EP2971240B1 - Hybride wärmedämmschicht und verfahren zu deren herstellung - Google Patents

Hybride wärmedämmschicht und verfahren zu deren herstellung Download PDF

Info

Publication number
EP2971240B1
EP2971240B1 EP13878078.8A EP13878078A EP2971240B1 EP 2971240 B1 EP2971240 B1 EP 2971240B1 EP 13878078 A EP13878078 A EP 13878078A EP 2971240 B1 EP2971240 B1 EP 2971240B1
Authority
EP
European Patent Office
Prior art keywords
layer
barrier coating
thermal barrier
forming
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13878078.8A
Other languages
English (en)
French (fr)
Other versions
EP2971240A4 (de
EP2971240A1 (de
Inventor
Brian T HAZEL
David A. Litton
Michael J. Maloney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP2971240A1 publication Critical patent/EP2971240A1/de
Publication of EP2971240A4 publication Critical patent/EP2971240A4/de
Application granted granted Critical
Publication of EP2971240B1 publication Critical patent/EP2971240B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Definitions

  • the present disclosure relates to a thermal barrier coating for use on a turbine engine component and to a process of making the thermal barrier coating.
  • a thermal barrier coating (TBC) is created to meet one or more performance requirements including, but not liited to, spallation life, calcia-magnesia-alumina-silicate (CMAS) resistance, foreign object damage (FOD) resistance, erosion, and low conductivity.
  • CMAS calcia-magnesia-alumina-silicate
  • FOD foreign object damage
  • a turbine barrier coating is applied to a turbine engine component, such as a turbine blade/vane, to help the component withstand the relatively high temperatures of its operational environment.
  • TBCs are often formed using a singular coating process such as an electron beam physical vapor deposition (EB-PVD) process.
  • EB-PVD electron beam physical vapor deposition
  • a TBC may be formed from two separate EB-PVD layers formed from two different materials, such as 7 wt% yttria stabilized zirconia and gadolinia stabilized zirconia in order to improve the thermal conductivity properties of the coating.
  • the strain-tolerant columnar structure of an EB-PVD coating helps to increase the TBC spallation life.
  • a more porous TBC however may minimize the TBC thermal conductivity and possibly the thermal radiation through the coating.
  • TBC there is a porous outer layer over a more dense inner layer made by an EB-PVD process.
  • the two layers have different porosity levels.
  • Such a structure can be formed by changing the coating temperature. More power equals more density but also more temperature. It is also known to form a dense vertically cracked microstructure for the TBC where the deposition is conducted at a two inch stand-off for the dense layer and a six inch stand-off for the porous layer.
  • EP 2 341 166 discloses a TBC on a substrate, the TBC comprising a bond coat, a ceramic coating, and a ceramic layer.
  • US 2011/244216 A1 discloses a combination of SPS and APS methods for deposition of multilayer thermal barrier coatings on turbine components.
  • the applied materials comprise partially or fully YSZ as well as pyrochlores.
  • EP 2 336 381 A1 discloses a thermal barrier coating deposited by APS, consisting of a first 7YSZ layer and a second gadolinia stabilized zirconia layer with a porosity of 5-20 vol.%.
  • EP 2 450 465 A1 discloses a multilayer ceramic TBC deposited by APS, comprising an inner YSZ layer of low porosity, an intermediate YSZ layer with higher porosity than the inner layer and an outer porous layer of gadolinium zirconate.
  • the second layer has a porosity in the range of from 10 to 40%.
  • the first layer forming step comprises suspending a powder feedstock in a liquid suspension and injecting the powder feedstock and the suspension into a plasma jet under conditions where the first layer is formed with the strain-tolerant columnar microstructure.
  • the second layer forming step comprises changing spray parameters so as to form the porous and radiation thermally resistant second layer.
  • the second layer forming step comprises forming the second layer so as to have a porosity of from 10 to 40%.
  • the first and second layer forming steps comprise using a powdered feedstock having a particle size in the range of from 10nm to 10 micrometers
  • the first and second layer forming steps comprises using a powdered feedstock having a particle size in the range of from 10nm to 2.0 micrometers.
  • the turbine engine component may be any component which requires a thermal barrier coating such as a blade/vane.
  • the turbine engine component 10 may have a substrate 12 formed from any suitable material known in the art including, but not limited to, a nickel based alloy, a cobalt based alloy, a titanium based alloy, a ceramic material, and an organo-matrix composite material.
  • a thermal barrier coating 14 is deposited on the substrate 12.
  • the thermal barrier coating 14 has a first layer 16 which interfaces with the surface 18 of the substrate 12 and an outer second layer 20.
  • the first layer 16 is formed so as to have a strain-tolerant columnar microstructure at the interface with the surface 18 of the substrate.
  • the second layer 20 is formed to have a porous thermal conduction and radiant heat transfer resistant microstructure at an outer surface 22 of the thermal barrier coating.
  • the first layer 16 and the second layer 20 is formed from a material having the same composition.
  • Each of the layers 16 and 20 is formed from a 7 wt% yttria stabilized zirconia (7YSZ).
  • each of the layers 16 and 20 is formed using suspension plasma spray (SPS) technique such as that shown in FIG. 2 .
  • SPS suspension plasma spray
  • a powdered feedstock is suspended in a liquid suspension 30.
  • the powdered feedstock may be 7YSZ which may be suspended in ethanol, water, or other alcohols such as methanol.
  • the powdered feedstock may have a particle size in the range of from 10 nm to 10 micrometers mean size diameter. In another non-limiting embodiment, the particles size may be in the range of from 10 nm to 2.0 micrometers.
  • the powdered feedstock in the suspension is injected into a plasma jet 32 created by a plasma torch 34 and thus deposited onto the substrate 12.
  • the spray conditions are such that the first layer 16 is formed to have the desired strain tolerant columnar microstructure.
  • the deposition technique may have a short stand off (similar to that used in dense vertically cracked coatings) and high power/enthalpy plasma conditions.
  • the spray conditions may be changed so as to form the second layer 20 with the porous thermal conduction and radiant heat transfer resistant microstructure.
  • porosity (1) the angle of the spray nozzle could be changed from normal relative to the surface on which the layer 20 is being deposited; (2) the stand off may be increased; and/or (3) the plasma power/enthalpy may be reduced. More porosity in the second layer 20 than in the first layer 16 creates a reduction in thermal conductivity.
  • the second layer 20 may have a reduction of at least 10% in thermal conductivity. This may come purely from a porosity increase or a change in the structure from columnar to more splat like. An increase in porosity increases the erosion rate. A useful limit may be 10 to 40% porosity in the second layer 20.
  • the columnar structure SPS gives a thermal cyclic spallation resistance similar to EB-PVD (much higher than APS and higher than dense vertically cracked). Erosion is a function of porosity content and can be greater or less than EB-PVD (generally higher than APS and more like dense vertically cracked). Thermal conductivity, as discussed above, follows the porosity content.
  • the spray conditions are discreetly or incrementally changed throughout the spray run.
  • the spray conditions are changed so that a continuously graded microstructure is formed where there is the strain-tolerant columnar microstructure at the interface with the substrate 12 for thermal barrier coating spallation resistance and a porous thermal conduction and radiation thermally resistant layer at the outer surface 22.
  • thermal barrier coating can be formed using a single piece of equipment and in a single coating.
  • Another advantage is that one can easily change the composition of the second layer 20 so that it is different than the composition of the first layer 16. This can easily be done by changing the composition of the feedstock being injected into the plasma jet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Claims (8)

  1. Wärmedämmschicht (14), die auf eine Turbinenmotorkomponente (10) aufgebracht wird, die ein Substrat (2) aufweist, wobei die Schicht Folgendes umfasst:
    eine erste Lage (16), die eine beanspruchungsfähige, säulenartige Mikrostruktur an einer Schnittstelle mit dem Substrat zur Beständigkeit gegenüber Zersplitterung aufweist; und
    eine zweite Lage (20), die porös ist und beständig gegenüber Wärmeleitung und -strahlung, an einer Außenfläche der Wärmedämmschicht;
    wobei eine kontinuierlich abgestufte Mikrostruktur von der Schnittstelle zur Außenfläche vorliegt;
    wobei die erste und die zweite Lage aus demselben Material ausgebildet sind;
    wobei jede aus der ersten und der zweiten Lage aus mit 7 Gew.-% Yttriumoxid dotiertem Zirkoniumdioxid ausgebildet ist; und wobei die erste Lage eine erste Wärmeleitfähigkeit aufweist und die zweite Lage eine zweite Wärmeleitfähigkeit aufweist, die um mindestens 10 % niedriger als die erste Wärmeleitfähigkeit ist.
  2. Wärmedämmschicht nach Anspruch 1, wobei die zweite Lage eine Porosität im Bereich von 10 bis 40 % aufweist.
  3. Verfahren zum Aufbringen einer Wärmedämmschicht (14) auf eine Turbinenmotorkomponente (10), umfassend:
    Ausbilden einer ersten Lage (16), die eine beanspruchungsfähige, säulenartige Mikrostruktur aufweist, an einer Schnittstelle der ersten Lage und eines Substrats unter Verwendung einer Technik des Plasmaspritzens mit einer Suspension;
    Ausbilden einer zweiten Lage (20), die porös ist und beständig gegenüber Wärmestrahlung, an einer Außenfläche der Wärmedämmschicht unter Verwendung der Technik des Plasmaspritzens mit einer Suspension;
    Ausbilden einer kontinuierlich abgestuften Mikrostruktur von der Schnittstelle zur Außenfläche,
    wobei die Schritte des Ausbildens der ersten und der zweiten Lage das Ausbilden dieser Lagen aus demselben Material umfasst;
    wobei jede aus der ersten und der zweiten Lage aus mit 7 Gew.-% Yttriumoxid dotiertem Zirkoniumdioxid ausgebildet ist; und
    wobei der Schritt des Ausbildens der zweiten Lage das Ausbilden der zweiten Lage mit einer höheren Porosität als die erste Lage umfasst, so dass sie eine Wärmeleitfähigkeit aufweist, die um mindestens 10 % niedriger als die Wärmeleitfähigkeit der ersten Lage ist.
  4. Verfahren nach Anspruch 3, wobei der Schritt des Ausbildens der ersten Lage das Hängen eines Pulvereinsatzstoffes in eine flüssige Suspension und das Einspritzen des Pulvereinsatzstoffes und der Suspension in einen Plasmastrahl unter Bedingungen, unter denen die erste Lage mit der beanspruchungsfähigen, säulenartigen Mikrostruktur ausgebildet wird, umfasst.
  5. Verfahren nach Anspruch 4, wobei der Schritt des Ausbildens der zweiten Lage das Ändern der Spritzparameter umfasst, so dass die poröse und wärmestrahlungsresistente zweite Lage ausgebildet wird.
  6. Verfahren nach Anspruch 3, wobei der Schritt des Ausbildens der zweiten Lage das Ausbilden der zweiten Lage derart, so dass sie eine Porosität von 10 bis 40 % aufweist, umfasst.
  7. Verfahren nach Anspruch 3, wobei die Schritte des Ausbildens der ersten und der zweiten Lage das Verwenden eines pulverisierten Einsatzstoffes mit einer Partikelgröße im Bereich von 10 nm bis 10 Mikrometer umfasst.
  8. Verfahren nach Anspruch 7, wobei die Schritte des Ausbildens der ersten und der zweiten Lage das Verwenden eines pulverisierten Einsatzstoffes mit einer Partikelgröße im Bereich von 10 nm bis 2 Mikrometer umfasst.
EP13878078.8A 2013-03-14 2013-12-30 Hybride wärmedämmschicht und verfahren zu deren herstellung Active EP2971240B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361781656P 2013-03-14 2013-03-14
PCT/US2013/078186 WO2014143363A1 (en) 2013-03-14 2013-12-30 Hybrid thermal barrier coating and process of making same

Publications (3)

Publication Number Publication Date
EP2971240A1 EP2971240A1 (de) 2016-01-20
EP2971240A4 EP2971240A4 (de) 2016-12-21
EP2971240B1 true EP2971240B1 (de) 2018-11-21

Family

ID=51537485

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13878078.8A Active EP2971240B1 (de) 2013-03-14 2013-12-30 Hybride wärmedämmschicht und verfahren zu deren herstellung

Country Status (3)

Country Link
US (2) US20160017475A1 (de)
EP (1) EP2971240B1 (de)
WO (1) WO2014143363A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043411B1 (fr) * 2015-11-09 2017-12-22 Commissariat Energie Atomique Revetement ceramique multicouche de protection thermique a haute temperature, notamment pour application aeronautique, et son procede de fabrication
US10436042B2 (en) 2015-12-01 2019-10-08 United Technologies Corporation Thermal barrier coatings and methods
JP6908973B2 (ja) * 2016-06-08 2021-07-28 三菱重工業株式会社 遮熱コーティング、タービン部材、ガスタービン、ならびに遮熱コーティングの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872632B2 (ja) * 2000-06-09 2007-01-24 三菱重工業株式会社 遮熱コーティング材、それを適用したガスタービン部材およびガスタービン
US20090110953A1 (en) * 2007-10-29 2009-04-30 General Electric Company Method of treating a thermal barrier coating and related articles
DE102008007870A1 (de) * 2008-02-06 2009-08-13 Forschungszentrum Jülich GmbH Wärmedämmschichtsystem sowie Verfahren zu seiner Herstellung
US20110143043A1 (en) * 2009-12-15 2011-06-16 United Technologies Corporation Plasma application of thermal barrier coatings with reduced thermal conductivity on combustor hardware
US20110151219A1 (en) * 2009-12-21 2011-06-23 Bangalore Nagaraj Coating Systems for Protection of Substrates Exposed to Hot and Harsh Environments and Coated Articles
EP2341166A1 (de) * 2009-12-29 2011-07-06 Siemens Aktiengesellschaft Nano- und mikrometrische keramische Wärmedämmschicht
JP2010255121A (ja) * 2010-07-20 2010-11-11 Mitsubishi Heavy Ind Ltd 皮膜材料
EP2450465A1 (de) * 2010-11-09 2012-05-09 Siemens Aktiengesellschaft Poröses Schichtsystem mit poröserer Innenschicht
US9017792B2 (en) * 2011-04-30 2015-04-28 Chromalloy Gas Turbine Llc Tri-barrier ceramic coating
US20130260132A1 (en) * 2012-04-02 2013-10-03 United Technologies Corporation Hybrid thermal barrier coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2971240A4 (de) 2016-12-21
WO2014143363A1 (en) 2014-09-18
US20180282853A1 (en) 2018-10-04
US20160017475A1 (en) 2016-01-21
EP2971240A1 (de) 2016-01-20

Similar Documents

Publication Publication Date Title
EP3107673B1 (de) Verfahren zum auftragen einer wärmedämmbeschichtung
EP2893148B1 (de) Wärmedämmbeschichtung für gasturbinenmotorbauteile
US7833586B2 (en) Alumina-based protective coatings for thermal barrier coatings
EP3074546B1 (de) Modifizierte wärmebarrierenverbundbeschichtungen
US20130260132A1 (en) Hybrid thermal barrier coating
Mauer et al. Coatings with columnar microstructures for thermal barrier applications
CN105886994B (zh) 一种制备高性能层级热障涂层体系的方法
CN104674217B (zh) 一种含双层结构粘结层的热障涂层的制备方法
CN107699840A (zh) 多孔氧化锆热障涂层的制备方法
Tang et al. Novel thermal barrier coatings produced by axial suspension plasma spray
US20180282853A1 (en) Hybrid Thermal Barrier Coating and Process of Making Same
Markocsan et al. Liquid feedstock plasma spraying: An emerging process for advanced thermal barrier coatings
EP3453779B1 (de) Mehrschichtige cmas-resistente wärmedämmschicht
US20140193760A1 (en) Coated article, process of coating an article, and method of using a coated article
CN113151772A (zh) 一种新型高温耐蚀的双陶瓷层结构热障涂层及其制备方法
Refke et al. LPPS thin film: A hybrid coating technology between thermal spray and PVD for functional thin coatings and large area applications
WO2016202495A1 (en) Dvc-coating with fully and partially stabilized zirconia
EP2322686B1 (de) Wärmesprühverfahren zur Herstellung von vertikal segmentierten Wärmedämmbeschichtungen
Mao et al. Preparation and distribution analysis of thermal barrier coatings deposited on multiple vanes by plasma spray-physical vapor deposition technology
Najafizadeh et al. Thermal barrier ceramic coatings
JP2018003103A (ja) 遮熱コーティング法及び遮熱コーティング膜並びにタービン部材
CN102925841A (zh) 具有富铝扩散层粘结层的陶瓷热障涂层及制备方法
CN105331922A (zh) 一种低导热抗烧结热障涂层及其制备工艺
JP2019099921A (ja) 多孔質遮熱コーティングを形成する方法
EP3170918A1 (de) Dvc-beschichtung mit vollständig und teilweise stabilisiertem zirkoniumoxid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNITED TECHNOLOGIES CORPORATION

A4 Supplementary search report drawn up and despatched

Effective date: 20161117

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 4/11 20160101ALI20161111BHEP

Ipc: C23C 28/04 20060101ALI20161111BHEP

Ipc: C23C 4/134 20160101ALI20161111BHEP

Ipc: C23C 28/00 20060101AFI20161111BHEP

17Q First examination report despatched

Effective date: 20170804

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20181016

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013047297

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1067614

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181121

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1067614

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190321

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190222

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013047297

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181230

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181121

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181121

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131230

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013047297

Country of ref document: DE

Owner name: RAYTHEON TECHNOLOGIES CORPORATION (N.D.GES.D.S, US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORP., FARMINGTON, CONN., US

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 11

Ref country code: DE

Payment date: 20231121

Year of fee payment: 11