EP2978550A1 - Slm-filtersystem - Google Patents

Slm-filtersystem

Info

Publication number
EP2978550A1
EP2978550A1 EP14714967.8A EP14714967A EP2978550A1 EP 2978550 A1 EP2978550 A1 EP 2978550A1 EP 14714967 A EP14714967 A EP 14714967A EP 2978550 A1 EP2978550 A1 EP 2978550A1
Authority
EP
European Patent Office
Prior art keywords
filter
filter element
layer
starting material
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14714967.8A
Other languages
English (en)
French (fr)
Inventor
Matthias Fockele
Heinz-Dietmar SCHMIDT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2978550A1 publication Critical patent/EP2978550A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/111Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/114Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements arranged for inward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for producing at least one hollow filter element with a lattice-shaped wall. Furthermore, the invention relates to a filter unit with at least one such filter element and a filter device with such a filter unit.
  • Filters for retaining particles from a fluid stream are used in many fields of technology. Depending on the field of application, the most varied materials can be used as the filter material, for example paper, glass fibers or metals.
  • the filter efficiency of a filter element on which the actual filtration process takes place as a component of a filter device is determined from the particle number before and after the filtering.
  • the efficiency of the complete filter device takes into account e.g. still the flow and flow losses and is therefore important for the assessment of the total losses of a filter system.
  • Another important parameter in connection with filter elements is their flow resistance, which should be kept as low as possible, wherein the flow resistance is not a constant size, but rather increases with increasing dirt pickup of the filter element.
  • the impurities separate only on the surface of the filter element or the filter elements.
  • surface filters typically have evenly spaced pores or gaps that can almost completely retain particles of a particular size.
  • their dirt holding capacity is generally smaller than that of a so-called depth filter, which deposits impurities mainly inside the filtering material.
  • the filter fineness of a wire mesh is understood to be the diameter of the largest spherical particle that can just pass through the tissue. It should be noted that the ratio of filter surface to free pore surface can be unfavorable from a certain filter fineness, so that e.g. only a pore area of about 4% remains. An unfavorable ratio of filter surface to free pore surface also has a disadvantageous effect on the flow resistance of a filter element.
  • the present invention has for its object to provide a method by which filter elements can be produced quickly and with material savings with high accuracy and precision with improved filter properties.
  • the above object is achieved in that the at least one filter element is produced by means of a generative process of a flowable or pourable starting material by locally selective, layered solidification of the starting material at the at least one filter element corresponding points of the respective layer by energy input by means of a focused radiation.
  • Generative processes enable the production of highly complex and very fine structures.
  • the generative production methods include, inter alia, selective laser sintering and the here particularly preferred selective laser melting, in which pulverulent starting material is locally only partially or locally completely melted by laser beam energy.
  • particle radiation in particular electron radiation, can also be used for site-selective conversion. melting the starting material can be used. This allows the production of finest structures.
  • the wall thickness of the grid-shaped wall is determined by this expansion. Accordingly, the filter walls can at least partially consist only of such a simple wall thickness. This has a positive effect on both the ratio of filter area to free pore area and consequently the flow resistance as well as the required amount of material.
  • selective laser melting is used within the scope of the invention.
  • the devices used for this purpose are also referred to as SLM devices and are known in various variants, such.
  • SLM devices Example from DE 10 201 1 075 748 A1, DE 10 2004 041 633 A1, DE 102 36 907 A1, DE 199 05 067 A1 or DE 10 1 12 591 A1, the content of which is incorporated herein by reference.
  • the method of selective laser melting can be used to produce a surface filter element with very efficient filter properties an extremely finely structured, for example, closed to a ring grid wall with continuous grid holes or grid pores are produced, the minimum pore dimensions may be on the current state of development in the order of 0 pm. Further, by using the selective laser melting, it is possible to produce the lattice struts or lattice webs delimiting the lattice pores as extremely thin as well, eg, with a diameter of, for example, 50 ⁇ m, without lowering the mechanical filter stability too much.
  • a surface filter designed in this way allows a high throughput of material to be filtered (flow rate) with very good filtering action and thus retention of microscopically small particles. The material cost for such a surface filter element is low, so that also high-quality materials can be used relatively inexpensively.
  • lattice rods are particularly preferably formed by solidifying, in each layer, starting material pointwise in accordance with a dot matrix with points overlapping one another from layer to layer.
  • the dots of the dot matrix can be printed on any closed, e.g. be arranged circular curve.
  • the diameter of this circle is preferably less than 20 mm, more preferably less than 10 mm.
  • thin filter elements with straight, filigree bars with minimal expansion arise. This expansion of the bars can be altered by varying the intensity or focus of the radiation, the source material used, and other parameters.
  • bars can be formed with larger cross sections by means of the generative method, for example by the melt beam being correspondingly moved during selective laser melting.
  • Conventional wire mesh are produced by means of a weaving process, whereby individual wires are often arranged in an interplay above or below one another. This fine corrugation of the wires leads to increased material consumption compared to a straight wire. Thus, by using a generative process and creating non-corrugated bars, material and cost can be saved by use of the invention.
  • the dot matrix for producing the lattice-shaped wall of a filter element is preferably provided from points with a spacing of less than 500 ⁇ m, particularly preferably of less than 100 ⁇ m, depending on the desired filter permeability. It is preferred that the grid-shaped wall is produced with grid pores, which in at least one dimension, a pore size of less than 450 ⁇ , preferably less than 50 ⁇ and more preferably less than 20 ⁇ , depending on the desired filter permeability have. Preferably, the pore size is determined from the intermediate space. neighboring bars. The pores can thus also be present as passage gaps. The pore size can be adjusted individually depending on the area of application and application in order to achieve optimal filtration.
  • pore dimensions of the order of magnitude of 10 ⁇ m were already achieved by the method of selective laser melting.
  • a support ring is produced by connecting the individual points of the dot matrix in this layer by means of the generative method.
  • These support rings serve to stabilize a filter element and can have a wall thickness which is greater than a simple wall thickness.
  • the individual rings may also be designed to limit the pores in their longitudinal direction. It should be noted that an excessive number of such rings can have a negative effect on the flow resistance. Preferably, however, as little material as possible should be used to confine the individual pores in order, inter alia. to keep the flow resistance low.
  • the at least one filter element is constructed on a base plate. It can be used on a prefabricated base plate. However, it is also possible to produce this base plate as well as the at least one filter element by means of the generative method, wherein base plate and filter element can be produced in a construction process.
  • the support structure may also be provided to stabilize a plurality of filter elements by means of a support structure between the filter elements.
  • the support structure can serve as a cover, which separates the filter elements at their upper free end facing away from the base plate. closes.
  • the support structure may be disposed in a position between the upper and lower ends of the filter elements.
  • the support structure may also be lattice-shaped or consist of struts extending between the filter elements, subsequently inserted between the filter elements, or already made integral with the filter elements during the generative process.
  • the base plate in each case has a hole in association with a filter element, wherein the hole associated with the filter element is enclosed by the wall of the filter element adjoining the base plate.
  • the penetrating into the filter element fluid is then filtered at the lattice-shaped wall and can flow through the hole in the base plate.
  • the at least filter element can also be provided to produce the at least filter element with a number of concentric, preferably with radial spacing arranged grid-shaped walls.
  • several different sized filter elements with different filter finenesses can be nested inside each other.
  • the filter fineness of the individual latticed walls preferably decreases from outside to inside in this embodiment. This makes it possible to clean the filter element by backwashing, since the smaller particles trapped by a wall located in the interior of the filter element can pass through the walls with larger pores arranged further outwards.
  • the powdered starting material used before the preparation of the at least one filter element with at least one oligodynamically active substance or to use an alloy having at least one oligodynamic constituent.
  • Oligodynamically active substances such as silver or copper, are suitable for Sterilization of the fluid to be filtered. Due to the small wall thickness of the filter element forming bars a sufficient coverage of the surface of the bars is guaranteed even at low concentrations of the material used.
  • a further variant of the method according to the invention consists in subjecting the hollow filter element to a coating process after it has been formed by powder compaction.
  • the grid bars slightly thicker and the pores between slightly insignificant layer is applied to the bars.
  • the layer may e.g. a polymer layer, a ceramic layer or the like.
  • the coating method e.g. a dip coating or a spray coating or a vapor deposition coating in question.
  • the coating material may be or contain an oligodynamic substance.
  • the coating process may comprise a free-blowing step in which, after the coating material has been applied to the filter element, any lattice pores which have been closed by the coating material prior to curing are opened by blowing free by means of a fluid jet, preferably compressed gas jet.
  • the invention furthermore relates to a filter device with a filter unit according to the invention, wherein the filter device has means for applying an electrical potential to at least one filter element of the filter unit.
  • the filter unit is electrically insulated from a housing of the filter device, wherein the housing is held at reference potential (ground potential) when the electrical potential is applied to the filter element. It is thus applied an electrical voltage between the filter element and the filter housing.
  • the application of the electrical potential to the filter element causes dirt particles with an electrical charge of the same polarity as the electrical potential of the filter element to be generated. Mentes are repelled by this electrostatically and thus prevented from settling on the filter element surface.
  • Figure 1 shows an embodiment of a filter unit according to the invention consisting of constructed on a perforated base plate filter elements, which are produced by the method according to the invention
  • FIG. 2 shows a dot matrix (not to scale) on the basis of which a filter element can be produced by means of the method according to the invention
  • Figure 3 is a highly schematic representation of a portion of a filter element produced by the method according to the invention (not to scale);
  • Figure 4 shows an embodiment of a filter device in which the filter unit according to the invention is used.
  • FIG. 5 shows another example of a dot matrix (not to scale).
  • FIG. 1 shows a filter unit 10 with a perforated base plate 12 prefabricated according to a suitable manufacturing method, on which in association with each hole 14 a filter element 16 is constructed by means of the method according to the invention, here by the method of selective laser melting (SLM).
  • SLM selective laser melting
  • the plurality of filter elements 16 increase the filtering surface.
  • the individual filter elements 16 are simultaneously built up layer by layer on the base plate 12 by coating on the base plate 12 in layers powdered starting material is solidified by energy input by means of focused laser radiation at the locations corresponding to the filter elements 16.
  • the starting material may e.g. Material powder of cobalt-chromium, titanium, silver, stainless steel or alloys thereof or ceramic.
  • the base plate 12 may be made of stainless steel, for example. However, other materials come into consideration. Because of the materials that can be used, the filter unit 10 can be constructed to be resistant to virtually any chemical. Furthermore, the filter elements 16 are virtually wear-free and resistant even at high temperatures.
  • the dot matrix 20 of a single filter element 16 is shown schematically in Fig. 2 and not to scale.
  • the grid points 21 forming the dot matrix 20 are arranged on a circular line 22 in the embodiment shown.
  • the points corresponding to the lattice points 21 are irradiated in the respective layer of the starting material, whereby they solidify and connect with the already solidified points of the underlying layer.
  • the grids 17 of a filter element 16 thus formed have a minimum extension G, referred to herein as a single wall thickness.
  • This expansion G is dependent on various parameters, such as the type, intensity or focus of the radiation used, the irradiation time or the starting material, as well as about its particle size distribution and
  • Layer thickness if the starting material is in powder form. By varying the parameters affecting the simple wall thickness, it can be set finer or coarser as required. The wall thickness can also be selected at least in regions stronger than the simple wall thickness. In addition, the bars 17 may have a cross-section which is larger in at least one dimension than the extension G.
  • the last layer in the manufacturing process of the filter element or the film teretti 16 is solidified completely or with a lattice structure within the circular line 22, so that the filter elements 16 form a completed outwardly filtering surface.
  • the individual filter elements 16 can be subsequently provided with a lid.
  • Adjacent bars define in their space the pores 18 of the filter element 16, which are consequently present as gaps.
  • the pore dimension A (FIG. 3) in the first dimension, which lies in the plane of the base plate, can be adapted individually to the required conditions of the field of application of the filter unit 10.
  • the pores 18 can also be limited in the second dimension, which is not in the plane of the base plate.
  • These rings 19 can also serve to stabilize the bars of the filter element. In this case, such acting as support rings rings do not have a simple wall thickness, but may well be made stronger.
  • FIG. 2 shows a grid of circular dots.
  • the points could be e.g. be stretched in the radial direction to the center of the grid, so that there is a grid of radially aligned on the common grid center lines that result in the third dimension flat bars with good stability and low minimum pore size in between.
  • FIG. 4 shows a filter device 24 with housing 26 made of aluminum, in which the filter unit 10 according to the invention is arranged between an input 28 and an output 30.
  • the base plate 12 is inserted into the filter device 24 in such a way that the filter elements 16 face the input 28 with their upper end facing away from the base plate 12.
  • the individual filter elements 16 of the filter unit 10 at its upper end a base stiffener 32 and at its lower, adjacent to the base plate end a base stiffener 34.
  • These stiffeners 32, 34 serve the stability and strength of the filter elements 16 on the base plate 12.
  • a support structure may be provided between the filter elements 16.
  • fluid flows due to a pressure difference between the input 28 and the output 30 before the input 28 via the check valves 36 to the output 30, as indicated by solid arrows in Fig. 4.
  • the fluid must pass through the filter elements 16, as a result of which impurities are deposited on the outer surface of the filter elements 16 as a function of the filter fineness of the filter elements 16.
  • Impurities that have settled on the filter elements 16 in the course of operation of the filter device 24 can be removed both mechanically and by backwashing. 4, the filter unit 10 can be cleaned by a recoil pulse from the output 30 in the direction of the input 28 in operation (see the dotted arrows), since the filter elements 16 offer no possibility for irreversible clogging due to their structure.
  • the repulsed medium containing the impurities is in this case deposited via the outflow pipe 38 into a coarse particle container (not shown).
  • Not shown in Figure 1 and Figure 4 are Schmutzabweisimplantation between the filter elements 16.
  • the Schmutzabweisimplantation serve to prevent the backwashing of the filter unit that detached from a filter element 16 dirt deposits on another filter element 16.
  • the soil release elements may e.g. be designed as columns or metal strips between the filter elements 16. They can also be set up using the SLM procedure.
  • FIG. 5 shows an example of a relevant dot matrix 20 which corresponds to a cross-sectional representation of the filter element.
  • the grid points 21 are in the example of Figure 5 on a wavy line, which closes on a circle.
  • Filter units according to the invention can also be produced with different contours by means of a generative method considered here, and in particular by the method of selective laser melting.
  • curvatures of the surface of the filter element are provided in all three spatial directions in order to make the filter element surface large.
  • the filter element surfaces could have ripples both in longitudinal section and in cross-section, e.g. have a nub structure or the like.
  • the filter device has proven itself very well in an internal long-term test and allows efficient filtering of relatively large amounts of fluid per unit of time.
  • a filter device according to the invention is the filtering of ballast water, which must be discharged from ocean-going vessels into the sea.
  • a filter device according to the invention has proved to be an ideal filter due to the high flow rate and due to the very good filtering effect.
  • the Ruthauerkel and the small footprint of the filter device has been found to be particularly advantageous.
  • the filter elements 16 produced by the process according to the invention are suitable i.a. and in particular for the filtration of aggressive media, of liquids and gases, especially in thermal processes, and as a filter with sterilizing effect (silver filter).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Ceramic Engineering (AREA)
  • Filtering Materials (AREA)

Abstract

Ein Verfahren zum Herstellen wenigstens eines hohlen Filterelements mit gitterförmiger Wandung, wobei das wenigstens eine Filterelement mittels eines generativen Verfahrens aus einem fließfähigen oder schüttfähigen Ausgangsmaterial durch ortsselektives, schichtweises Verfestigen des Ausgangsmaterials an den dem wenigstens einen Filterelement entsprechenden Stellen der jeweiligen Schicht durch Energieeintrag mittels einer fokussierten Strahlung hergestellt wird.

Description

SLM-Filtersystem
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen wenigstens eines hohlen Filterelements mit gitterförmiger Wandung. Ferner betrifft die Erfindung eine Filtereinheit mit wenigstens einem derartigen Filterelement und eine Filtervorrichtung mit einer solchen Filtereinheit.
Filter zum Zurückhalten von Partikeln aus einem Fluidstrom finden in vielen Bereichen der Technik Anwendung. Als Filtermaterial können je nach Einsatzgebiet die verschiedensten Materialien verwendet werden, beispielsweise Papier, Glasfasern oder Metalle.
Der Filterwirkungsgrad eines Filterelements, an welchem als Bauteil einer Filtervorrichtung der eigentliche Filtrationsprozess stattfindet, bestimmt sich aus der Partikelzahl vor und nach dem Filtern. Der Wirkungsgrad der kompletten Filtervorrichtung berücksichtigt z.B. noch die Strömungs- und Durchflussverluste und ist somit für die Beurteilung der Gesamtverluste einer Filteranlage wichtig. Ein weiterer wichtiger Parameter im Zusammenhang mit Filterelementen ist deren Durchflusswiderstand, welcher möglichst gering gehalten werden sollte, wobei der Durchflußwiderstand keine gleichbleibende Größe ist, sondern vielmehr mit zunehmender Schmutzaufnahme des Filterelements zunimmt.
Bei sogenannten Oberflächenfiltern scheiden sich die Verunreinigungen nur an der Oberfläche des Filterelements bzw. der Filterelemente ab. Üblicherweise weisen Oberflächenfilter gleichmäßig angeordnete Poren oder Spalte auf, die Partikel einer bestimmten Größe nahezu vollständig zurückhalten können. Jedoch ist ihr Schmutzaufnahmevermögen im Allgemeinen kleiner als dasjenige eines sogenannten Tiefenfilters, welcher Verunreinigungen hauptsächlich im Inneren des filternden Materials abscheidet. Oberflächenfil- ter können z.B. durch Rückspülen, Ultraschall oder manuell gereinigt werden.
Eine Bauart von Oberflächenfiltern wird aus dünnen Geweben hergestellt, für die überwiegend Metallfäden benutzt werden. Bei solchen Siebfiltern bzw. Drahtgewebefiltern spielt die Filterfeinheit eine wichtige Rolle. Unter der Filterfeinheit eines Drahtgewebes versteht man den Durchmesser des größten kugelförmigen Teilchens, welches das Gewebe gerade noch passieren kann. Dabei ist zu beachten, dass das Verhältnis von Filterfläche zu freier Porenfläche ab einer bestimmten Filterfeinheit ungünstig werden kann, so dass z.B. nur eine Porenfläche von etwa 4% verbleibt. Ein ungünstiges Verhältnis von Filterfläche zu freier Porenfläche wirkt sich zudem nachteilig auf den Durchflusswiderstand eines Filterelements aus.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren bereitzustellen, mit welchem Filterelemente schnell und unter Materialersparnis mit hoher Genauigkeit und Präzision bei verbesserten Filtereigenschaften hergestellt werden können.
Erfindungsgemäß wird die vorstehende Aufgabe dadurch gelöst, dass das wenigstens eine Filterelement mittels eines generativen Verfahrens aus einem fließfähigen oder schüttfähigen Ausgangsmaterial durch ortsselektives, schichtweises Verfestigen des Ausgangsmaterials an den dem wenigstens einen Filterelement entsprechenden Stellen der jeweiligen Schicht durch Energieeintrag mittels einer fokussierten Strahlung hergestellt wird.
Generative Verfahren ermöglichen die Herstellung von hochkomplexen und sehr feinen Strukturen. Zu den generativen Fertigungsverfahren zählen u.a. das selektive Lasersintern und das hier besonders bevorzugte selektive Laserschmelzen, bei welchen pulverförmiges Ausgangsmaterial durch Laserstrahlenergie lokal nur teilweise bzw. lokal vollständig aufgeschmolzen wird. Anstelle von Laserstrahlung kann in Abwandlung des Verfahrens auch Partikelstrahlung, insbesondere Elektronenstrahlung, zum ortsselektiven Um- schmelzen des Ausgangsmaterials verwendet werden. Dies erlaubt die Herstellung feinster Strukturen.
Ein mathematischer Punkt, welcher definitionsgemäß keine Ausdehnung besitzt, wird mittels des generativen Verfahrens als Punkt mit einer bestimmten Ausdehnung verfestigt. Bei einer bevorzugten Variante des erfindungsgemäßen Verfahrens wird die Wandstärke der gitterförmigen Wandung durch diese Ausdehnung festgelegt. Die Filterwände können demnach zumindest bereichsweise nur aus einer solchen einfachen Wandstärke bestehen. Dies wirkt sich positiv sowohl auf das Verhältnis von Filterfläche zu freier Porenfläche und folglich den Durchflusswiderstand als auch die benötigte Materialmenge aus.
Als bevorzugtes generatives Verfahren wird im Rahmen der Erfindung das selektive Laserschmelzen angewandt. Die dazu verwendeten Vorrichtungen werden auch als SLM-Vorrichtungen bezeichnet und sind in diversen Varianten bekannt, so z. B. aus der DE 10 201 1 075 748 A1 , der DE 10 2004 041 633 A1 , der DE 102 36 907 A1 , der DE 199 05 067 A1 oder der DE 10 1 12 591 A1 , deren Inhalt hier durch Bezugnahme aufgenommen wird.
Mit dem Verfahren des selektiven Laserschmelzens kann zur Herstellung eines Oberflächenfilterelementes mit sehr effizienten Filtereigenschaften eine extrem fein strukturierte, z.B. zu einem Ring geschlossene Gitterwand mit durchgehenden Gitterlöchern bzw. Gitterporen hergestellt werden, deren minimale Porendimensionen nach derzeitigem Entwicklungsstand in der Größenordnung von 0 pm liegen können. Ferner ist es unter Anwendung des selektiven Laserschmelzens möglich, die Gitterstreben bzw. Gitterstege, die die Gitterporen begrenzen, ebenso extrem dünn herzustellen, z.B. mit Durchmesser von z.B. 50 pm, ohne die mechanische Filterstabilität zu sehr herabzusetzen. Ein so gestaltetes Oberflächenfilter erlaubt einen großen Durchsatz zu filternden Materials (Flussrate) bei sehr guter Filterwirkung und somit Zurückhaltung mikroskopisch kleiner Teilchen. Der Materialaufwand für ein solches Oberflächenfilterelement ist gering, so dass auch hochwertige Mate- rialien relativ kostengünstig zum Einsatz kommen können.
Besonders bevorzugt werden zum Erzeugen der gitterförmigen Wandung Gitterstäbe gebildet, indem in jeder Schicht Ausgangsmaterial punktweise entsprechend einem Punktraster mit einander von Schicht zu Schicht überdeckenden Punkten verfestigt wird. Die Punkte des Punktrasters können auf einer beliebigen geschlossenen, z.B. kreisförmigen Kurve angeordnet sein. Der Durchmesser dieses Kreises ist bevorzugt kleiner 20 mm, besonders bevorzugt kleiner 10 mm. Auf diese Weise entstehen dünne Filterelemente mit geraden, filigranen Gitterstäben mit einer minimalen Ausdehnung. Diese Ausdehnung der Gitterstäbe kann durch Variieren der Intensität oder des Fokus der Strahlung, des verwendeten Ausgangsmaterials und anderer Parameter verändert werden. Alternativ oder zusätzlich können im Rahmen der Erfindung Gitterstäbe mit größeren Querschnitten mittels des generativen Verfahrens gebildet werden, etwa indem beim selektiven Laserschmelzen der Schmelzstrahl entsprechend bewegt wird.
Herkömmliche Drahtgewebe werden mittels eines Webverfahrens hergestellt, wobei einzelne Drähte oft im Wechselspiel über- oder untereinander angeordnet werden. Diese feine Wellung der Drähte führt im Vergleich zu einem geraden Draht zu einem erhöhten Materialverbrauch. Folglich können durch die Verwendung eines generativen Verfahrens und dem Erzeugen nicht gewellter Gitterstäbe Material und Kosten durch Anwendung der Erfindung eingespart werden.
Das Punktraster zum Herstellen der gitterförmigen Wandung eines Filterelements wird bevorzugt aus Punkten mit einem Abstand von kleiner 500 μΐη, besonders bevorzugt von kleiner 100 μηι, je nach gewünschter Filterdurchlässigkeit, bereitgestellt. Bevorzugt ist dabei, dass die gitterförmige Wandung mit Gitterporen hergestellt wird, welche in zumindest einer Dimension ein Porenmaß von kleiner 450 μΐη, vorzugsweise kleiner 50 μΐη und besonders bevorzugt kleiner als 20 μΐη, je nach gewünschter Filterdurchlässigkeit, aufweisen. Vorzugsweise wird das Porenmaß aus dem Zwischenraum be- nachbarter Gitterstäbe bestimmt. Die Poren können somit auch als Durchgangsspalte vorliegen. Das Porenmaß kann je nach Einsatzbereich und Anwendung individuell eingestellt werden, um eine optimale Filtration zu erreichen. In Versuchen wurden bereits Porenmaße in der Größenordnung von 10 μΐη mit der Methode des selektiven Laserschmelzens erreicht. Grundsätzlich ist es erwünscht, für bestimmte Filteraufgaben das Porenmaß so klein wie möglich zu realisieren, etwa um biologische Mikropartikel z.B. bei der Wasseraufbereitung ausfiltern zu können.
Ferner ist es bevorzugt, dass nach jeweils einer bestimmten Anzahl von Schichten in einer Schicht ein Stützring hergestellt wird, indem die einzelnen Punkte des Punktrasters in dieser Schicht mittels des generativen Verfahrens miteinander verbunden werden. Diese Stützringe dienen der Stabilisierung eines Filterelements und können eine Wandstärke aufweisen, die größer ist als eine einfache Wandstärke. Zusätzlich zu oder anstelle der Stützringe können die einzelnen Ringe auch dazu vorgesehen sein, die Poren in ihrer Längsrichtung zu begrenzen. Zu beachten ist, dass sich eine zu hohe Anzahl solcher Ringe negativ auf den Durchflusswiderstand auswirken kann. Vorzugsweise sollte jedoch möglichst wenig Material zum Begrenzen der einzelnen Poren verwendet werden, um u.a. den Durchflusswiderstand gering zu halten.
Besonders bevorzugt wird das wenigstens eine Filterelement auf einer Basisplatte aufgebaut. Dabei kann auf eine vorgefertigte Basisplatte zurückgegriffen werden. Es ist jedoch auch möglich, diese Basisplatte ebenso wie das wenigstens eine Filterelement mittels des generativen Verfahrens herzustellen, wobei Basisplatte und Filterelement in einem Aufbauvorgang hergestellt werden können.
Im Rahmen der Erfindung kann ferner vorgesehen sein, mehrere Filterelemente vermittels einer Stützstruktur zwischen den Filterelementen zu stabilisieren. Zusätzlich kann die Stützstruktur als Deckel dienen, welcher die Filterelemente an ihrem oberen, der Basisplatte abgewandten freien Ende ab- schließt. Ebenso kann die Stützstruktur in einer Position zwischen den oberen und unteren Enden der Filterelemente angeordnet sein. Die Stützstruktur kann ferner gitterförmig sein oder aus zwischen den Filterelementen verlaufenden Verstrebungen bestehen, nachträglich zwischen den Filterelementen eingefügt werden oder bereits während des generativen Verfahrens integral mit den Filterelementen hergestellt werden.
Besonders bevorzugt weist die Basisplatte jeweils ein Loch in Zuordnung zu einem Filterelement auf, wobei das dem Filterelement zugeordnete Loch von der an der Basisplatte angrenzenden Wandung des Filterelements eingeschlossen wird. Das in das Filterelement eindringende Fluid wird dann an dessen gitterförmiger Wandung gefiltert und kann durch das Loch in der Basisplatte abfließen. Durch eine möglichst hohe Anzahl von Filterelementen auf der Basisplatte kann das Schmutzaufnahmevermögen aufgrund der vergrößerten filternden Gesamtoberfläche verbessert werden.
Es kann auch vorgesehen sein, das wenigstens Filterelement mit einer Anzahl konzentrisch, vorzugsweise mit radialem Abstand angeordneter gitterförmiger Wandungen herzustellen. Analog können mehrere unterschiedlich große Filterelemente mit unterschiedlichen Filterfeinheiten ineinander verschachtelt werden. Dadurch wird das Schmutzaufnahmevermögen des Filterelements vergrößert. Die Filterfeinheit der einzelnen gitterförmigen Wandungen nimmt bei dieser Ausführungsform vorzugsweise von außen nach innen ab. Dies erlaubt es, das Filterelement durch Rückspülen zu reinigen, da die von einer im Inneren des Filterelements gelegenen Wandung aufgefangenen kleineren Partikel die weiter außen angeordneten Wandungen mit größeren Poren passieren können.
Es ist ferner bevorzugt, das verwendete pulverförmige Ausgangsmaterial vor der Herstellung des wenigstens einen Filterelements mit mindestens einer oligodynamisch wirkenden Substanz zu versetzen oder eine Legierung mit wenigstens einem oligodynamischen Bestandteil zu verwenden. Oligodynamisch wirkende Substanzen, wie z.B. Silber oder Kupfer, eignen sich zur Entkeimung des zu filternden Fluids. Aufgrund der geringen Wandstärke der das Filterelement bildenden Gitterstäbe ist auch bei geringen Konzentrationen des eingesetzten Stoffes eine ausreichende Überdeckung der Oberfläche der Gitterstäbe gewährleistet.
Eine weitere Variante des erfindungsgemäßen Verfahrens besteht darin, das hohle Filterelement nach dessen Bildung durch Pulververfestigung einem Beschichtungsverfahren zu unterziehen. Dabei wird eine die Gitterstäbe geringfügig dicker und die Poren dazwischen geringfügig kleiner machende Schicht auf die Gitterstäbe aufgebracht. Die Schicht kann z.B. eine Polymerschicht, eine Keramikschicht oder dgl. sein. Als Beschichtungsverfahren kommt z.B. eine Tauchbadbeschichtung oder eine Sprühbeschichtung oder eine Aufdampfbeschichtung in Frage. Das Beschichtungsmaterial kann eine oligodynamische Substanz sein oder enthalten.
Der Beschichtungsprozess kann einen Freiblasschritt umfassen, bei dem nach Aufbringen des Beschichtungsmaterials auf das Filterelement etwaig vom Beschichtungsmaterial vor dessen Aushärtung geschlossene Gitterporen mittels eines Fluidstrahls, vorzugsweise Druckgasstrahls, durch Freiblasen geöffnet werden.
Gegenstand der Erfindung ist ferner eine Filtervorrichtung mit einer erfindungsgemäßen Filtereinheit, wobei die Filtervorrichtung Mittel zum Anlegen eines elektrischen Potentials an wenigstens ein Filterelement der Filtereinheit aufweist.
Vorzugsweise ist die Filtereinheit gegenüber einem Gehäuse der Filtervorrichtung elektrisch isoliert, wobei das Gehäuse bei Anlegen des elektrischen Potentials an das Filterelement auf Bezugspotential (Massepotential) gehalten wird. Es wird somit eine elektrische Spannung zwischen Filterelement und Filtergehäuse angelegt. Durch das Anlegen des elektrischen Potentials an das Filterelement wird bewirkt, dass Schmutzteilchen mit einer elektrischen Ladung gleicher Polarität wie das elektrische Potential des Filterele- mentes von diesem elektrostatisch abgestoßen und somit daran gehindert werden, sich auf der Filterelementoberfläche abzusetzen.
Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen sowie aus den anhand der beigefügten Zeichnungen näher erläuterten Ausführungsbeispiele. In der Zeichnung zeigt:
Figur 1 ein Ausführungsbeispiel einer erfindungsgemäßen Filtereinheit bestehend aus auf einer gelochten Basisplatte aufgebauten Filterelementen, die mittels des erfindungsgemäßen Verfahren hergestellt sind;
Figur 2 ein Punktraster (nicht maßstäblich) anhand dessen ein Filterelement mittels des erfindungsgemäßen Verfahrens hergestellt werden kann;
Figur 3 eine stark schematische Darstellung eines Abschnittes eines nach dem erfindungsgemäßen Verfahren hergestellten Filterelements (nicht maßstäblich);
Figur 4 ein Ausführungsbeispiel einer Filtervorrichtung, bei welcher die erfindungsgemäße Filtereinheit zum Einsatz kommt; und
Figur 5 ein weiteres Beispiel eines Punktrasters (nicht maßstäblich).
Fig. 1 zeigt eine Filtereinheit 10 mit einer nach einem geeigneten Herstellungsverfahren vorgefertigten gelochten Basisplatte 12, auf welcher in Zuordnung zu jedem Loch 14 ein Filterelement 16 mittels des erfindungsgemäßen Verfahrens, hier nach der Methode des selektiven Laserschmelzens (SLM), aufgebaut ist. Die Mehrzahl an Filterelementen 16 vergrößert die filternde Oberfläche. Gemäß dem erfindungsgemäßen Verfahren werden die einzelnen Filterelemente 16 gleichzeitig auf der Basisplatte 12 Schicht für Schicht aufgebaut, indem schichtweise auf der Basisplatte 12 aufgetragenes pulverförmiges Ausgangsmaterial durch Energieeintrag mittels fokussierter Laserstrahlung an den Stellen, die den Filterelementen 16 entsprechen, verfestigt wird.
Das Ausgangsmaterial kann z.B. Werkstoffpulver aus Kobalt-Chrom, Titan, Silber, Edelstahl oder Legierungen davon oder auch Keramik sein. Die Basisplatte 12 kann etwa aus Edelstahl hergestellt sein. Es kommen jedoch auch andere Materialien in Betracht. Aufgrund der einsetzbaren Materialen kann die Filtereinheit 10 so gebaut werden, dass sie gegen nahezu jede Chemikalie resistent ist. Des Weiteren sind die Filterelemente 16 nahezu verschleißfrei und auch bei hohen Temperaturen beständig.
Das Punktraster 20 eines einzelnen Filterelements 16 ist in Fig. 2 schematisch und nicht maßstäblich dargestellt. Die das Punktraster 20 bildenden Gitterpunkte 21 sind in dem gezeigten Ausführungsbeispiel auf einer Kreislinie 22 angeordnet. Beim schichtweisen Aufbau eines Filterelements 16 werden die den Gitterpunkte 21 entsprechenden Stellen in der jeweiligen Schicht des Ausgangsmaterials bestrahlt, wodurch sie sich verfestigen und mit den bereits verfestigten Punkten der darunter liegenden Schicht verbinden. Wie in Fig. 3 gezeigt, haben die sich auf diese Weise bildenden Gitterstäbe 17 eines Filterelements 16 eine minimale Ausdehnung G, die hier als einfache Wandstärke bezeichnet wird. Diese Ausdehnung G ist von verschiedenen Parametern abhängig, wie etwa von der Art, Intensität oder dem Fokus der verwendeten Strahlung, der Bestrahlungsdauer oder dem Ausgangsmaterial, ferner etwa von dessen Partikelgrößenverteilung und
Schichtdicke, wenn das Ausgangsmaterial in Pulverform vorliegt. Durch Variieren der die einfache Wandstärke beeinflussenden Parameter kann diese je nach Bedarf feiner oder gröber eingestellt werden. Die Wandstärke kann zumindest bereichsweise auch stärker als die einfache Wandstärke gewählt werden. Außerdem können die Gitterstäbe 17 einen Querschnitt aufweisen, welcher zumindest in einer Dimension größer ist als die Ausdehnung G.
Die letzte Schicht beim Herstellungsprozess des Filterelements bzw. der Fil- terelemente 16 wird vollständig oder mit einer Gitterstruktur innerhalb der Kreislinie 22 verfestigt, so dass die Filterelemente 16 eine nach außen abgeschlossen filternde Oberfläche bilden. Alternativ können die einzelnen Filterelemente 16 nachträglich mit einem Deckel versehen werden.
Benachbarte Gitterstäbe definieren in ihrem Zwischenraum die Poren 18 des Filterelements 16, die folglich als Spalte vorliegen. Das Porenmaß A (Fig. 3) in der ersten Dimension, welche in der Ebene der Basisplatte liegt, kann individuell auf die erforderlichen Gegebenheiten des Einsatzgebietes der Filtereinheit 10 angepasst werden. Durch Verfestigen aller Punkte 21 entlang der Kreislinie 22 zu einem Ring 19 nach einer gewissen Anzahl von Schichten können die Poren 18 auch in der zweiten Dimension, die nicht in der Ebene der Basisplatte liegt, begrenzt werden. Diese Ringe 19 können auch zum Stabilisieren der Gitterstäbe des Filterelements dienen. Hierbei müssen solche als Stützringe wirkenden Ringe keine einfache Wandstärke aufweisen, sondern können durchaus stärker ausgebildet sein. In Figur 2 ist ein Raster aus kreisförmigen Punkten gezeigt. Alternativ könnten die Punkte z.B. in radialer Richtung zum Zentrum des Rasters gestreckt sein, so dass ein Raster aus radial aufs gemeinsame Rasterzentrum ausgerichteten Strichen vorliegt, die in der dritten Dimension Flachstäbe mit guter Stabilität und geringer minimaler Porengröße dazwischen ergeben.
Fig. 4 zeigt eine Filtervorrichtung 24 mit Gehäuse 26 aus Aluminium, in welchem zwischen einem Eingang 28 und einem Ausgang 30 die erfindungsgemäße Filtereinheit 10 angeordnet ist. Die Basisplatte 12 ist derart in der Filtervorrichtung 24 eingesetzt, dass die Filterelemente 16 mit ihrem oberen, von der Basisplatte 12 abgewandten Ende zum Eingang 28 hin weisen. Wie in Fig. 4 zu sehen, weisen die einzelnen Filterelemente 16 der Filtereinheit 10 an ihrem oberen Ende eine Sockelversteifung 32 und an ihrem unterem, an die Basisplatte angrenzenden Ende eine Sockelversteifung 34 auf. Diese Versteifungen 32, 34 dienen der Stabilität und Festigkeit der Filterelemente 16 auf der Basisplatte 12. Zusätzlich kann zwischen den Filterelementen 16 eine Stützstruktur vorgesehen sein. In der Filtervorrichtung 24 strömt Fluid aufgrund einer Druckdifferenz zwischen dem Eingang 28 und dem Ausgang 30 vor dem Eingang 28 über die Rückschlagventile 36 zum Ausgang 30, wie dies mit durchgezogenen Pfeilen in Fig. 4 angedeutet ist. Dabei muss das Fluid die Filterelemente 16 passieren, wodurch sich in Abhängigkeit von der Filterfeinheit der Filterelemente 16 Verunreinigungen an der Außenoberfläche der Filterelemente 16 abscheiden.
Üblicherweise lässt ein herkömmliches Filterelement mit einer nominalen Filterfeinheit von beispielsweise 10 μηι noch eine bestimmte Anzahl von Partikeln mit 50 μηι oder 100 μηι durch. Da sich jedoch mittels generativer Verfahren auch feinste Strukturen sehr gleichmäßig, präzise und genau herstellen lassen, sollte der Filterwirkungsgrad der erfindungsgemäßen Filtereinheit 10 höher liegen als bei handelsüblichen, vergleichbaren Drahtgewebefiltern.
Verunreinigungen, die sich im Laufe des Betriebs der Filtervorrichtung 24 auf den Filterelementen 16 abgesetzt haben, können sowohl mechanisch als auch durch Rückspülen entfernt werden. Wie aus Fig. 4 hervorgeht, kann die Filtereinheit 10 durch einen Rückstoßimpuls vom Ausgang 30 in Richtung des Eingangs 28 im Betrieb gereinigt werden (vgl. die strichpunktierten Pfeile), da die Filterelemente 16 aufgrund ihres Aufbaus keine Möglichkeit zur irreversiblen Verstopfung bieten. Das die Verunreinigungen enthaltende rückgestoßene Medium wird hierbei über das Abflussrohr 38 in einen nicht gezeigten Grobteilchenbehälter abgeschieden. Nicht gezeigt in Figur 1 und Figur 4 sind Schmutzabweiselemente zwischen den Filterelementen 16. Die Schmutzabweiselemente dienen dazu, beim Rückspülen der Filtereinheit zu verhindern, dass von einem Filterelement 16 abgelöster Schmutz sich an einem anderen Filterelement 16 absetzt. Die Schmutzabweiselemente können z.B. als Säulen oder Blechstreifen zwischen den Filterelementen 16 ausgebildet sein. Sie können auch im SLM-Verfahren aufgebaut werden.
An dieser Stelle sei noch einmal darauf hingewiesen, dass auch andere Fil- terumfangskonturen als die in Figur 2 und Figur 3 gezeigten Kreiskonturen im Rahmen der Erfindung denkbar sind, etwa um die Filterelementoberfläche bei in etwa gleichem Platzbedarf einer Filtereinheit zu vergrößern. In Figur 5 ist hierzu ein Beispiel eines betreffenden Punktrasters 20 gezeigt, welches einer Querschnittsdarstellung des Filterelementes entspricht. Die Gitterpunkte 21 liegen bei dem Beispiel der Figur 5 auf einer Wellenlinie, die sich auf einem Kreis schließt.
Filtereinheiten nach der Erfindung können mittels eines hier betrachteten generativen Verfahrens und insbesondere nach dem Verfahren des selektiven Laserschmelzens auch mit verschiedenen Konturen einwandig hergestellt werden. So ist es durchaus denkbar, dass Krümmungen der Oberfläche des Filterelementes in allen drei Raumrichtungen vorgesehen sind, um die Filterelementfläche groß zu machen. So könnten die Filterelementflächen sowohl im Längsschnitt als auch im Querschnitt Welligkeiten aufweisen und z.B. insgesamt eine Noppenstruktur oder dgl. haben. Auch bei solchen Flächen ist es möglich, mit dem Verfahren des selektiven Laserschmelzens mikroskopisch kleine Poren zu erzeugen, also Poren, deren kleinste Dimension kleiner als 100 μΐΎΐ und vorzugsweise kleiner als 20 pm groß sind. Die Filtervorrichtung hat sich in einem internen Langzeitversuch sehr gut bewährt und erlaubt eine effiziente Filterung relativ großer Fluidmengen pro Zeiteinheit. Ein Anwendungsbeispiel zur Nutzung einer erfindungsgemäßen Filtervorrichtung ist die Filterung von Ballastwasser, welches aus Hochseeschiffen ins Meer abgelassen werden muss. Insbesondere für derartige Anwendungen hat sich eine Filtervorrichtung nach der Erfindung aufgrund der hohen Flussrate und aufgrund der sehr guten Filterwirkung als ideales Filter erwiesen. Hierzu hat sich die Rückspülbarkeit und der geringe Platzbedarf der Filtervorrichtung als besonders vorteilhaft gezeigt.
Die nach dem erfindungsgemäßen Verfahren hergestellten Filterelemente 16 eignen sich u.a. und insbesondere zur Filtration von aggressiven Medien, von Flüssigkeiten und Gasen, besonders in thermischen Prozessen, und als Filter mit entkeimender Wirkung (Silberfilter).

Claims

Ansprüche Verfahren zum Herstellen wenigstens eines hohlen Filterelements (16) mit gitterförmiger Wandung, dadurch gekennzeichnet, dass das wenigstens eine Filterelement (16) mittels eines generativen Verfahrens aus einem fließfähigen oder schüttfähigen Ausgangsmaterial durch ortsselektives, schichtweises Verfestigen des Ausgangsmaterials an den dem wenigstens einen Filterelement (16) entsprechenden Stellen (21 ) der jeweiligen Schicht durch Energieeintrag mittels einer fokussier- ten Strahlung hergestellt wird.
Verfahren nach Anspruch 1 , wobei ein mathematischer Punkt mittels des generativen Verfahrens als Punkt mit einer bestimmten Ausdehnung (G) verfestigt wird und die Wandstärke der gitterförmigen Wandung durch diese Ausdehnung (G) festgelegt wird.
Verfahren nach einem der vorhergehenden Ansprüche, wobei zum Erzeugen der gitterförmigen Wandung Gitterstäbe (17) gebildet werden, indem in jeder Schicht Ausgangsmaterial punktweise entsprechend einem Punktraster (20) mit einander von Schicht zu Schicht überdeckenden Punkten (21 ) verfestigt wird.
Verfahren nach Anspruch 3, wobei das Punktraster (20) aus Punkten (21 ) mit einem Abstand von kleiner 500 μνη, bevorzugt kleiner 100 μΐτι, bereitgestellt wird.
Verfahren nach einem der vorhergehenden Ansprüche, wobei die git- terförmige Wandung mit Gitterporen (18) hergestellt wird, welche in zumindest einer Dimension ein Porenmaß (A) von kleiner 450 μηη, vorzugsweise kleiner 50 μΐη und besonders bevorzugt kleiner 20 μηη, aufweisen.
6. Verfahren nach Anspruch 5, wobei das Porenmaß (A) aus dem Zwischenraum benachbarter Gitterstäbe bestimmt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei nach je- 5 weils einer bestimmten Anzahl von Schichten in einer Schicht ein Stützring (19) hergestellt wird, indem die einzelnen Punkte (21 ) des Punktrasters (20) in dieser Schicht mittels des generativen Verfahrens miteinander verbunden werden. io
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das wenigstens eine Filterelement (16) auf einer Basisplatte (12) aufgebaut wird.
9. Verfahren nach Anspruch 8, wobei die Basisplatte (12) jeweils ein Loch i 5 (14) in Zuordnung zu dem wenigstens einen Filterelement (16) aufweist, welches von der an der Basisplatte (12) angrenzenden Wandung des wenigstens einen Filterelements (16) eingeschlossen wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei das ver-0 wendete Ausgangsmaterial vor der Herstellung des wenigstens einen
Filterelements (16) mit mindestens einer oligodynamisch wirkenden Substanz versetzt wird.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche, wobei das hoh-5 le Filterelement (16) nach dem schichtweisen Verfestigen des Ausgangsmaterials an den dem Filterelement entsprechenden Stellen einem Beschichtungsverfahren, insbesondere Tauchbeschichtungsver- fahren, unterzogen wird, um das Porenmaß der Gitterporen zu verringern.
0
12. Filtereinheit mit wenigstens einem Filterelement (16), welches nach einem der Ansprüche 1 bis 10 hergestellt ist.
13. Filtereinheit nach Anspruch 12, welche zum Filtern eines Mediums in eine Filtervorrichtung (24) mit mindestens einem Eingang (28) und mindestens einem Ausgang (30) einsetzbar ist.
5 14. Filtereinheit nach Anspruch 12, wobei die Filtereinheit (10) zum Entfernen von Rückständen auf dem wenigstens einen Filterelement (16) rückspülbar ist.
15. Filtervorrichtung mit einer Filtereinheit (10) nach einem der Ansprüche o 12 bis 14.
16. Filtervorrichtung nach Anspruch 15, wobei die Filtervorrichtung Mittel zum Anlegen eines elektrischen Potentials an wenigstens ein Filterelement (16) der Filtereinheit (10) umfasst.
EP14714967.8A 2013-03-27 2014-03-26 Slm-filtersystem Withdrawn EP2978550A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310205510 DE102013205510A1 (de) 2013-03-27 2013-03-27 SLM-Filtersystem
PCT/EP2014/056061 WO2014154748A1 (de) 2013-03-27 2014-03-26 Slm-filtersystem

Publications (1)

Publication Number Publication Date
EP2978550A1 true EP2978550A1 (de) 2016-02-03

Family

ID=50434175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14714967.8A Withdrawn EP2978550A1 (de) 2013-03-27 2014-03-26 Slm-filtersystem

Country Status (4)

Country Link
US (1) US10207207B2 (de)
EP (1) EP2978550A1 (de)
DE (1) DE102013205510A1 (de)
WO (1) WO2014154748A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386801B2 (en) 2015-08-03 2019-08-20 Baker Hughes, A Ge Company, Llc Methods of forming and methods of repairing earth-boring tools
US9890595B2 (en) 2015-08-03 2018-02-13 Baker Hughes, A Ge Company, Llc Methods of forming and methods of repairing earth boring-tools
US10059092B2 (en) 2015-09-14 2018-08-28 Baker Hughes, A Ge Company, Llc Additive manufacturing of functionally gradient degradable tools
US10335855B2 (en) 2015-09-14 2019-07-02 Baker Hughes, A Ge Company, Llc Additive manufacturing of functionally gradient degradable tools
CA3006970A1 (en) * 2015-12-30 2017-07-06 Mott Corporation Porous devices made by laser additive manufacturing
US10765975B2 (en) * 2016-07-01 2020-09-08 Caterpillar Inc. Filter element and method of manufacturing a filter element
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
CN111391316B (zh) * 2020-06-03 2020-08-28 中国航发上海商用航空发动机制造有限责任公司 成形附件、设计方法以及成形方法
CN112170841B (zh) * 2020-09-28 2021-11-19 华中科技大学 具有表面可控微纳复合结构生物膜的钛植入体的制备方法
DE102022211877A1 (de) * 2022-11-09 2024-05-16 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur Passivierung von in einer Filtervorrichtung auftretenden Filterrückständen

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2156941A (en) * 1936-01-13 1939-05-02 Colonial Broach Co Rotary broaching machine
US2946446A (en) * 1958-09-17 1960-07-26 Permanent Filter Corp Filtration units
DE19905067A1 (de) 1999-02-08 2000-08-10 Matthias Fockele Vorrichtung zur Herstellung eines Formkörpers durch schichtweises Aufbauen aus pulverförmigem, insbesondere metallischem Werkstoff
DE10165115B3 (de) 2000-03-15 2017-10-12 Realizer Gmbh Verfahren und Vorrichtung zur Herstellung eines Formkörpers
DE10236907A1 (de) 2002-08-12 2004-02-26 Fockele, Matthias, Dr. Vorrichtung zur Herstellung eines Formkörpers durch schichtweises Aufbauen aus pulverförmigem, insbesondere metallischem oder keramischem Werkstoff
DE102004041633A1 (de) 2004-08-27 2006-03-02 Fockele, Matthias, Dr. Vorrichtung zur Herstellung von Formkörpern
DE102005032842A1 (de) * 2005-07-14 2007-01-25 Robert Bosch Gmbh Verfahren zur Herstellung von Partikelfiltern
WO2007040229A1 (ja) * 2005-10-03 2007-04-12 Rohm Co., Ltd. 半導体装置
DE202008002350U1 (de) * 2008-02-19 2009-06-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Ventilator- oder Gebläserad mit antibakterieller Beschichtung
DE102008030186A1 (de) * 2008-06-26 2009-12-31 Siemens Aktiengesellschaft Verfahren zum Erzeugen eines Bauteils durch selektives Laserschmelzen sowie hierfür geeignete Prozesskammer
EP2156941B1 (de) 2008-08-21 2013-01-09 AVIO S.p.A. Verfahren zur Herstellung eines Filters, inbesondere für einen Drehabscheider und dadurch hergestellter Filter
DE102010029078A1 (de) * 2010-05-18 2011-11-24 Matthias Fockele Verfahren zur Herstellung eines Gegenstandes durch schichtweises Aufbauen aus pulverförmigem Werkstoff
GB201014950D0 (en) 2010-09-08 2010-10-20 Johnson Matthey Plc Catalyst manufacturing method
DE102011075748B4 (de) 2011-05-12 2024-04-25 Realizer Gmbh Vorrichtung zur aufeinander folgenden Herstellung von Formkörpern durch schichtweises Aufbauen aus Werkstoffpulver
EP2574391A1 (de) * 2011-09-15 2013-04-03 NGK Insulators, Ltd. Wabenstruktur
DE102012021595A1 (de) * 2012-11-02 2014-05-08 Hydac Process Technology Gmbh Filtervorrichtung für Fluide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014154748A1 *

Also Published As

Publication number Publication date
DE102013205510A1 (de) 2014-10-02
US20160059154A1 (en) 2016-03-03
US10207207B2 (en) 2019-02-19
WO2014154748A1 (de) 2014-10-02

Similar Documents

Publication Publication Date Title
WO2014154748A1 (de) Slm-filtersystem
EP3064262B1 (de) Filtermedium, verfahren zur herstellung eines filtermediums und filterelement mit einem filtermedium
WO1999054524A1 (de) Verfahren zur herstellung einer gesinterten metallschicht mit offener porosität
EP2919880A1 (de) Filterelement
DE19804493B4 (de) Filtermedium für die Fest/Flüssig-Trennung
DE102020116030A1 (de) Filtereinrichtung für eine additive Fertigungsvorrichtung
DE4418033A1 (de) Filterelement mit Faserbeschichtung und Verfahren zu seiner Herstellung
DE6919686U (de) Filterkoerper aus metallfasern
DE4325682C2 (de) Verfahren zum Entfernen eines Katalysators aus einem flüssigen Reaktionsprodukt
EP1380332B1 (de) Anschwemmfilterkerze, Anschwemmfilter und Verwendung einer Filterkerze
EP3192592A1 (de) Filter
EP2363185B1 (de) Regenierbares Filterelement mit Stützschichten
DE3537672C1 (en) Filter body
EP2892629B1 (de) Filterelement
EP2481474B1 (de) Dichtungsanordnung für stabförmige keramische Filterelemente
DE102007040776A1 (de) Regenerierbares Filterelement
EP0264703B1 (de) Anschwemmfilter
DE102021004750A1 (de) Filtervorrichtung
EP1543871B1 (de) Filter mit Filtereinsatz und Verwendung eines derartigen Filters
DE102012022285A1 (de) Filterelement
EP3969147B1 (de) Filterelement für eine filtereinheit
DE4106742A1 (de) Mikrofilter
DE19859032C2 (de) Gießfilter zum Gießen von Metalllegierung
AT503675B1 (de) Chemisch resistente und formbeständige monofilamente, ein verfahren zu deren herstellung sowie deren verwendung
EP3507005B1 (de) Verwendung eines volumenkörpers als filtrationsmittel und/oder sorptionsmittel zur regeneration mittels rückspülung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B01D 29/11 20060101AFI20181031BHEP

Ipc: B29C 64/153 20160203ALI20181031BHEP

Ipc: B33Y 10/00 20150101ALI20181031BHEP

Ipc: B22F 3/105 20060101ALI20181031BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20181207

RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 3/105 20060101ALI20181031BHEP

Ipc: B01D 29/11 20060101AFI20181031BHEP

Ipc: B29C 64/153 20170101ALI20181031BHEP

Ipc: B33Y 10/00 20150101ALI20181031BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B01D 29/11 20060101AFI20181031BHEP

Ipc: B22F 3/105 20060101ALI20181031BHEP

Ipc: B29C 64/153 20170101ALI20181031BHEP

Ipc: B33Y 10/00 20150101ALI20181031BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191001