EP2957757B1 - Vorrichtung und Verfahren zur Verarbeitung von Gas, das einem Verbrennungsmotor zuzuführen ist - Google Patents

Vorrichtung und Verfahren zur Verarbeitung von Gas, das einem Verbrennungsmotor zuzuführen ist Download PDF

Info

Publication number
EP2957757B1
EP2957757B1 EP14173283.4A EP14173283A EP2957757B1 EP 2957757 B1 EP2957757 B1 EP 2957757B1 EP 14173283 A EP14173283 A EP 14173283A EP 2957757 B1 EP2957757 B1 EP 2957757B1
Authority
EP
European Patent Office
Prior art keywords
zeolite
temperature
state
control unit
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14173283.4A
Other languages
English (en)
French (fr)
Other versions
EP2957757A1 (de
Inventor
Armando Vollono
Matteo Tondo
Paolo Ciccarese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP14173283.4A priority Critical patent/EP2957757B1/de
Publication of EP2957757A1 publication Critical patent/EP2957757A1/de
Application granted granted Critical
Publication of EP2957757B1 publication Critical patent/EP2957757B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters

Definitions

  • the present invention relates to an apparatus for treating gas to be delivered to a combustion process in an internal combustion engine according to the preamble of claim 1 and to a respective method according to the independent method claim.
  • document EP 1 132 589 A1 discloses humidity sensors as an alternative to temperature sensors for determining the deterioration state of an HC- and humidity adsorbent in an exhaust gas system.
  • the present invention is of particular advantage in so called low pressure exhaust gas recirculation systems (LP-EGR).
  • LP-EGR low pressure exhaust gas recirculation systems
  • Exhaust gas recirculation is, in general, a well known emission control technology that provides a significant NOx-emission reduction of internal combustion engines for automotive application, in particular for Diesel engines and for other lean burn engines.
  • HP-EGR high pressure EGR
  • LP-EGR With a LP-EGR, the exhaust gas to be recirculated is drawn downstream of the turbine and exhaust gas treatment devices such as an oxidation catalyst and/or a particulate filter and/or a NOx-storage catalyst, cooled down and then introduced into the intake air upstream the compressor.
  • LP-EGR is preferred over a standalone HP-EGR because of a higher NOx-reduction capability, lower temperatures of the recirculated gas, a lesser particulate content and a higher potential of enthalpy recovery via the turbocharger.
  • LP-EGR may be used in combination with HP-EGR.
  • the safe operation of the engine during all driving conditions requires an LP-EGR ratio limitation in operating points where a condensation may occur.
  • Said limitation strongly depends on environmental conditions such as ambient temperature, humidity and altitude.
  • engine and EGR-system operating conditions such as piping wall temperature, gas temperature, boost pressure and the like, and the driving profile.
  • the engine and LP-EGR/air system control unit (ECU) has to be programmed to execute algorithms to estimate condensation and react with proper limitation to LP-EGR-ratio.
  • This limitation applies mainly to cold environmental conditions, engine heat-up after cold start and warm engine conditions with high boost pressure.
  • the theoretical NOx-reduction potential of LP-EGR in the cold start homologation cycles and real world driving profiles is strongly decreased.
  • the present invention allows to determine more precisely whether there is a risk of condensed water in the air system. For instance, the risk is smaller in situations where the Zeolite hydrates, i.e. absorbs water from the gas flowing through the zeolite. Accordingly, the limitations on the EGR, in particular limitations on the LP-EGR may be lowered or relaxed in such situations.
  • the present invention allows controlling the amount or the load of water in the air system for internal combustion engines, in particular for Diesel engines, in particular for Diesel engines equipped with an LP-EGR-system. Thereby, an extended use of LP-EGR is possible by fine monitoring the presence and/or risk of condensing water in the air system, which extended use leads inherently to a further reduction of NOx-emissions.
  • a side effect of the adsorption of water (hydrating) and the desorption of water (dehydrating) by zeolites is a strong energy exchange.
  • Zeolite structure hydration is exothermic and vice-versa, water release from the zeolite is coupled with an inherent endothermia.
  • this phenomenon is as such known, said exothermia / endothermia have not been utilized in the field of engines. This applies in particular in the field of EGR and even more particular, in the field of LP-EGR.
  • the state of the zeolite can be sensed with simple means that are robust enough for an automotive use.
  • the combination of said exothermia and/or endothermia with the temperature sensors provides feedback and information about water load in the air system, which allows safe and rational use of EGR, in particular of LP-EGR, in all vehicle operating conditions.
  • Zeolite exothermia induced by dew formation in cold engine conditions helps to heat up the intake air rapidly, which reduces the HC and CO emissions during warm up.
  • Endothermia during zeolite desorption phases, e.g. during warm engine operation and low boost pressure helps to cool intake air, thereby improving intercooler efficiency with the benefit of reducing NOx-emissions.
  • the canister comprises a zeolite based charge that is a zeolite based brick having more or less straight flow-through channels or that the canister comprises a charge that is based on tightly packed zeolite based pellets.
  • the apparatus preferably comprises further an EGR-System for an engine, an air system and an exhaust system, a turbocharger and one or more exhaust gas treatment devices that are located downstream of the charger's turbine in the exhaust system, wherein a branch-off for drawing exhaust gas off is located downstream of the exhaust gas treatment devices and a pipe conducting the drawn off exhaust gas to a junction in the air system for mixing the drawn off exhaust gas with fresh intake air.
  • the pipe between the branch-off and the junction comprises a cooling device which cools the drawn off exhaust gas, and an EGR-valve that is controlled by the control unit.
  • the apparatus comprises a pipe, which connects the exhaust system upstream of the turbine with the air system downstream of the compressor and which comprises a cooling device which cools the exhaust gas recirculated through the pipe.
  • the apparatus preferably comprises a further EGR-valve that is located in the intake system upstream of the junction where the pipe joins the air system and a further valve that is located in the exhaust system downstream of the branch-off, wherein both valves are controlled by the control unit.
  • the canister with the first temperature sensor is installed in one of a first installation position, a second installation position, and a third installation position, wherein the first installation position is located between the branch-off and the EGR-valve, the second installation position is located in or downstream of the junction and upstream of the compressor, and the third installation position is located downstream of the compressor and upstream of the EGR-valve.
  • the means for providing the temperature at the canister inlet comprises a second temperature sensor that is arranged upstream of the canister, in particular, without any device that might cause an unwanted deviation between the temperature at the second temperature sensor and the temperature at the canister inlet.
  • a reference temperature T_ref determined with a means for providing a temperature at the catalyst inlet and the zeolite temperature T_zeo measured with the first temperature sensor is evaluated and three working states are detected, wherein a first working state is characterized in that the temperature T_zeo of the zeolite is greater than the gas reference temperature T_ref and wherein the control unit estimates the water load, i.e.
  • the control unit calculates an LP-EGR condensation limitation correction, and wherein the control unit calculates the heat-up capacity of the zeolite in its present state of water load, and wherein the second working state is characterized in that the temperature T_zeo of the zeolite is comparable to the gas reference temperature T_ref and wherein this state is used for learning and adaptation of the mentioned water load and water unload models concerning the zeolite, and wherein a third working state is characterized in that the temperature T_zeo of the zeolite is lower than the gas reference temperature T_ref and that in this state the control unit estimates the remaining water load, i.e.
  • control unit calculates an LP-EGR condensation limitation correction and that the control unit calculates correction factors to evaluate the proper LP-EGR condensation limitation, and that the control unit calculates the cooling capacity of the zeolite in its present state of water load.
  • the step of determining is based on evaluating signals of a first temperature sensor, and of a second temperature sensor, which is arranged at the catalyst inlet.
  • Figure 1 schematically depicts an apparatus 10 for treating gas to be delivered to a combustion process in an internal combustion engine.
  • the apparatus comprises a canister 16 having an inlet 18 for introducing gas 12, an outlet 20 for allowing gas 14 to flow out, and a permeable zeolite based charge 22 arranged between the inlet and the outlet and being able to absorb and desorb water. Between the inlet and the outlet, the canister is tightly closed. It comprises no further gas flow openings.
  • the gas 12 entering the canister 16 is exhaust gas of a combustion process, e.g. exhaust gas of an engine, or a mixture of exhaust gas with air.
  • the gas 14 leaving the canister is fed to the intake side of the combustion process.
  • the gas 12 is converted into the gas 14, which will in general comprise more or less water than the gas 12, depending on whether the charge 22 is in a desorbing or an adsorbing state.
  • the apparatus 10 comprises a first temperature sensor 24 arranged in thermal contact with the zeolite based charge 22, a second temperature sensor 26 that is arranged upstream of the canister, and a control unit 28 that is adapted to determine whether the charge 22 is in an absorbing state, a desorbing state, or in a transition state between the absorbing state and the desorbing state, based on signals of the first temperature sensor 24 and the second temperature sensor 26.
  • the control unit is further adapted to control an amount of recirculated exhaust gas based on the determined state.
  • the control unit 28 may be a control unit which controls only the exhaust gas recirculation or may be a control unit that controls other parameters of the combustion process, too. In the depicted embodiment, the control unit is of the latter type. Signals of further sensors 30 that provide other parameters are fed to the control unit, too. The input signals are conditioned in an acquisition and conditioning section 32 of the control unit.
  • the depicted control unit comprises a canister state evaluation section 34, an EGR-control section 36 which preferably includes an EGR-limitation and a section 38 representing other engine control functions.
  • These sections represent both hardware and software aspects of said control functions.
  • Output signals of the sections 36 and 38 are conditioned in an output stage 40 and fed to actuators for controlling the combustion process, e.g. to actuators 42, 44, 46.
  • the actuator 42 is an EGR-valve adapted and arranged to control the amount of recirculated exhaust gas.
  • the other actuators may be further EGR-valves used in the system. Further actuators may be injection valves, or a variable geometry turbocharger, etc.
  • control unit 28 is adapted, in particular programmed to determine whether the zeolite charge 22 is in an absorbing state, a desorbing state or in a transition state between the absorbing state and the desorbing state, and to control an amount of recirculated exhaust gas based on the determined state.
  • the step of determining is based on evaluating signals of the first temperature sensor 24 and the second temperature sensor 26.
  • the determination is made in the section 34.
  • the result of the determination is further processed in the section 36.
  • the second temperature sensor 26 provides a temperature at the canister inlet, i.e. a signal representing said temperature.
  • This second temperature may be a temperature sensor that is already installed on the engine layout so the invention does not need an additional invention-specific second temperature sensor.
  • the second temperature sensor is an embodiment of a means for providing a canister inlet temperature.
  • Another embodiment of such a means is a control unit that is adapted, in particular programmed to calculate values of said temperature at the canister inlet by using a mathematical temperature model and input signals from other sensors, e.g. for engine coolant temperature, suction air temperature, load and rpm. This applies not only to the subject of the figures, but to the invention in general.
  • Figure 2 shows two embodiments of the canister 16.
  • the canister 16a comprises a zeolite based charge that is a zeolite based brick having more or less straight flow-through channels.
  • the canister 16b comprises a charge that is based on tightly packed zeolite based pellets.
  • the circular cross sections on the right represent one possible cross section geometry; however, other geometries with straight or curved boundaries are also possible.
  • Figure 3 shows possible installation positions of the canister 16 and the temperature sensor 26 within an LP-EGR-System.
  • An engine 48 is equipped with an air system 50 and an exhaust system 52.
  • a turbocharger comprises a turbine 54 driven by exhaust gas and a compressor 56 driven by the turbine.
  • One or more exhaust gas treatment devices 58 e.g. an oxidation catalyst and/or a particulate filter and/or a NOx-storage catalyst are located downstream of the turbine in the exhaust system.
  • exhaust gas may be drawn from the exhaust system and piped to a junction 62 in the air system 50, where the exhaust gas is mixed with fresh intake air.
  • the pipe between the branch-off 60 and the junction 62 may comprise a cooling device 64 which cools the drawn off exhaust gas, and an EGR-valve 42 that is controlled by the control unit 28.
  • Such an exhaust gas recirculation path represents a LP-EGR
  • the pipe 68 which connects the exhaust system upstream of the turbine 54 with the air system downstream of the compressor, represents a HP-EGR.
  • the pipe 68 may comprise a cooling device 70 which cools the exhaust gas recirculated through the pipe 68.
  • a further EGR-valve 44 is located in the intake system upstream of the junction where the pipe 68 joins the air system 50.
  • a further valve 46 is located in the exhaust system 52 downstream of the branch-off 60. The valves 42, 44 and 46 are controlled by the control unit 28.
  • the canister 16 with the first temperature sensor 24 and the second temperature sensor 26 is preferably installed in one of the first installation position 72, the second installation position 74 and the third installation position 78.
  • the first installation position 72 is located between the branch-off 60 and the EGR-valve 42, preferably downstream of a cooling device 64, if such a device is present. In the first installation position, there is an increased risk of condensation due to a cooling effect. Condensed water will be absorbed by the canister.
  • the second installation position 74 is located in or downstream of the junction 62 and upstream of the compressor 56. In the second installation position, there is an increased risk of condensation due to a cooling effect that arises from mixing with fresh air. Condensed water will be absorbed by the canister.
  • the third installation position 78 is downstream of the compressor 56 and upstream of the EGR-valve 44, preferably downstream of a cooling device 80, if such a device is present. In the third installation position, there is an increased risk of condensation due to a cooling effect and pressure increase. Condensed water will be absorbed by the canister.
  • Figure 4 shows a state machine that is a program run by the control unit 28 and which represents preferred embodiments of method aspects of the present invention.
  • the state machine stores the status of the zeolite at a given time and operates on input to change the status and/or cause an action or output to take place for a given change.
  • the core of the control method is the evaluation of the difference between the reference temperature T_ref measured with the second temperature sensor 26 or determined otherwise and the zeolite temperature T_zeo measured with the first temperature sensor 24.
  • three working states are possible and can be detected by the control unit 28. Each detected state enables inherent specific functions and is represented in figure 4 as one block of a state machine.
  • a first block 82 represents the state ADSORBING.
  • This working state is characterized in that the temperature T_zeo of the zeolite is greater than the gas reference temperature T_ref.
  • the control unit detects the zeolite exothermia and recognizes accordingly that the zeolite is in an adsorbing state.
  • the difference delta_T (T_zeo ⁇ - T_ref) is used to estimate the adsorbing water mass flow.
  • the value of delta_T is a function f of the adsorbing water mass flow.
  • the following functionalities are enabled:
  • the control unit estimates the water load. i.e. the mass of water absorbed by the zeolite and calculates the remaining adsorbing potential. This is preferably accomplished on the basis of an Observer and integration algorithm of measured delta_T.
  • control unit calculates an LP-EGR condensation limitation correction. Based on results of the calculated remaining adsorbing potential, the control unit calculates correction factors to relax the steady state LP-EGR limitation.
  • control unit calculates the heat-up capacity of the zeolite in its present state of water load.
  • the calculated heat-up capacity can be used during engine warm-up to evaluate the air system rapid heat-up potential via zeolite exothermia.
  • a second block 84 represents the state SATURATED.
  • This working state is characterized in that the temperature T_zeo of the zeolite is comparable to the gas reference temperature T_ref, that is, T_zeo is about to be equal to T_ref.
  • the transition state SATURATED is detected.
  • the following functionalities are enabled: By taking in account the body thermal inertia, this state is preferably used for learning and adaptation of the mentioned water load and water unload models concerning the zeolite.
  • a third block 86 represents the state DESORBING.
  • This working state is characterized in that the temperature T_zeo of the zeolite is lower than the gas reference temperature T_ref.
  • T_zeo gas reference temperature
  • T_ref gas reference temperature
  • the control unit estimates the remaining water load, i.e. the mass of water released by the zeolite and. This is preferably accomplished on the basis of an observer and integration algorithm of measured delta_T. In other words: the control unit models the unloading of water from the zeolite.
  • control unit calculates an LP-EGR condensation limitation correction. Based on results of the calculated released water from the canister, the control unit calculates correction factors to evaluate the proper LP-EGR condensation limitation.
  • control unit calculates the cooling capacity of the zeolite in its present state of water load.
  • the calculated cooling / heat-up capacity can be used to improve intake air cooling via zeolite endothermia.
  • the state machine stores the status of the zeolite at a given time and operates on input to change the status between the states ADSORBING and SATURATED (in both directions), and between the states SATURATED and DESORBING and/or cause an action or output to take place for a given change.
  • Figure 5 shows an extended use of LP-EGR after a cold start and during a particular driving profile.
  • figure 5a shows vehicle speed 90 and engine coolant temperature 92 during the New European Driving Cycle (NEDC).
  • Figure 5b shows LP-EGR-ratios over time corresponding to the driving cycle of figure 5a .
  • NEDC New European Driving Cycle
  • the continuous lines in figure 5b shows LP-EGR-ratios with limitations due to a risk of condensing water in the air system.
  • the dashed line shows EGR ratios in said intervals which are allowed by utilizing the present invention.
  • the fact that the dashed line lies above the continuous line means that the invention allows higher EGR-ratios and an earlier activation of the EGR after a cold start. This effect is due to the relaxed EGR-limitation that becomes possible with the present invention. As a result, the NOx-emissions during said intervals are decreased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (12)

  1. Vorrichtung zum Behandeln von Gas, das einem Verbrennungsprozess in einem Verbrennungsmotor zuzuführen ist, wobei die Vorrichtung einen Kanister (16) mit einem Einlass (18) zum Einführen von Gas (12), das Abgas eines Verbrennungsprozesses oder ein Gemisch von Abgas mit Luft ist, einen Auslass (20), um das Ausströmen von Gas (14) zu ermöglichen, eine durchlässige zeolithbasierte Charge (22), die zwischen dem Einlass und dem Auslass angeordnet und in der Lage ist, Wasser zu absorbieren und zu desorbieren, umfasst, wobei die Vorrichtung ferner einen ersten Temperatursensor (24), der in thermischem Kontakt mit der zeolithbasierten Charge angeordnet ist, ein Mittel zum Bereitstellen der Temperatur am Kanistereinlass, und eine Steuereinheit (28), die basierend auf Signalen des ersten Temperatursensors und des Mittels zum Bereitstellen der Temperatur am Kanistereinlass bestimmt, ob die Charge in einem absorbierenden Zustand oder in einem desorbierenden Zustand ist, umfasst, dadurch gekennzeichnet, dass die Steuereinheit (28) basierend auf Signalen des ersten Temperatursensors und des Mittels zum Bereitstellen der Temperatur am Kanistereinlass bestimmt, ob die Charge in einem Übergangszustand zwischen dem absorbierenden Zustand und dem desorbierenden Zustand ist, und basierend auf dem bestimmten Zustand eine Menge von rückgeführtem Abgas steuert.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die zeolithbasierte Charge ein zeolithbasierter Stein mit mehr oder weniger geraden Durchströmkanälen ist.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Kanister (16b) eine Charge umfasst, die auf dicht gepackten zeolithbasierten Pellets basiert.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, wobei die Vorrichtung ferner ein Abgasrückführungssystem für einen Motor (48), ein Luftsystem (50) und ein Abgassystem (52), einen Turbolader und eine oder mehrere Abgasbehandlungsvorrichtungen (58), die sich stromabwärts der Laderturbine im Abgassystem befinden, umfasst, wobei sich stromabwärts der Abgasbehandlungsvorrichtungen (58) eine Abzweigung (60) zum Abführen von Abgas befindet und wobei eine Leitung das abgeführte Abgas zu einer Verbindungsstelle (62) im Luftsystem (50) zum Mischen des abgeführten Abgases mit frischer Einlassluft leitet.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Leitung zwischen der Abzweigung (60) und der Verbindungsstelle (62) eine Kühlvorrichtung (64), die das abgeführte Abgas kühlt, und ein Abgasrückführungsventil (42), das durch die Steuereinheit (28) gesteuert wird, umfasst.
  6. Vorrichtung nach Anspruch 5, gekennzeichnet durch eine Leitung (68), die das Abgassystem stromaufwärts der Turbine (54) mit dem Luftsystem stromabwärts des Verdichters verbindet und die eine Kühlvorrichtung (70) umfasst, die das durch die Leitung (68) rückgeführte Abgas kühlt.
  7. Vorrichtung nach Anspruch 6, gekennzeichnet durch ein weiteres Abgasrückführungsventil (44), das sich im Einlasssystem stromaufwärts der Verbindungsstelle, wo sich das Rohr (68) mit dem Luftsystem (50) verbindet, befindet, und durch ein weiteres Ventil (46), das sich im Abgassystem (52) stromabwärts der Abzweigung (60) befindet, wobei beide Ventile (44) und (46) durch die Steuereinheit (28) gesteuert werden.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Kanister (16) mit dem ersten Temperatursensor (24) (26) in einer ersten Installationsposition (72), einer zweiten Installationsposition (74) oder einer dritten Installationsposition (78) installiert ist, wobei die erste Installationsposition (72) sich zwischen der Abzweigung (60) und dem Abgasrückführungsventil (42) befindet, die zweite Installationsposition sich in oder stromabwärts der Verbindungsstelle (62) und stromaufwärts des Verdichters befindet und die dritte Installationsposition sich stromabwärts des Verdichters und stromaufwärts des weiteren Abgasrückführungsventils (44) befindet.
  9. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Mittel zum Bereitstellen der Temperatur am Kanistereinlass einen zweiten Temperatursensor (26), der stromaufwärts des Kanisters angeordnet ist, umfasst oder ein selbiger ist.
  10. Verfahren zum Behandeln von Gas, das einem Verbrennungsprozess in einem Verbrennungsmotor zuzuführen ist, wobei das Verfahren Folgendes umfasst: Leiten von Gas durch einen Kanister (16) mit einem Einlass (18) zum Einführen von Gas (12), das Abgas eines Verbrennungsprozesses oder ein Gemisch aus Abgas mit Luft ist, einem Auslass (20), um das Ausströmen von Gas zu ermöglichen, einer durchlässigen zeolithbasierten Charge (22), die zwischen dem Einlass und dem Auslass angeordnet und in der Lage ist, Wasser zu absorbieren und zu desorbieren, wobei das Verfahren ferner das Bestimmen, ob die Charge in einem absorbierenden Zustand oder in einem desorbierenden Zustand ist, umfasst, wobei der Schritt des Bestimmens auf dem Evaluieren von Signalen eines ersten Temperatursensors (24) und eines Mittels zum Bereitstellen einer Temperatur am Kanistereinlass basiert, wobei der erste Temperatursensor in thermischem Kontakt mit der zeolithbasierten Charge angeordnet ist, gekennzeichnet durch das Bestimmen, ob die Charge in einem Übergangszustand zwischen dem absorbierenden Zustand und dem desorbierenden Zustand ist, basierend auf dem Evaluieren von Signalen des ersten Temperatursensors (24) und des Mittels zum Bereitstellen einer Temperatur am Kanistereinlass, und das Steuern einer Menge von rückgeführtem Abgas basierend auf dem bestimmten Zustand.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Differenz zwischen einer Referenztemperatur T_ref, die mit dem Mittel zum Bereitstellen einer Temperatur am Kanistereinlass bestimmt wird, und einer mit dem ersten Temperatursensor (24) gemessenen Zeolithtemperatur T_zeo evaluiert wird und drei Arbeitszustände detektiert werden, wobei ein erster Arbeitszustand dadurch gekennzeichnet ist, dass die Temperatur T_zeo des Zeolithen größer als die Gasreferenztemperatur T_ref ist und wobei die Steuereinheit (28) die Wasserladung, d. h. die Masse des durch den Zeolithen absorbierten Wassers, schätzt und das verbleibende Adsorptionspotential berechnet und wobei die Steuereinheit eine Niederdruck-Abgasrückführungskorrektur berechnet und wobei die Steuereinheit die Aufheizkapazität des Zeolithen in seinem aktuellen Wasserladungszustand berechnet, und wobei der zweite Arbeitszustand dadurch gekennzeichnet ist, dass die Temperatur T_zeo des Zeolithen mit der Gasreferenztemperatur T_ref vergleichbar ist und wobei dieser Zustand zum Lernen und zur Anpassung der genannten Wasserladungs- und Wasserentladungsmodelle in Bezug auf den Zeolithen genutzt wird, und wobei ein dritter Arbeitszustand dadurch gekennzeichnet ist, dass die Temperatur T_zeo des Zeolithen geringer als die Gasreferenztemperatur T_ref ist und dass in diesem Zustand die Steuereinheit die verbleibende Wasserladung, d. h. die Masse des durch den Zeolithen freigegebenen Wassers, schätzt und dass die Steuereinheit eine Niederdruck-Abgasrückführungsbegrenzungskorrektur berechnet und dass die Steuereinheit Korrekturfaktoren zum Evaluieren der eigentlichen Niederdruck-Abgasrückführungsbegrenzungskorrektur berechnet und dass die Steuereinheit die Kühlkapazität des Zeolithen in seinem aktuellen Wasserladungszustand berechnet.
  12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Schritt des Bestimmens auf dem Evaluieren von Signalen des ersten Temperatursensors (24) und eines am Kanistereinlass angeordneten zweiten Temperatursensors (26) basiert.
EP14173283.4A 2014-06-20 2014-06-20 Vorrichtung und Verfahren zur Verarbeitung von Gas, das einem Verbrennungsmotor zuzuführen ist Not-in-force EP2957757B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14173283.4A EP2957757B1 (de) 2014-06-20 2014-06-20 Vorrichtung und Verfahren zur Verarbeitung von Gas, das einem Verbrennungsmotor zuzuführen ist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14173283.4A EP2957757B1 (de) 2014-06-20 2014-06-20 Vorrichtung und Verfahren zur Verarbeitung von Gas, das einem Verbrennungsmotor zuzuführen ist

Publications (2)

Publication Number Publication Date
EP2957757A1 EP2957757A1 (de) 2015-12-23
EP2957757B1 true EP2957757B1 (de) 2018-08-08

Family

ID=50972593

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14173283.4A Not-in-force EP2957757B1 (de) 2014-06-20 2014-06-20 Vorrichtung und Verfahren zur Verarbeitung von Gas, das einem Verbrennungsmotor zuzuführen ist

Country Status (1)

Country Link
EP (1) EP2957757B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546488B (en) 2016-01-19 2020-05-13 Ford Global Tech Llc An engine exhaust gas recirculation system with at least one exhaust recirculation treatment device
JP6565720B2 (ja) * 2016-02-01 2019-08-28 株式会社デンソー 排気再循環システム
DE102017200541A1 (de) 2017-01-13 2018-07-19 Robert Bosch Gmbh Vorrichtung zur Abgasnachbehandlung für einen Verbrennungsmotor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051244A (en) * 1990-07-20 1991-09-24 Uop Use of a molecular sieve bed to minimize emissions during cold start of internal combustion engines
JP3083599B2 (ja) * 1991-09-30 2000-09-04 株式会社日立製作所 排気ガス浄化システム
US6354076B1 (en) * 1998-07-16 2002-03-12 Honda Giken Kogyo Kabushiki Kaisha Exhaust gas purification system of internal combustion engine
JP2001323811A (ja) * 2000-03-10 2001-11-22 Honda Motor Co Ltd 排気ガス浄化触媒の状態検出装置
JP2006226149A (ja) 2005-02-15 2006-08-31 Denso Corp 吸気成分制御装置
JP4710856B2 (ja) * 2007-03-15 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102011013183A1 (de) * 2011-03-05 2012-09-06 Daimler Ag Lachgasoptimiertes Abgasnachbehandlungssystem einer Kraftfahrzeug-Brennkraftmaschine und Betriebsverfahren hierfür

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2957757A1 (de) 2015-12-23

Similar Documents

Publication Publication Date Title
RU2697246C2 (ru) Способ и система (варианты) для управления потоками воздуха в двигателе
RU2689655C2 (ru) Способ (варианты) и система для диагностики теплообменника отработавших газов
US10618380B2 (en) Method and system for coolant temperature sensor diagnostics
RU2678926C2 (ru) Способ (варианты) охлаждения двигателя транспортного средства и система обогрева салона транспортного средства
KR101846886B1 (ko) 엔진 시스템 및 이를 이용한 엔진 제어 방법
CN102032033B (zh) 内燃发动机的排气处理系统
CN103726937B (zh) 一种用于发动机的方法
CN103628970B (zh) 用于控制可变增压空气冷却器的方法
EP3009635B1 (de) Behandlungsvorrichtung für kondensiertes wasser einer brennkraftmaschine
US9528475B2 (en) Method and system for EGR control
CN102486117B (zh) 具有lp-egr的发动机的涡轮增压器保护方法
RU2697899C1 (ru) Способ для двигателя (варианты) и соответствующая система
US20180100471A1 (en) Low temperature cooling device for internal combustion engine
CN101484684A (zh) 内燃机的排气再循环装置及其控制方法
WO2014020982A1 (ja) 内燃機関の制御装置
CN108691694B (zh) 用于发动机排气催化剂操作的方法和系统
US20170145936A1 (en) Control apparatus for an internal combustion engine
CN104870762A (zh) 运行柴油发动机的方法和具有多个运行模式的柴油发动机设备
US20180119651A1 (en) Low temperature cooling device for internal combustion engine
EP2957757B1 (de) Vorrichtung und Verfahren zur Verarbeitung von Gas, das einem Verbrennungsmotor zuzuführen ist
GB2526815A (en) A cooling system for an internal combustion engine
CN108071478A (zh) 用于去除冷凝水的发动机系统
EP3557016B1 (de) Verfahren und system zur verwaltung einer aktiven scr (selektiven katalytischen reduktion) eines ats (nachbehandlungssystems)
JP6097603B2 (ja) エアクリーナの雪詰まり進行防止システム
JP2013133725A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160623

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014029836

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0025070000

Ipc: F02M0026150000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 26/47 20160101ALI20180202BHEP

Ipc: F02M 26/15 20160101AFI20180202BHEP

Ipc: F02M 26/35 20160101ALI20180202BHEP

INTG Intention to grant announced

Effective date: 20180223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1027301

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014029836

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180808

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1027301

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181208

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

RIC2 Information provided on ipc code assigned after grant

Ipc: F02M 26/47 20160101ALI20180202BHEP

Ipc: F02M 26/15 20160101AFI20180202BHEP

Ipc: F02M 26/35 20160101ALI20180202BHEP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014029836

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190619

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190620

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190620

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190620

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181208

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140620

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220822

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014029836

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103