely dissolved in the bond areas 3, 3 'and / or the surrounding bulk material 5 and thus lead to a direct bond according to the invention
Bondbereichsmaterialien bei möglichst niedrigen Temperaturen. Der Bond area materials at lowest possible temperatures. Of the
Direktbond kann beispielsweise durch eines der Verfahren in der For example, direct bond can be obtained by one of the methods in the
Patentschrift EP2372755 oder der Patentschrift PCT/EP20 12/069268 erfolgen, auf die insofern Bezug genommen wird. Patent specification EP2372755 or the patent PCT / EP20 12/069268, to which reference is made.
Das erfindungsgemäße Ausführungsform zur Erzeugung der Opferschichten ist mit Vorzug Teil eines Moduls 8 (Opferschichtenmodul) eines Clusters 9, insbesondere eines Niedervakuum-, mit Vorzug eines Hochvakuum-, mit größtem Vorzug eines Ultrahochvakuumclusters . Der Cluster 9 besteht aus einem evakuierbaren Innenraum 1 0, der hermetisch zu allen vorhandenen Modulen über Modulschleusentore 1 1 abtrennbar ist. Innerhalb des The embodiment according to the invention for producing the sacrificial layers is preferably part of a module 8 (sacrificial layer module) of a cluster 9, in particular a low-vacuum, preferably a high-vacuum, with the greatest advantage of an ultra-high vacuum cluster. The cluster 9 consists of an evacuable interior 1 0, which is hermetically separable to all existing modules via module lock gates 1 1. Within the
Innenraums 10 transportiert ein Roboter 12 den Produktwafer 1 von Modul zu Modul. Die Produktwafer 1 gelangen dabei über eine Clusterschleuse 15 eines Eingangs FOUP 1 3 für die einkommenden Produktwafer 1 in den Innenraum 10. Nach einer erfolgreichen Prozessierung des Produktwafers 1 innerhalb des Clusters 9, legt der Roboter 12 den Produktwafer 1 wieder übe eine FOUP Schleuse 15 in einem Ausgangs FOUP 14 ab . In the interior 10, a robot 12 transports the product wafer 1 from module to module. The product wafers 1 arrive via a cluster lock 15 of an input FOUP 1 3 for the incoming product wafer 1 in the Interior 10. After a successful processing of the product wafer 1 within the cluster 9, the robot 12 sets the product wafer 1 again a FOUP lock 15 in an output FOUP 14 from.
Verfahren zum Bonden von Kontaktflächen Method for bonding contact surfaces
B e z u g s z e i c h e n l i s t e , 1' SubstratB e z u c e s i n e s i s, 1 'Substrate
o, lo' Grenzfläche o, lo 'interface
Kavitäten wells
, 3' Bondbereich, 3 'bond area
o, 3o' Bondbereichsoberfläche o, 3o 'bond area surface
Opferschicht sacrificial layer
o O ferschichtoberfläche o O film surface
Bulkmaterial bulk material
o Bulkmaterialob er flächeo Bulk material surface
, 7', 7" Schichtsysteme , 7 ', 7 "layer systems
Modul  module
Cluster cluster
0 Innenraum0 interior
1 Modulschleusentor1 module lock gate
2 Roboter2 robots
3 Eingangs FOUP3 input FOUP
4 Ausgangs FOUP4 output FOUP
5 Clusterschleusentor 5 cluster lock gate

Claims

- 22 - Verfahren zum Bonden von Kontaktflächen P at e nt an s p rü c h e - 22 - Bonding of contact surfaces P at e nt an sp rü che
1. Verfahren zum Bonden einer ersten, insbesondere zumindest teilweise metallischen, Kontaktfläche eines ersten Substrats (1, 1') mit einer zweiten, insbesondere zumindest teilweise metallischen, Kontaktfläche eines zweiten Substrats mit folgenden Schritten, insbesondere folgendem Ablauf: 1. A method for bonding a first, in particular at least partially metallic, contact surface of a first substrate (1, 1 ') with a second, in particular at least partially metallic, contact surface of a second substrate with the following steps, in particular the following sequence:
Aufbringen einer in dem Material mindestens einer der Applying one in the material at least one of
Kontaktflächen zumindest teilweise, insbesondere überwiegend, lösbaren Opferschicht (4) auf mindestens eine der Kontaktflächen, Bonden der Substrate (1, 1') unter zumindest teilweisem Lösen der Opferschicht (4) in mindestens einer der Kontaktflächen. Contact surfaces at least partially, in particular predominantly, releasable sacrificial layer (4) on at least one of the contact surfaces, bonding of the substrates (1, 1 ') with at least partial release of the sacrificial layer (4) in at least one of the contact surfaces.
- 23 - - 23 -
2. Verfahren gemäß Anspruch 1 , bei dem die Opferschicht (4) mit einer Dicke von kleiner als l OOOnm, mit Vorzug kleiner als l OOnm, mit größerem Vorzug kleiner als l Onm, mit größtem Vorzug kleiner als l nm, aufgebracht wird. A method according to claim 1, wherein the sacrificial layer (4) is deposited to a thickness of less than 1000 nm, preferably less than 10 nm, more preferably less than 1 nm, most preferably less than 1 nm.
3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Opferschicht zumindest überwiegend, insbesondere vollständig aus mindestens einem der nachfolgenden Materialien besteht : 3. The method according to any one of the preceding claims, wherein the sacrificial layer at least predominantly, in particular completely consists of at least one of the following materials:
• Metalle, insbesondere  • metals, in particular
o Cu, Ag, Au, AI, Fe, Ni, Co, Pt, W, Cr, Pb, Ti, Te, Sn und/oder Zn,  o Cu, Ag, Au, Al, Fe, Ni, Co, Pt, W, Cr, Pb, Ti, Te, Sn and / or Zn,
• Legierungen,  • alloys,
• Halbleiter (mit entsprechender Dotierung), insbesondere  • Semiconductors (with appropriate doping), in particular
o Elementhalbleiter, vorzugsweise  Elementary semiconductors, preferably
Si, Ge, Se, Te, B und/oder a-Sn, Si, Ge, Se, Te, B and / or a-Sn,
o Verbindungshalbleiter, vorzugsweise  o compound semiconductors, preferably
GaAs, GaN, InP, InxGai_xN,InSb , InAs, GaSb, A1N, InN, GaP , BeTe, ZnO , CuInGaSe2, ZnS , ZnS e, ZnTe, CdS , CdSe, CdTe, Hg( l -x)Cd(x)Te, BeSe, HgS , AlxGai_xAs, GaS , GaSe, GaTe, InS , InSe, InTe, CuInSe2, CuInS2, CuInGaS2, SiC und/oder SiGe, GaAs, GaN, InP, In x Ga x N, InSb, InAs, GaSb, A1N, InN, GaP, BeTe, ZnO, CuInGaSe 2, ZnS, ZnS e, ZnTe, CdS, CdSe, CdTe, Hg (l -x ) Cd (x) Te, BeSe, HgS, Al x Gai x As, GaS, GaSe, GaTe, InS, InSe, InTe, CuInSe 2 , CuInS 2 , CuInGaS 2 , SiC and / or SiGe,
o Organische Hlableiter, vorzugsweise  o Organic Hlableiter, preferably
Flavanthron, Perinon, Alq3 , Perinon, Tetracen, flavanthrone, perinone, Alq3, perinone, tetracene,
Chinacridon, Pentacen, Phthalocyanine, Polythiophene, PTCDA, MePTCDI, Acridon und/oder Indanthron, Quinacridone, pentacene, phthalocyanines, polythiophene, PTCDA, MePTCDI, acridone and / or indanthrone,
• Flüssigkeiten, insbesondere • Liquids, in particular
o Wasser,  o water,
o Alkohole,  o alcohols,
o Aldehyde,  o aldehydes,
o Ketone,  o ketones,
o Ether,  o Ether,
o Säuren,  o acids,
o Basen. - 24 - o bases. - 24 -
Verfahren nach einem der vorhergehenden Ansprüche, bei dem Method according to one of the preceding claims, in which
Verhältnis der Dicke der Opferschicht (4) zur Dicke der Substrate (1, 1'), insbesondere von Bondbereichen (3, 3') der Substrate (1, 1'), Ratio of the thickness of the sacrificial layer (4) to the thickness of the substrates (1, 1 '), in particular bonding regions (3, 3') of the substrates (1, 1 '),
- 2 - 4 kleiner als 1, mit Vorzug kleiner als 10" , mit Vorzug kleiner als 10" , mit größerem Vorzug kleiner als 10"6, mit noch größerem Vorzug kleiner als 10 -" 8 , ist. - 2 - 4 less than 1, more preferably less than 10 " , preferably less than 10 " , more preferably less than 10 "6 , even more preferably less than 10 - " 8.
Verfahren nach Anspruch 1, bei dem mindestens eine der The method of claim 1, wherein at least one of
Kontaktflächen aus mehreren Bondbereichen (3, 3') und die Contact surfaces of a plurality of bond areas (3, 3 ') and the
Bondbereiche (3, 3') umgebenden Bulkmaterial (5) ausgebildet ist. Bonding regions (3, 3 ') surrounding bulk material (5) is formed.
Verfahren nach Anspruch 1, bei dem mindestens eine der The method of claim 1, wherein at least one of
Kontaktflächen vollflächig an einem Bondbereich (3) angeordnet ist. Contact surfaces over the entire surface of a bonding area (3) is arranged.
EP13734099.8A 2013-07-05 2013-07-05 Method for bonding metallic contact areas with dissolution of a sacrificial layer applied on one of the contact areas in at least one of the contact areas Ceased EP2994935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17172555.9A EP3301706A1 (en) 2013-07-05 2013-07-05 Method for bonding partially metallic contact surfaces of two substrates using a plurality of stacked sacrificial layers, preferably a solid sacrificial layer and a liquid sacrificial layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/064239 WO2015000527A1 (en) 2013-07-05 2013-07-05 Method for bonding metallic contact areas with dissolution of a sacrificial layer applied on one of the contact areas in at least one of the contact areas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP17172555.9A Division EP3301706A1 (en) 2013-07-05 2013-07-05 Method for bonding partially metallic contact surfaces of two substrates using a plurality of stacked sacrificial layers, preferably a solid sacrificial layer and a liquid sacrificial layer

Publications (1)

Publication Number Publication Date
EP2994935A1 true EP2994935A1 (en) 2016-03-16

Family

ID=48746543

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17172555.9A Pending EP3301706A1 (en) 2013-07-05 2013-07-05 Method for bonding partially metallic contact surfaces of two substrates using a plurality of stacked sacrificial layers, preferably a solid sacrificial layer and a liquid sacrificial layer
EP13734099.8A Ceased EP2994935A1 (en) 2013-07-05 2013-07-05 Method for bonding metallic contact areas with dissolution of a sacrificial layer applied on one of the contact areas in at least one of the contact areas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17172555.9A Pending EP3301706A1 (en) 2013-07-05 2013-07-05 Method for bonding partially metallic contact surfaces of two substrates using a plurality of stacked sacrificial layers, preferably a solid sacrificial layer and a liquid sacrificial layer

Country Status (8)

Country Link
US (1) US9640510B2 (en)
EP (2) EP3301706A1 (en)
JP (1) JP6282342B2 (en)
KR (2) KR102158960B1 (en)
CN (2) CN105340070B (en)
SG (1) SG11201600043RA (en)
TW (4) TWI775080B (en)
WO (1) WO2015000527A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182789B1 (en) * 2014-06-24 2020-11-26 에베 그룹 에. 탈너 게엠베하 Method and device for surface treatment of substrates
EP3238241B1 (en) 2014-12-23 2020-03-04 EV Group E. Thallner GmbH Method and device for prefixing substrates
US20170330855A1 (en) * 2016-05-13 2017-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. System and Method for Immersion Bonding
US10037975B2 (en) * 2016-08-31 2018-07-31 Advanced Semiconductor Engineering, Inc. Semiconductor device package and a method of manufacturing the same
JP2020508564A (en) 2017-02-21 2020-03-19 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method and apparatus for bonding substrates
CN108324201B (en) * 2018-05-08 2023-11-17 杨勇 Mop with a handle
KR20210021626A (en) 2019-08-19 2021-03-02 삼성전자주식회사 Semiconductor devices
WO2021127527A1 (en) * 2019-12-20 2021-06-24 Ohio State Innovation Foundation Method of forming an impact weld
CN112897454B (en) * 2021-01-20 2024-02-23 杭州士兰集成电路有限公司 MEMS device and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015017A1 (en) * 2004-03-26 2005-10-20 Fraunhofer Ges Forschung Forming a mechanical and electrical connection between two substrates comprises preparing substrates with a metallic layer and a layer of amorphous semiconductor material, joining the semiconductor layers and heating
US20090023299A1 (en) * 2006-12-28 2009-01-22 Noriyuki Yokonaga Reduction of defects formed on the surface of a silicon oxynitride film
US20090023243A1 (en) * 2004-12-28 2009-01-22 Mitsumasa Koyanagi Method and apparatus for fabricating integrated circuit device using self-organizing function
DE102009050426B3 (en) * 2009-10-22 2011-03-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for aligned application of silicon chips with switching structures on e.g. wafer substrate, involves fixing aligned components on substrate by electrostatic force by applying electrical holding voltage above metallization surfaces
WO2012136266A1 (en) * 2011-04-08 2012-10-11 Ev Group E. Thallner Gmbh Method for permanently bonding wafers

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130059A (en) 1984-07-20 1986-02-12 Nec Corp Manufacture of semiconductor device
JP2671419B2 (en) 1988-08-09 1997-10-29 株式会社日本自動車部品総合研究所 Method for manufacturing semiconductor device
US5603779A (en) * 1995-05-17 1997-02-18 Harris Corporation Bonded wafer and method of fabrication thereof
JP3532788B2 (en) 1999-04-13 2004-05-31 唯知 須賀 Semiconductor device and manufacturing method thereof
US7320928B2 (en) * 2003-06-20 2008-01-22 Intel Corporation Method of forming a stacked device filler
US20050003652A1 (en) 2003-07-02 2005-01-06 Shriram Ramanathan Method and apparatus for low temperature copper to copper bonding
FR2857953B1 (en) * 2003-07-21 2006-01-13 Commissariat Energie Atomique STACKED STRUCTURE, AND METHOD FOR MANUFACTURING THE SAME
US7261793B2 (en) * 2004-08-13 2007-08-28 Hewlett-Packard Development Company, L.P. System and method for low temperature plasma-enhanced bonding
KR100560721B1 (en) * 2004-08-23 2006-03-13 삼성전자주식회사 method of fabricating ink jet head including metal chamber layer and ink jet head fabricated therby
US7601271B2 (en) * 2005-11-28 2009-10-13 S.O.I.Tec Silicon On Insulator Technologies Process and equipment for bonding by molecular adhesion
US7598153B2 (en) * 2006-03-31 2009-10-06 Silicon Genesis Corporation Method and structure for fabricating bonded substrate structures using thermal processing to remove oxygen species
DE102006031405B4 (en) 2006-07-05 2019-10-17 Infineon Technologies Ag Semiconductor module with switching functions and method of making the same
KR100748723B1 (en) * 2006-07-10 2007-08-13 삼성전자주식회사 Bonding method of substrates
WO2010084746A1 (en) * 2009-01-23 2010-07-29 日亜化学工業株式会社 Semiconductor device and method for manufacturing same
JP5732652B2 (en) * 2009-11-04 2015-06-10 ボンドテック株式会社 Joining system and joining method
EP2654074B1 (en) 2010-03-31 2016-10-26 EV Group E. Thallner GmbH Method for permanently connecting two metal surfaces
US20120160903A1 (en) 2010-05-31 2012-06-28 Kouichi Saitou Method of joining metal
FR2966283B1 (en) 2010-10-14 2012-11-30 Soi Tec Silicon On Insulator Tech Sa METHOD FOR PRODUCING A COLLAGE STRUCTURE
TWI458072B (en) 2010-12-16 2014-10-21 Soitec Silicon On Insulator Methods for directly bonding together semiconductor structures, and bonded semiconductor structures formed using such methods
CN108766873B (en) * 2011-01-25 2023-04-07 Ev 集团 E·索尔纳有限责任公司 Method for permanently bonding wafers
WO2012133760A1 (en) 2011-03-30 2012-10-04 ボンドテック株式会社 Electronic component mounting method, electronic component mounting system, and substrate
EP2729961A1 (en) * 2011-08-30 2014-05-14 Ev Group E. Thallner GmbH Method for permanently bonding wafers by a connecting layer by means of solid-state diffusion or phase transformation
US8431436B1 (en) 2011-11-03 2013-04-30 International Business Machines Corporation Three-dimensional (3D) integrated circuit with enhanced copper-to-copper bonding
FR2983845A1 (en) 2012-05-25 2013-06-14 Commissariat Energie Atomique Method for manufacturing mechanical connection between e.g. semiconductor substrates to form microstructure, involves inserting stud in zone, where materials form alloy metal having melting point higher than that of one of materials
JP2013251405A (en) * 2012-05-31 2013-12-12 Tadatomo Suga Bonding method of substrate having metal region
JP6290222B2 (en) 2012-09-28 2018-03-07 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for coating substrates and method for bonding substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015017A1 (en) * 2004-03-26 2005-10-20 Fraunhofer Ges Forschung Forming a mechanical and electrical connection between two substrates comprises preparing substrates with a metallic layer and a layer of amorphous semiconductor material, joining the semiconductor layers and heating
US20090023243A1 (en) * 2004-12-28 2009-01-22 Mitsumasa Koyanagi Method and apparatus for fabricating integrated circuit device using self-organizing function
US20090023299A1 (en) * 2006-12-28 2009-01-22 Noriyuki Yokonaga Reduction of defects formed on the surface of a silicon oxynitride film
DE102009050426B3 (en) * 2009-10-22 2011-03-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for aligned application of silicon chips with switching structures on e.g. wafer substrate, involves fixing aligned components on substrate by electrostatic force by applying electrical holding voltage above metallization surfaces
WO2012136266A1 (en) * 2011-04-08 2012-10-11 Ev Group E. Thallner Gmbh Method for permanently bonding wafers

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AHMED W (HRSG.): "Nanomaterials and Nanotechnology", 2016, ONE CENTRAL PRESS, article SARIKOV A: "Thermodynamic study of the phase separation mechanisms in nonstoichiometric Si oxide films during high temperature annealing", pages: 36 - 57, XP055362419 *
BAUER J ET AL: "Surface tension, adhesion and wetting of materials for photolithographic process", JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B: MICROELECTRONICSPROCESSING AND PHENOMENA, vol. 14, no. 4, July 1996 (1996-07-01), US, pages 2485 - 2492, XP055274723, ISSN: 0734-211X, DOI: 10.1116/1.588757 *
GHANDHI S K: "VLSI Fabrication Principles. Silicon and Gallium Arsenide", 1983, JOHN WILEY & SONS, New York, US, ISBN: 978-0-471-86833-0, article "chapter 1.4 "Crystal Defects", subchapter 1.4.1 "Point Defects", subsubchapter 1.4.1.1 "Thermal Fluctuation Effects"", pages: 14 - 20, XP055362577 *
HABY J: "What is dry air?", 12 May 2013 (2013-05-12), XP055275079, Retrieved from the Internet <URL:https://web.archive.org/web/20130512010453/http://www.theweatherprediction.com/habyhints2/455> [retrieved on 20160524] *
HOWLADER M M R ET AL: "Room-Temperature Microfluidics Packaging Using Sequential Plasma Activation Process", IEEE TRANSACTIONS ON ADVANCED PACKAGING, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA, vol. 29, no. 3, 3 August 2006 (2006-08-03), pages 448 - 456, XP002756617, ISSN: 1521-3323, [retrieved on 20060807], DOI: 10.1109/TADVP.2006.875070 *
LIDE D R ET AL: "CRC Handbook of Chemistry and Physics: a Ready-Reference Book of Chemical and Physical Data", 1990, CRC PRESS, BOCA RATON, USA, ISBN: 0-8493-0471-7, article "Physical Constants of Inorganic Compounds", XP002642995 *

Also Published As

Publication number Publication date
US9640510B2 (en) 2017-05-02
CN105340070B (en) 2019-08-16
KR102158960B1 (en) 2020-09-23
TW201513234A (en) 2015-04-01
TWI645476B (en) 2018-12-21
EP3301706A1 (en) 2018-04-04
US20160071817A1 (en) 2016-03-10
SG11201600043RA (en) 2016-02-26
KR20200071150A (en) 2020-06-18
WO2015000527A1 (en) 2015-01-08
CN105340070A (en) 2016-02-17
CN110310896B (en) 2023-08-15
TW202236441A (en) 2022-09-16
KR20160030164A (en) 2016-03-16
TWI735814B (en) 2021-08-11
TW202034409A (en) 2020-09-16
TWI775080B (en) 2022-08-21
JP2016524335A (en) 2016-08-12
KR102124233B1 (en) 2020-06-18
TWI826971B (en) 2023-12-21
CN110310896A (en) 2019-10-08
JP6282342B2 (en) 2018-02-21
TW201921519A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
WO2015000527A1 (en) Method for bonding metallic contact areas with dissolution of a sacrificial layer applied on one of the contact areas in at least one of the contact areas
EP2372755B1 (en) Method for permanently connecting two metal surfaces
EP3161855B1 (en) Method for surface treatment of substrates
EP3590130A1 (en) Method and device for bonding chips
AT525618B1 (en) Process for coating and bonding substrates
EP3238241B1 (en) Method and device for prefixing substrates
DE102006055618B4 (en) Mobile electrostatic carrier wafer with electrically insulated charge storage, mounting arrangement and method for holding and releasing a disk-shaped component
JP6590961B2 (en) Method for joining metal contact surfaces while dissolving a sacrificial layer applied to one of the contact surfaces in at least one of the contact surfaces
EP4139128B1 (en) Method and device for transferring a transfer layer
WO2023066463A1 (en) Method and device for the production and provision of electronic components
CN116686066A (en) Method for manufacturing a semiconductor structure comprising an interface region comprising aggregates
EP2539099A1 (en) Method for applying soft solder to a mounting surface of a component
DE102012200258A1 (en) Method for manufacturing three-dimension integrated chip, involves connecting contact surfaces of isolated components with integrated circuit portions of substrate, and removing another substrate from isolated components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20160531

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20170512