EP2976805A1 - Antenne constituée d'au moins deux brins rayonnants et un plan de masse - Google Patents

Antenne constituée d'au moins deux brins rayonnants et un plan de masse

Info

Publication number
EP2976805A1
EP2976805A1 EP14710319.6A EP14710319A EP2976805A1 EP 2976805 A1 EP2976805 A1 EP 2976805A1 EP 14710319 A EP14710319 A EP 14710319A EP 2976805 A1 EP2976805 A1 EP 2976805A1
Authority
EP
European Patent Office
Prior art keywords
ground plane
strand
antenna
antenna according
create
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14710319.6A
Other languages
German (de)
English (en)
Inventor
Jean-Michel MONTEIX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aviwest
Original Assignee
Aviwest
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aviwest filed Critical Aviwest
Publication of EP2976805A1 publication Critical patent/EP2976805A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • Antenna consisting of at least two radiating strands and a ground plane.
  • the present invention relates to an antenna for use in mobile telecommunication devices.
  • the new 3GPP LTE telecommunication standard also called 4G
  • 4G opens up a large number of sub-frequency bands in which telecommunication devices must transmit and / or receive signals.
  • the sub-frequency bands are between 700MHz and 2700MHz.
  • the frequency sub-band 700 to 800 MHz, the frequency sub-band 824 at 960 MHz, and the sub-frequency bands between 1710 MHz and 2700 MHz are examples.
  • the antenna or antennas of the portable telecommunication devices must be able to transmit and / or receive electromagnetic signals in these sub-frequency bands.
  • the lower sub-frequency bands impose antennae of large size while the miniaturization of portable telecommunications devices imposes imperatives of reduced size to the antennas.
  • the present invention aims to solve these various constraints by providing an antenna that is able to radiate and / or convert electromagnetic waves in a broad frequency spectrum while being of a small footprint.
  • the invention proposes an antenna consisting of at least two radiating strands and a ground plane, characterized in that a first strand is placed facing the ground plane in such a way that to create a first resonant cavity, a second strand is folded a plurality of times to create at least one U-shape forming at least a second resonant cavity and that the resonant cavities are coupled to each other.
  • the antenna is able to radiate and / or convert electromagnetic waves in a broad frequency spectrum while being of a small footprint.
  • the combination of the strands, the resonant cavities and the strong coupling between the resonant cavities allows the antenna to cover a much higher frequency band than that obtained by coupling a conventional antenna with a parasitic element or with another antenna while by being of small size.
  • the combination of the strands, the resonant cavities and the strong coupling between the resonant cavities gives the antenna a very good adaptation stability when the radiating elements are subjected to an environment of proximity different from the free space, such as a finger or a head or near metal elements.
  • the antenna according to the present invention is adapted to be embedded in any small object, such as a mobile phone, a PDA, a USB key, a tablet, a laptop operating near human bodies.
  • the antenna according to the present invention is insensitive to the resizing of the ground plane or the implantation of new shielding.
  • the distance between the first strand and the ground plane is between ⁇ / 10 and ⁇ / 30 and the opening of the second cavity has a width of between ⁇ / 10 and ⁇ / 300 where ⁇ is the greatest length of the electromagnetic waves emitted and / or received by the antenna.
  • the resonant cavities are distant from each other by ⁇ / 10 to ⁇ / 30.
  • the first and second strands are coplanar with the ground plane or with an element of the ground plane.
  • the first strand is parallel to one of the edges of the ground plane or to the element of the ground plane.
  • the second strand is folded to form several U-shaped shapes.
  • the antenna consists of three radiating strands, the third strand is folded several times so as to create at least one U-shape forming at least one third resonant cavity.
  • the dimension of the first strand and the distance of the first strand with respect to the ground plane are adapted for electromagnetic waves emitted and / or received having the shortest wavelengths.
  • the dimension and the pleats of the second strand are adapted at least for the electromagnetic waves emitted and / or received having the longest wavelengths.
  • FIG. 1 shows a first embodiment of an antenna according to the present invention
  • FIG. 2 shows a second embodiment of an antenna according to the present invention
  • FIG. 3 shows a third embodiment of an antenna according to the present invention
  • FIG. 4 shows a fourth embodiment of an antenna according to the present invention
  • FIG. 5 shows a fifth embodiment of an antenna according to the present invention.
  • Fig. 1 shows a first embodiment of an antenna according to the present invention.
  • the antenna consists of two radiating strands 12 and 13 connected via a connection 11 to a demodulator modulator, not shown in FIG. Fig. 1, which generates the electrical signals that the antenna must transmit and which processes the radio signals received by the antenna.
  • the strands 12 and 13 are for example coplanar with the ground plane 10.
  • the demodulator modulator is connected to a ground plane 10.
  • the ground plane 10 is for example a circuit or a metal case.
  • the strand 13 is parallel to one of the sides of the ground plane 10 so as to create a first resonant cavity 15.
  • Strand 12 is folded several times to create a U shape forming a second resonant cavity 14.
  • the coupling 16 between the resonant cavities 14 and 15 makes it possible to obtain a wide range of operation of the antenna.
  • the distance between the strand 13 and the ground plane 10 is between ⁇ / 10 and ⁇ / 30 where ⁇ is the greatest length of the electromagnetic waves emitted and / or received by the antenna.
  • the opening d of the resonant cavity 14 has a width of between ⁇ / 10 and ⁇ / 300 where ⁇ is the greatest length of the electromagnetic waves emitted and / or received by the antenna.
  • the resonant cavities 14 and 15 are spaced from each other by ⁇ / 10 at ⁇ / 30.
  • the antenna is capable of operating in frequency ranges such as 824-960MHz and 1710-2700MHZ or higher, or 700-824MHz and 1710-2700MHz or the frequency band used for WIFI at 5GHz.
  • the dimensions and shapes of the strands 12 and 13 are determined so as to achieve a strong capacitive coupling between the resonant cavities 14 and 15.
  • the location of the cavities 14 and 15, the location of the zones of strong coupling present at the opening d of each cavity 14 and 15 and the location of the coupling zone 16 as well as the minimum distance between these different zones, depend on the frequencies of desired resonances for the elements of the antenna. These locations depend on the distribution of currents at the frequencies considered. Indeed, for each of the cavities 14 and 15 coupled to each other, a most balanced current distribution is obtained in order to at least double the width of the high subband covered, for example del710-2700 MHz, by one of the strands. This effect can be considered analogous to that used by some broadband antenna arrays, without inducing a directivity of the radiation pattern, or that obtained by a broadband antenna of large size compared to the antenna described here.
  • the current distributions on the strands are dependent on the structure of the antenna and the ground plane 10.
  • Fig. 2 shows a second embodiment of an antenna according to the present invention.
  • the antenna consists of two radiating strands 22 and 23 connected via a connection 21 to a demodulator modulator.
  • the strands 22 and 23 are for example coplanar with the ground plane 20.
  • the demodulator modulator is connected to a ground plane 20.
  • the ground plane 20 is for example a circuit or a metal case.
  • the strand 23 is parallel to one of the sides of the ground plane 20 so as to create a first resonant cavity 25.
  • Strand 22 is folded a number of times to create a plurality of successive U-shapes. Each U contributes to the formation of a resonant cavity.
  • the set of resonant cavities is noted 24 in FIG. 2.
  • the coupling 26 between the resonant cavities 24 and 25 makes it possible to obtain a wide range of operation of the antenna.
  • the distance between the strand 23 and the ground plane 20 is between ⁇ / 10 and ⁇ / 30 where ⁇ is the greatest length of the electromagnetic waves emitted and / or received by the antenna.
  • the openings of the resonant cavities formed by the U have a width of between ⁇ / 10 and ⁇ / 300. It should be noted here that the openings may have different values relative to each other.
  • the resonant cavities 24 and 25 are distant from each other from ⁇ / 4 to ⁇ / 30,
  • Fig. 3 shows a third embodiment of an antenna according to the present invention.
  • the antenna consists of three radiating strands 32, 33 and 38 connected via a connection 31 to a demodulator.
  • the strands 32, 33 and 34 are for example coplanar with the ground plane 30.
  • the demodulator modulator is connected to a ground plane 30.
  • the ground plane 30 is for example a circuit or a metal case.
  • the strand 33 is parallel to one of the sides of the ground plane 20 so as to create a first resonant cavity 35.
  • Strand 32 is folded a number of times to create a plurality of successive U-shapes. Each U contributes to the formation of a resonant cavity.
  • the set of resonant cavities is noted 34 in FIG. 3.
  • the coupling 36 between the resonant cavities 34 and 35 makes it possible to obtain a wide range of operation of the antenna.
  • the distance between the strand 33 and the ground plane 30 is between ⁇ / 10 and ⁇ / 300 where ⁇ is the greatest length of the electromagnetic waves emitted and / or received by the antenna.
  • the strand 38 is folded several times to create at least one U-shape forming at least one other resonant cavity that is only weakly or not coupled to the other resonant cavities.
  • the openings of the resonant cavities formed by the U have a width of between ⁇ / 10 and ⁇ / 300. It should be noted here that the openings may have different values relative to each other.
  • Fig. 4 shows a fourth embodiment of an antenna according to the present invention.
  • the elements denoted 40 to 46 in FIG. 4 are identical to the elements 20 to 26 in FIG. 2.
  • the antenna of FIG. 4 is identical to the antenna as described with reference to FIG. 2 with the only difference that the angle of inclination of the strand 23 in FIG. 2, and noted 43 in FIG. 4, makes it possible to vary the characteristics of the cavity between the ground plane 10 and the strand 43 as well as the coupling 46 between the two cavities 45 and 46.
  • This angle is for example between 0 and 20 degrees.
  • Fig. 5 shows a fifth embodiment of an antenna according to the present invention.
  • the antenna consists of two radiating strands 52 and 53 connected via a connection 51 to a demodulator modulator.
  • the strands 22 and 23 are for example coplanar with the ground plane 50 and with an element 59 of the ground plane 50 or are for example coplanar with the element 59 of the ground plane 50.
  • the demodulator modulator is connected to a ground plane 50 and to the element 59 of the ground plane 50.
  • the ground plane 50 is for example a circuit or a metal case.
  • the strand 53 is parallel to the element 59 of the ground plane 50, the ground plane 50 being or not parallel to the element 59.
  • the strand 53 is parallel to the element 59 of the ground plane 50 so as to create a first resonant cavity 55.
  • Strand 52 is folded a number of times to create a plurality of successive U-shapes. Each U contributes to the formation of a resonant cavity.
  • the set of resonant cavities is noted 54 in FIG. 5.
  • the coupling 56 between the resonant cavities 54 and 55 makes it possible to obtain a wide range of operation of the antenna.
  • the distance between the strand 53 and the ground plane 50 is between ⁇ / 10 and ⁇ / 30 where ⁇ is the greatest length of the electromagnetic waves emitted and / or received by the antenna.
  • the openings of the resonant cavities formed by the U have a width of between ⁇ / 10 and ⁇ / 300. It should be noted here that the openings may have different values relative to each other.
  • the resonant cavities 54 and 55 are spaced from each other from ⁇ / 4 to ⁇ / 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

L'invention concerne une antenne constituée d'au moins deux brins rayonnants (12, 13) et un plan de masse, caractérisée en ce que un premier brin (13) est placé en vis-à-vis du plan de masse de manière à créer une première cavité résonante (15), un second brin (12) est plié plusieurs fois de manière à créer au moins une forme de U formant au moins une seconde cavité résonante (14) et en ce que les cavités résonantes sont couplées (16) l'une à l'autre.

Description

Antenne constituée d'au moins deux brins rayonnants et un plan de masse.
La présente invention concerne une antenne destinée à être utilisée dans des dispositifs de télécommunication mobiles.
Les dispositifs de télécommunication portables actuels, tels que par exemple les téléphones portables, les tablettes communicantes ou encore les dispositifs de télémesures, doivent être capables d'émettre et/ou de recevoir des signaux dans une pluralité de bandes de fréquences.
Par exemple, la nouvelle norme de télécommunication 3GPP LTE, appelée aussi 4G, ouvre un grand nombre de sous bandes de fréquences dans lesquelles les dispositifs de télécommunication doivent émettre et/ou recevoir des signaux. Les sous bandes de fréquences sont comprises entre 700MHz et 2700MHz. La sous bande de fréquence 700 à 800MHz, la sous-bande de fréquence 824 à 960MHz, et les sous bandes de fréquences comprises entre 1710 MHz et 2700 MHz en sont des exemples.
La ou les antennes des dispositifs de télécommunication portables doivent être aptes à émettre et/ou recevoir des signaux électromagnétiques dans ces sous bandes de fréquence. Les sous bandes de fréquences les plus basses imposent des antennes de taille importante tandis que la miniaturisation des dispositifs de télécommunication portables impose des impératifs d'encombrement réduit aux antennes.
La présente invention a pour but de résoudre ces différentes contraintes en proposant une antenne qui soit apte à rayonner et/ou à convertir des ondes électromagnétiques dans un large spectre de fréquence tout en étant d'un encombrement réduit.
A cette fin, selon un premier aspect, l'invention propose une antenne constituée d'au moins deux brins rayonnants et un plan de masse, caractérisée en ce que un premier brin est placé en vis-à-vis du plan de masse de manière à créer une première cavité résonante, un second brin est plié plusieurs fois de manière à créer au moins une forme de U formant au moins une seconde cavité résonante et en ce que les cavités résonantes sont couplées l'une à l'autre.
Ainsi, l'antenne est apte à rayonner et/ou à convertir des ondes électromagnétiques dans un large spectre de fréquence tout en étant d'un encombrement réduit.
La combinaison des brins, des cavités résonantes et du fort couplage entre les cavités résonantes permet à l'antenne de couvrir une bande de fréquence bien plus importante que celle obtenue par couplage d'une antenne classique avec un élément parasite ou avec une autre antenne tout en étant de faible encombrement.
La combinaison des brins, des cavités résonantes et du fort couplage entre les cavités résonantes donne à l'antenne une très bonne stabilité d'adaptation lorsque les éléments rayonnants sont soumis à un environnement de proximité différent de l'espace libre, tel qu'un doigt ou une tête ou à proximité d'éléments métalliques. L'antenne selon la présente invention est adaptée pour être embarquée dans tout objet de taille réduite, tel un téléphone portable, un PDA, une clé USB, une tablette, un ordinateur portable fonctionnant à proximité de corps humains.
De plus, l'antenne selon la présente invention est peu sensible au redimensionnement du plan de masse ou à l'implantation de nouveaux blindages.
Selon un mode particulier de l'invention, la distance entre le premier brin et le plan de masse est comprise entre λ/10 et λ/30 et l'ouverture de la seconde cavité a une largeur comprise entre λ/10 et λ/300 où λ est la plus grande longueur des ondes électromagnétiques émises et/ou reçues par l'antenne.
Selon un mode particulier de l'invention, les cavités résonantes sont distantes l'une de l'autre de λ/10 à λ/30. Selon un mode particulier de l'invention, les premier et second brins sont coplanaires au plan de masse ou à un élément du plan de masse.
Selon un mode particulier de l'invention, le premier brin est parallèle à un des bords du plan de masse ou à l'élément du plan de masse.
Selon un mode particulier de l'invention, le second brin est plié pour former plusieurs formes en U.
Selon un mode particulier de l'invention, l'antenne est constituée de trois brins rayonnants, le troisième brin est plié plusieurs fois de manière à créer au moins une forme de U formant au moins une troisième cavité résonante.
Selon un mode particulier de l'invention, la dimension du premier brin et la distance du premier brin par rapport au plan de masse sont adaptées pour les ondes électromagnétiques émises et/ou reçues ayant les plus petites longueurs d'ondes.
Selon un mode particulier de l'invention, la dimension et les plis du second brin sont adaptés au moins pour les ondes électromagnétiques émises et/ou reçues ayant les plus longues longueurs d'ondes.
Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels :
la Fig. 1 représente un premier exemple de réalisation d'une antenne selon la présente invention ;
la Fig. 2 représente un second exemple de réalisation d'une antenne selon la présente invention ;
la Fig. 3 représente un troisième exemple de réalisation d'une antenne selon la présente invention ;
la Fig. 4 représente un quatrième exemple de réalisation d'une antenne selon la présente invention ;
la Fig. 5 représente un cinquième exemple de réalisation d'une antenne selon la présente invention.
La Fig. 1 représente un premier exemple de réalisation d'une antenne selon la présente invention.
L'antenne est constituée de deux brins rayonnants 12 et 13 reliés par l'intermédiaire d'une connexion 11 à un modulateur démodulateur, non représenté en Fig. 1, qui génère les signaux électriques que l'antenne doit émettre et qui traite les signaux radio reçus par l'antenne.
Les brins 12 et 13 sont par exemple coplanaires au plan de masse 10.
Le modulateur démodulateur est relié à un plan de masse 10.
Le plan de masse 10 est par exemple un circuit ou un boîtier métallique.
Le brin 13 est parallèle à un des côtés du plan de masse 10 de manière à créer une première cavité résonante 15.
Le brin 12 est plié plusieurs fois de manière à créer une forme de U formant une seconde cavité résonante 14.
Le couplage 16 entre les cavités résonantes 14 et 15 permet d'obtenir une large plage de fonctionnement de l'antenne.
La distance entre le brin 13 et le plan de masse 10 est comprise entre λ/10 et λ/30 où λ est la plus grande longueur des ondes électromagnétiques émises et/ou reçues par l'antenne.
L'ouverture d de la cavité résonante 14 a une largeur comprise entre λ/10 et λ/300 où λ est la plus grande longueur des ondes électromagnétiques émises et/ou reçues par l'antenne.
Les cavités résonantes 14 et 15 sont distantes l'une de l'autre de λ/10 à λ/30. L'antenne, selon la présente invention, est apte à fonctionner dans des plages de fréquences telles que 824-960MHz et 1710-2700MHZ ou plus, ou 700-824MHz et 1710-2700MHz ou la bande de fréquence utilisée pour le Wifï à 5GHz.
Les dimensions et les formes des brins 12 et 13 sont déterminées de manière à réaliser un fort couplage capacitif entre les cavités résonantes 14 et 15.
La localisation des cavités 14 et 15, la localisation des zones de fort couplage présentes à l'ouverture d de chaque cavité 14 et 15 et la localisation de la zone de couplage 16 ainsi que la distance minimale entre ces différentes zones, dépendent des fréquences de résonances voulues pour les éléments de l'antenne. Ces localisations dépendent de la répartition des courants aux fréquences considérées. En effet, pour chacune des cavités 14 et 15 couplées entre elles, une répartition de courant la plus équilibrée est obtenue afin d'au minimum doubler la largeur de la sous-bande haute couverte qui est par exemple del710-2700MHz par l'un des brins. Cet effet peut être considéré comme analogue à celui employé par certains réseaux d'antennes à large bande, sans pour autant induire une directivité du diagramme de rayonnement, ou celui obtenu par une antenne large bande de grandes dimensions comparativement à l'antenne décrite ici.
Les répartitions de courant sur les brins sont dépendantes de la structure de l'antenne et du plan de masse 10.
La Fig. 2 représente un second exemple de réalisation d'une antenne selon la présente invention.
L'antenne est constituée de deux brins rayonnants 22 et 23 reliés par l'intermédiaire d'une connexion 21 à un modulateur démodulateur.
Les brins 22 et 23 sont par exemple coplanaires au plan de masse 20.
Le modulateur démodulateur est relié à un plan de masse 20.
Le plan de masse 20 est par exemple un circuit ou un boîtier métallique.
Le brin 23 est parallèle à un des côtés du plan de masse 20 de manière à créer une première cavité résonante 25.
Le brin 22 est plié plusieurs fois de manière à créer une pluralité de formes en U successives. Chaque U contribue à la formation d'une cavité résonante. L'ensemble des cavités résonantes est noté 24 en Fig. 2.
Le couplage 26 entre les cavités résonantes 24 et 25 permet d'obtenir une large plage de fonctionnement de l'antenne.
La distance entre le brin 23 et le plan de masse 20 est comprise entre λ/10 et λ/30 où λ est la plus grande longueur des ondes électromagnétiques émises et/ou reçues par l'antenne.
Les ouvertures des cavités résonantes formées par les U ont une largeur comprise entre λ/10 et λ/300. Il est à remarquer ici que les ouvertures peuvent être de valeurs différentes les unes par rapport aux autres.
Les cavités résonantes 24 et 25 sont distantes l'une de l'autre de λ/4 à λ/30,
La Fig. 3 représente un troisième exemple de réalisation d'une antenne selon la présente invention.
L'antenne est constituée de trois brins rayonnants 32, 33 et 38 reliés par l'intermédiaire d'une connexion 31 à un modulateur démodulateur.
Les brins 32, 33 et 34 sont par exemple coplanaires au plan de masse 30.
Le modulateur démodulateur est relié à un plan de masse 30.
Le plan de masse 30 est par exemple un circuit ou un boîtier métallique.
Le brin 33 est parallèle à un des côtés du plan de masse 20 de manière à créer une première cavité résonante 35. Le brin 32 est plié plusieurs fois de manière à créer une pluralité de formes en U successives. Chaque U contribue à la formation d'une cavité résonante. L'ensemble des cavités résonantes est noté 34 en Fig. 3.
Le couplage 36 entre les cavités résonantes 34 et 35 permet d'obtenir une large plage de fonctionnement de l'antenne.
La distance entre le brin 33 et le plan de masse 30 est comprise entre λ/10 et λ/300 où λ est la plus grande longueur des ondes électromagnétiques émises et/ou reçues par l'antenne.
Le brin 38 est plié plusieurs fois de manière à créer au moins une forme de U formant au moins une autre cavité résonante qui n'est que faiblement ou pas couplée aux autres cavités résonantes.
Les ouvertures des cavités résonantes formées par les U ont une largeur comprise entre λ/10 et λ/300. Il est à remarquer ici que les ouvertures peuvent être de valeurs différentes les unes par rapport aux autres.
La Fig. 4 représente un quatrième exemple de réalisation d'une antenne selon la présente invention.
Les éléments notés 40 à 46 en Fig. 4 sont identiques aux éléments notés 20 à 26 en Fig. 2.
L'antenne de la Fig. 4 est identique à l'antenne telle que décrite en référence à la Fig. 2 à la seule différence que l'angle d'inclinaison du brin 23 en Fig. 2, et noté 43 en Fig. 4, permet de faire varier les caractéristiques de la cavité entre le plan de masse 10 et le brin 43 ainsi que le couplage 46 entre les deux cavités 45 et 46.
Cet angle est par exemple compris entre 0 et 20 degrés.
La Fig. 5 représente un cinquième exemple de réalisation d'une antenne selon la présente invention.
L'antenne est constituée de deux brins rayonnants 52 et 53 reliés par l'intermédiaire d'une connexion 51 à un modulateur démodulateur.
Les brins 22 et 23 sont par exemple coplanaires au plan de masse 50 et à un élément 59 du plan de masse 50 ou sont par exemple coplanaires à l'élément 59 du plan de masse 50.
Le modulateur démodulateur est relié à un plan de masse 50 et à l'élément 59 du plan de masse 50.
Le plan de masse 50 est par exemple un circuit ou un boîtier métallique. Le brin 53 est parallèle à l'élément 59 du plan de masse 50, le plan de masse 50 étant ou non parallèle à l'élément 59.
Le brin 53 est parallèle à l'élément 59 du plan de masse 50 de manière à créer une première cavité résonante 55.
Le brin 52 est plié plusieurs fois de manière à créer une pluralité de formes en U successives. Chaque U contribue à la formation d'une cavité résonante. L'ensemble des cavités résonantes est noté 54 en Fig. 5.
Le couplage 56 entre les cavités résonantes 54 et 55 permet d'obtenir une large plage de fonctionnement de l'antenne.
La distance entre le brin 53 et le plan de masse 50 est comprise entre λ/10 et λ/30 où λ est la plus grande longueur des ondes électromagnétiques émises et/ou reçues par l'antenne.
Les ouvertures des cavités résonantes formées par les U ont une largeur comprise entre λ/10 et λ/300. Il est à remarquer ici que les ouvertures peuvent être de valeurs différentes les unes par rapport aux autres.
Les cavités résonantes 54 et 55 sont distantes l'une de l'autre de λ/4 à λ/30.
Bien entendu, la présente invention n'est nullement limitée aux modes de réalisation décrits ici, mais englobe, bien au contraire, toute variante à la portée de l'homme du métier et particulièrement la combinaison de différents modes de réalisation de la présente invention.

Claims

REVENDICATIONS
1) Antenne constituée d'au moins deux brins rayonnants (12, 13) et un plan de masse (10), caractérisée en ce que un premier brin (13) est placé en vis-à-vis du plan de masse (10) de manière à créer une première cavité résonante (15), un second brin (12) est plié plusieurs fois de manière à créer au moins une forme de U formant au moins une seconde cavité résonante (14) et en ce que les cavités résonantes sont couplées (16) l'une à l'autre, la distance entre le premier brin et le plan de masse est comprise entre λ/10 et λ/30 et l'ouverture de la seconde cavité a une largeur comprise entre λ/10 et λ/300 où λ est la plus grande longueur des ondes électromagnétiques émises et/ou reçues par l'antenne.
2) Antenne selon la revendication 1 , caractérisée en ce que les cavités résonantes sont distantes l'une de l'autre de λ/4 à λ/30.
3) Antenne selon l'une quelconque des revendications 1 à 2, caractérisée en ce que les premier et second brins sont coplanaires au plan de masse ou à un élément du plan de masse. 4) Antenne selon la revendication 3, caractérisée en ce que le premier brin est parallèle à un des bords du plan de masse ou à l'élément du plan de masse.
5) Antenne selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le second brin est plié pour former plusieurs formes en U.
6) Antenne selon l'une quelconque des revendications 1 à 5, caractérisée en ce que l'antenne est constituée de trois brins rayonnants, le troisième brin est plié plusieurs fois de manière à créer au moins une forme de U formant au moins une troisième cavité résonante.
7) Antenne selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la dimension du premier brin et la distance du premier brin par rapport au plan de masse sont adaptées pour les ondes électromagnétiques émises et/ou reçues ayant les plus petites longueurs d'ondes. 8) Antenne selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la dimension et les plis du second brin sont adaptés au moins pour les ondes électromagnétiques émises et/ou reçues ayant les plus longues longueurs d'ondes.
EP14710319.6A 2013-03-20 2014-03-17 Antenne constituée d'au moins deux brins rayonnants et un plan de masse Withdrawn EP2976805A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1352499A FR3003698B1 (fr) 2013-03-20 2013-03-20 Antenne constituee d'au moins deux brins rayonnants et un plan de masse.
PCT/EP2014/055308 WO2014147027A1 (fr) 2013-03-20 2014-03-17 Antenne constituée d'au moins deux brins rayonnants et un plan de masse

Publications (1)

Publication Number Publication Date
EP2976805A1 true EP2976805A1 (fr) 2016-01-27

Family

ID=48856776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14710319.6A Withdrawn EP2976805A1 (fr) 2013-03-20 2014-03-17 Antenne constituée d'au moins deux brins rayonnants et un plan de masse

Country Status (4)

Country Link
US (1) US20160064824A1 (fr)
EP (1) EP2976805A1 (fr)
FR (1) FR3003698B1 (fr)
WO (1) WO2014147027A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007782A1 (en) * 2010-07-06 2012-01-12 Kabushiki Kaisha Toshiba Antenna apparatus and a wireless communication apparatus
US20120287012A1 (en) * 2011-05-13 2012-11-15 Funai Electric Co., Ltd. Multi-band compatible multi-antenna device and communication equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511131C2 (sv) * 1997-11-06 1999-08-09 Ericsson Telefon Ab L M Portabel elektronisk kommunikationsanordning med flerbandigt antennsystem
WO2005076407A2 (fr) * 2004-01-30 2005-08-18 Fractus S.A. Antennes unipolaires multibandes pour dispositifs de communications mobiles
US7724196B2 (en) * 2007-09-14 2010-05-25 Motorola, Inc. Folded dipole multi-band antenna
CN101853981A (zh) * 2009-04-03 2010-10-06 深圳富泰宏精密工业有限公司 多频天线及应用该多频天线的无线通信装置
FI20105158A (fi) * 2010-02-18 2011-08-19 Pulse Finland Oy Kuorisäteilijällä varustettu antenni
JP5060629B1 (ja) * 2011-03-30 2012-10-31 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器
JP6000620B2 (ja) * 2012-04-26 2016-09-28 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007782A1 (en) * 2010-07-06 2012-01-12 Kabushiki Kaisha Toshiba Antenna apparatus and a wireless communication apparatus
US20120287012A1 (en) * 2011-05-13 2012-11-15 Funai Electric Co., Ltd. Multi-band compatible multi-antenna device and communication equipment

Also Published As

Publication number Publication date
FR3003698A1 (fr) 2014-09-26
WO2014147027A1 (fr) 2014-09-25
FR3003698B1 (fr) 2016-10-07
US20160064824A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
US6429819B1 (en) Dual band patch bowtie slot antenna structure
US10218227B2 (en) Compact PIFA antenna
US7358920B2 (en) Cavity embedded antenna
US7265718B2 (en) Compact multiple-frequency Z-type inverted-F antenna
JP4475583B2 (ja) ディスコーンアンテナおよび該ディスコーンアンテナを用いた情報通信機器
US20080180327A1 (en) Integrated multi-band antenna
Peng et al. High performance 5G millimeter-wave antenna array for 37–40 GHz mobile application
CA2596545A1 (fr) Antenne doublet fractale
FR2978875A1 (fr) Antenne bibande
EP1443593B1 (fr) Antenne large bande et a rayonnement omnidirectionnel
KR20090031969A (ko) 안테나 소자 및 광대역 안테나 장치
JP2003258527A (ja) アンテナ
US6756946B1 (en) Multi-loop antenna
US7446713B2 (en) Antenna of mobile communication terminal having assistance radiator
US20090128440A1 (en) Balanced antenna
JP4199631B2 (ja) 広帯域アンテナ
WO2014147027A1 (fr) Antenne constituée d'au moins deux brins rayonnants et un plan de masse
KR100640339B1 (ko) 광대역 모노폴 안테나
EP1903636B1 (fr) Antenne à large bande d'adaptation
US20090207089A1 (en) Antenna element
Turkmen et al. Printed quasi yagi antenna with closely spaced and thick directors for triple ISM-band/wideband applications at UHF
Tatomirescu et al. Beam-steering array for handheld devices targeting 5G
Lee et al. A novel UWB antenna using PI-shaped matching stub for UWB applications
EP2976806B1 (fr) Système multi-antennes large bande constitué d'au moins deux antennes de même forme et de même dimension
JP2006165608A (ja) 小型内蔵アンテナ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151019

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MONTEIX, JEAN-MICHEL

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190523

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20191203