EP2952643B1 - Shaped brick and full insulation brick - Google Patents

Shaped brick and full insulation brick Download PDF

Info

Publication number
EP2952643B1
EP2952643B1 EP15164676.7A EP15164676A EP2952643B1 EP 2952643 B1 EP2952643 B1 EP 2952643B1 EP 15164676 A EP15164676 A EP 15164676A EP 2952643 B1 EP2952643 B1 EP 2952643B1
Authority
EP
European Patent Office
Prior art keywords
brick
cavities
recess
channel
moulded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15164676.7A
Other languages
German (de)
French (fr)
Other versions
EP2952643A1 (en
Inventor
Josef Führer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuehrer Exklusivfenster - Tueren Sonnenschutz GmbH
Original Assignee
Fuehrer Exklusivfenster - Tueren Sonnenschutz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuehrer Exklusivfenster - Tueren Sonnenschutz GmbH filed Critical Fuehrer Exklusivfenster - Tueren Sonnenschutz GmbH
Publication of EP2952643A1 publication Critical patent/EP2952643A1/en
Application granted granted Critical
Publication of EP2952643B1 publication Critical patent/EP2952643B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/14Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C1/00Building elements of block or other shape for the construction of parts of buildings
    • E04C1/40Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts
    • E04C1/41Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts composed of insulating material and load-bearing concrete, stone or stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/026Splittable building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/028Spacers between building elements
    • E04B2002/0284Spacers between building elements forming a unity with the building elements

Definitions

  • the present invention relates to a molded block.
  • the molded block according to the invention is characterized in that there is a recess in the top of the block, which is bounded by the outside, the inside and the two longitudinal sides and the shape stone with a depth e in the range of 0.05 to 5 cm spared.
  • the recess of the molded block according to the invention maintains a distance a to the outside of at least 5 cm, a distance b to the inside of at least 1 cm and a distance c to the longitudinal sides of at least 0.5 cm.
  • the molded block according to the invention is further characterized in that the ratio between the total volume of the channel-like cavities and the total volume of the molded block reduced by the cavities and the recess is between 0.2 and 0.5, in particular at approximately 0.3.
  • the present invention relates to a solid insulating stone and a manufacturing method for solid insulation stone and uses, especially in the field of building construction or civil engineering.
  • the document relates AT 26 18 125 a formwork element of rigid foam intended for the casing concrete construction with transverse webs arranged on both abutment faces for connecting the side walls, which has at its bearing surfaces a tongue and groove formation for securing the position of displaced formwork elements.
  • the WO 2008/138377 A1 discloses components for a component set of expanded polypropylene EPP having a molded density of about 55 kg / m 3 .
  • the components are in their basic form surface on surface butt-joined body having opening surfaces on these surfaces cavities, in the connecting body can be introduced. About the connecting body adjacent components can be connected together.
  • the inventors of the present invention the task of providing improved molded bricks and solid insulation bricks, which can be easily and inexpensively produced on the one hand, and with their help, stable structures, such as walls and buildings can be produced .
  • the bricks and solid insulation stones should also allow good thermal insulation between the inside and outside of the walls produced herewith.
  • the stones should also be easy to transport in the application.
  • the invention relates to a molded block for building structures.
  • the molded block has a substantially cuboid outline.
  • the molded block comprises an inner side, an outer side, two longitudinal sides, a lower side and an upper side.
  • the molded block comprises at least two mutually parallel, channel-like cavities. These cavities lead from the bottom to the top and are arranged substantially orthogonal to the bottom.
  • the molded block according to the invention is characterized in that there is a recess in the top of the molded block. This recess is limited by the outside, the inside and the two long sides.
  • a recess saves the shaped stone with a depth e in the range of 0.05 to 5 cm. By such a recess a direct connection with the channel-like cavities is possible. This can lead to improved load transfer and increase the overall stability of built with the bricks structures.
  • a recess according to this disclosure is any at least one side open groove or cavity of material on or within a molded block or solid insulation block. For example, cutouts, cuts, notches, grooves, grooves, bores, depressions or depressions are among the possible recesses mentioned in this disclosure.
  • the recess of the molded block according to the invention maintains a distance a to the outside of at least 5 cm, a distance b to the inside of at least 1 cm and a distance c to the longitudinal sides of at least 0.5 cm.
  • This provides a stable framework for further applications in accordance with other aspects of the invention, for example, to facilitate production of a solid insulation body.
  • the large distance a to the outside of the block contributes to the thermal insulation, which may be possible to dispense with further insulation under certain circumstances.
  • the molded block according to the invention is further characterized in that the ratio between the total volume of channel-like cavities and reduced around the cavities and the recess total volume of the block is between 0.2 and 0.5, in particular at about 0.3.
  • Thermal bridges are all areas in components or similar items that transport heat faster than adjacent components or objects. Thermal bridges are commonly found in balconies, roller shutters, masonry soles, window frames and lintels, radiator fixings in masonry, radiator niches, ceiling joints, in-house corners, uninsulated reinforced concrete structures, and overhanging steel girders.
  • the value for lambda refers to a temperature of 0 ° C and a normal humidity.
  • a molded block with the above-mentioned features can be procedurally easier and cheaper to produce than a molded block according to the prior art.
  • the channel-like cavities or the recess can be milled, drilled, ground, melted or cut into the shaped block. Due to the low weight of the molded block is relatively handy and easy to store or move.
  • the molded block typically consists of a water-repellent material, which significantly simplifies storage, transport and logistics.
  • the solid insulation brick preferably has no joints between load-bearing and cast-in material and the thermal insulation composite system. This reduces the risk of uncontrolled condensation and uncontrolled air circulation.
  • a shaped brick according to this disclosure is any brick that can be used to build walls or structures.
  • the molded block consists of one or more thermal insulation materials.
  • Thermal conductivity according to this disclosure is the thermal conductivity or thermal conductivity Lamdba, measured as SI unit in watts per Kelvin and per meter.
  • lambda describes the material property of conducting heat.
  • Examples are airgel, foam glass, glass foam granules, mineral wool, polyurethane, polystyrene with graphite, extruded polystyrene, expanded polystyrene, polyethylene foams, wool, cork, reed plate, cellulose, Holzmaschinedämmplatte, straw bales, perlite, wood wool lightweight panels, vacuum insulation panels, Aerowool , Calostat, felt, sawdust, charcoal, balsam wool, polyester fleece, sheep's wool, cellulose plates, hemp mats, tubular piston insulation boards as well as foams or porous systems of rubber, poroton, loam, PET, polyimides, PEI, PTFE, PVC, polyamides, polypropylene, polycarbonate, epoxy resin, Called PMMA, polyethylene and silicone.
  • the thermal insulation material may be a mixture consisting of polyurethane and a material selected from airgel, foam glass, glass foam granules, mineral wool, polystyrene with graphite, extruded polystyrene, expanded polystyrene, polyethylene foams, wool, cork, reed plate, cellulose, wood fiber insulation board , Straw bales, perlite, wood wool lightweight panels, vacuum insulation panels, aerowool, Calostat, felt, sawdust, charcoal, balsam wool, polyester fleece, sheep's wool, cellulose plates, hemp mats, Rohrkolbendämmplatten and foams or pore-containing systems of rubber, poroton, clay, PET, polyimides, PEI, PTFE, polyamide, polyamide, polypropylene, polycarbonate, epoxy resin, PMMA, polyethylene and silicone Poroton or with pure glass foam.
  • the thermal insulation material is selected from the group consisting of Styrofoam, Neopor, cork, polyethylene foams, mineral wool, Holzturadämmplatten or mixtures of these materials.
  • Materials such as Styrofoam and Neopor are particularly inexpensive to buy, are easy to work with, weatherproof and durable. Some of the materials are also recyclable.
  • Mineral wool can be obtained in an environmentally friendly way from recycled glass, is non-combustible and resistant to mildew and rot. Due to the high thermal stability, liquid filling material can be used in further work steps be heated, whereby the curing can be significantly accelerated. Cork is obtained as a natural product, has a high dimensional stability and elasticity and is resistant to pests and moisture.
  • Wood fiber insulation panels are made of debarked residual wood in an environmentally friendly manner and bonded with wood-grade resin. In addition, they have a moisturizing effect and have a high specific heat capacity, which provides extended thermal protection. As a thermal insulation material, any combination of said materials is used.
  • Channel-like cavity according to this disclosure describes any cavity in the form of a channel. Examples of channels include lines, tubes or other three-dimensional hollow body, within which at least one fluid can move.
  • the molded block can be divided parallel to the longitudinal sides into two subunits of equal size.
  • the channel-like cavities are not damaged when dividing the molded block.
  • the shaped block can be divided parallel to the longitudinal sides into two or more similarly sized subunits.
  • the channel-like cavities are not damaged when dividing the molded block. Through the intact channel-like cavities and subunits of the molded block can be further processed. This saves resources and costs.
  • the channel-like cavities can be the same size or unequal dimensioned.
  • the multiple use of the same tool or the same device is possible in order to save time and costs.
  • Equal dimensioned according to this disclosure are all channel-like cavities whose shapes are congruent to each other, ie these forms can be converted by parallel displacement, rotation, mirroring or concatenation of these operations into each other. Examples of equally sized shapes are two or more Cylinder with identical base, which has an identical geometric basic shape, and identical lateral surface.
  • the invention involves the production of a solid insulation block.
  • the production comprises the following steps.
  • the method comprises the provision of a molded block according to the first aspect of the invention.
  • a step b) takes place the partial or complete filling of the cavities of the molded block with at least one filler.
  • the production of the solid insulating block can take place while the at least one filling material is allowed to harden.
  • the solid insulation stone can be manufactured close to the factory and used on the construction site without further processing.
  • the filling with filling material in step b) can be done by pouring, spreading, shaking, pumping, plugging or foaming.
  • a solid insulating brick according to this disclosure is any brick that can be used to build walls or structures while having a high insulating property.
  • a filler according to this disclosure is any material that is suitable Fill cavities partially or completely.
  • fillers are concrete, liquid concrete, cement, expanded concrete, loam, chipboard, reinforced concrete, reinforced concrete or concrete mixtures, which are filled in the cavities, vibrated, pumped or mashed and may then be cured.
  • all the mold negatives of the cavities are suitable to fill these, for example, from calcined clay, limestone, limestone, cement, concrete, pumice, gypsum, plastic, expanded concrete, clay, wood, chipboard, plastic, reinforced concrete, steel, iron, reinforced concrete or expandable shale. Negatives correspond in form and size to the cavities to be filled. Particular preference is given to concrete use.
  • Concrete can be pumped, poured or vibrated liquid to viscous into the cavities, and binds with time dimensionally accurate and dimensionally stable.
  • concrete is inexpensive to buy, durable and offers high stability, in particular a high compressive strength.
  • the properties of concrete can be modified by choice of binder, aggregate and possible addition of other additives as required.
  • a method of making structures may include a step a) of providing a plurality of solid insulation bricks according to previous aspects of the invention.
  • a step b) the stacking of the solid insulation stones can be done while building a structure.
  • the molded brick or the solid insulation brick can be used inter alia in the field of building construction or civil engineering, in particular for the construction of a thermally insulated wall or a thermally insulated building.
  • Building construction according to this disclosure relates to the erection of all structures above the off-road. Called production building.
  • Civil engineering according to this disclosure is the construction of structures below the off-road.
  • the solid insulation stone is suitable for erecting a wide variety of building types, for example single-family homes, solid houses, prefabricated houses, low-energy and passive houses, bungalows, terraced houses, semi-detached houses or even parts of houses and extensions.
  • the solid insulating stone prevents the loss of heat through a wall, for example, in buildings in temperate or subpolar climates.
  • the solid insulating stone also insulates the penetration of heat into a building, for example in buildings in subtropical or tropical areas or in buildings with reduced temperature, such as fish halls or cold storage.
  • Fig. 1 shows a perspective view of the molded block 1.
  • the block is a cuboid body of a material mentioned in Table 1 with a thermal conductivity Lambda of less than 0.08 W / mK.
  • Thermal insulation material Lambda [W / mK] polystyrene 0.03 - 0.05 Neopor 0.032 polyethylene foams 0.034-0.04 mineral wool 0.032 - 0.05 cork 0.035-0.046 fibreboards 0.04-0.06
  • the molded block comprises an inner side 10, an outer side 20, two longitudinal sides 30a, 30b, a lower side 40 and an upper side 50.
  • the shaped block comprises in this example 12 mutually parallel, channel-like cavities 60 within the molded block 1. These are procedurally with a tool in the form of circular channels 60 perpendicular to the top 50 and milled to the bottom 40 in the form of stone.
  • a rectangular recess 55 is milled in the top 50.
  • the circular channels 60 open into the recess 55.
  • Fig. 2 shows the shaped block 1 as a cross section parallel to the two longitudinal sides 30a, 30b.
  • the recess 55 and the circular cavities 60 which completely pass through the molded block to the bottom 40.
  • the recess 55 By connecting the cavities 60 with the recess 55, the entire cavity can be very easily filled in subsequent steps and transferred into the solid insulation brick 100.
  • the recess 55 provides a reservoir and allows the procedurally simple shaking or infiltration of these viscous materials 70 in the circular cavities 60th
  • Fig. 3 shows in perspective the two identical halves 80a, 80b of the molded block 1 after splitting.
  • the two parts 80a, 80b are of identical size, but mirrored to each other.
  • the division and the recess 55 is divided into two units.
  • the circular cavities 60 remain at the pitch Undamaged, later filling the individual halves with concrete 70 is not a problem.
  • the molded block 1 can also be divided in other specific ratios without the individual cavities 60 are damaged. This feature allows a variety of staggered structures without the resulting structure is unstable. It can also save resources and money and be environmentally friendly.
  • Fig. 4 shows a cross section through a solid insulating brick 100 parallel to inside 10 and outside 20 and through a series of concrete columns.
  • the inner structure of a solid insulating stone 1 can be seen.
  • this consists of the outside to the inside of a thick insulation layer to the outside, in Fig. 4 not to be seen, a combination of insulation material and concrete columns in the middle and a slightly thicker insulation layer inside.
  • the concrete slab which is created by completely filling the previous recess 55 with concrete.
  • a wall made of solid insulation bricks can take over the complete thermal insulation protection of a wall or building with thicker insulation layers inside and outside.
  • the power transmission within a wall runs evenly from a solid insulation stone to the next lower solid insulation stones.
  • the force is transferred to a concrete slab via the concrete columns connected to this concrete slab. These columns transfer the force to the concrete slab of the next lower full insulation block until the last row of solid insulation blocks completes the uniform transfer to the foundation.
  • the wall can be modified directly afterwards with slots for pipes and pipes and finally plastered.
  • the finished wall is free of thermal bridges and has very good insulation properties with high stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Building Environments (AREA)

Description

Die vorliegende Erfindung betrifft einen Formstein. Insbesondere betrifft die vorliegende Erfindung einen Formstein zum Errichten von Bauwerken mit einem im Wesentlichen quaderartigen Umriss, umfassend eine Innenseite, eine Außenseite, zwei Längsseiten, eine Unterseite und eine Oberseite, umfassend mindestens zwei zueinander parallele, kanalartige Hohlräume innerhalb des Formsteins, wobei diese von der Unterseite zur Oberseite führen und im Wesentlichen orthogonal zur Unterseite angeordnet sind, wobei der Formstein im Wesentlichen aus Wärmeisolationsmaterial mit einer Wärmeleitfähigkeit von höchstens Lambda = 0,08 W/mK besteht. Der erfindungsgemäße Formstein ist dadurch charakterisiert, dass sich in der Oberseite des Formsteins eine Aussparung befindet, welche durch die Außenseite, die Innenseite und die beiden Längsseiten begrenzt ist und den Formstein mit einer Tiefe e im Bereich von 0,05 bis 5 cm ausspart. Die Aussparung des erfindungsgemäßen Formstein hält einen Abstand a zur Außenseite von mindestens 5 cm, einen Abstand b zur Innenseite von mindestens 1 cm und einen Abstand c zu den Längsseiten von mindestens 0,5 cm ein. Der erfindungsgemäße Formstein ist weiterhin charakterisiert dadurch, dass das Verhältnis zwischen dem Gesamtvolumen der kanalartigen Hohlräume und dem um die Hohlräume und die Aussparung reduzierten Gesamtvolumen des Formsteins zwischen 0,2 und 0,5 liegt, insbesondere bei circa 0,3.The present invention relates to a molded block. In particular, the present invention relates to a molded block for building structures having a substantially parallelepipedal outline, comprising an inner side, an outer side, two longitudinal sides, a lower side and an upper side, comprising at least two channel-like cavities parallel to each other inside the molded block, these being dependent on the Lead bottom to the top and are arranged substantially orthogonal to the bottom, wherein the molded block consists essentially of heat insulating material having a thermal conductivity of at most lambda = 0.08 W / mK. The molded block according to the invention is characterized in that there is a recess in the top of the block, which is bounded by the outside, the inside and the two longitudinal sides and the shape stone with a depth e in the range of 0.05 to 5 cm spared. The recess of the molded block according to the invention maintains a distance a to the outside of at least 5 cm, a distance b to the inside of at least 1 cm and a distance c to the longitudinal sides of at least 0.5 cm. The molded block according to the invention is further characterized in that the ratio between the total volume of the channel-like cavities and the total volume of the molded block reduced by the cavities and the recess is between 0.2 and 0.5, in particular at approximately 0.3.

Außerdem betrifft die vorliegende Erfindung einen Vollisolationsstein sowie ein Herstellungsverfahren für den Vollisolationsstein und Verwendungen insbesondere im Bereich des Hochbaus oder des Tiefbaus.Moreover, the present invention relates to a solid insulating stone and a manufacturing method for solid insulation stone and uses, especially in the field of building construction or civil engineering.

Im Stand der Technik sind bereits zahlreiche Mauersteine allgemein beschrieben worden, bei denen typischerweise in eingelassenen Hohlräumen eingebettetes Isolationsmaterial zur Erhöhung der Isoliereigenschaften der Mauersteine beisteuert. Ein solcher Mauerstein ist beispielsweise unter der Bezeichnung "Porotherm 50 W.i Plan", hergestellt von Wienerberger im Handel erhältlich. Ein ähnlicher Mauerstein wird von der Firma Pichler Aschach unter der Bezeichnung "PIA Isokopf" vertrieben.In the prior art numerous bricks have been described in general, in which typically embedded in cavities embedded insulation material to increase the insulating properties of the bricks contributes. Such brick, for example, under the name "Porotherm 50 Wi Plan", manufactured by Wienerberger commercially available. One similar brick is marketed by the company Pichler Aschach under the name "PIA Isokopf".

Überdies betrifft die Druckschrift AT 26 18 125 ein für die Mantelbetonbauweise bestimmtes Schalungselement aus Hartschaumstoff mit an beiden Stoßseiten angeordneten Querstegen zum Verbinden der Seitenwände, das an seinen Lagerflächen eine Nut- bzw. Federausbildung zum Lagesichern versetzter Schalungselemente aufweist.Moreover, the document relates AT 26 18 125 a formwork element of rigid foam intended for the casing concrete construction with transverse webs arranged on both abutment faces for connecting the side walls, which has at its bearing surfaces a tongue and groove formation for securing the position of displaced formwork elements.

Die WO 2008/138377 A1 offenbart Bauelemente für einen Bauelementen Satz aus expandiertem Polypropylen EPP mit einer Formteildichte von etwa 55 kg/m3. Die Bauelemente sind dabei in ihrer Grundform Fläche an Fläche stumpf aneinanderfügbare Körper, die an diesen Flächen mündende Kavitäten aufweisen, in die Verbindungskörper einbringbar sind. Über die Verbindungskörper können benachbarte Bauelemente miteinander verbunden werden.The WO 2008/138377 A1 discloses components for a component set of expanded polypropylene EPP having a molded density of about 55 kg / m 3 . The components are in their basic form surface on surface butt-joined body having opening surfaces on these surfaces cavities, in the connecting body can be introduced. About the connecting body adjacent components can be connected together.

Diese im Stand der Technik beschriebenen Mauersteine haben hingegen den Nachteil, dass Wärmebrücken eine effiziente thermische Isolierung zwischen der Außen- und Innenseite der mit den Steinen hergestellten Wände unterbinden. Zudem lassen sich die meisten der genannten Mauersteine nur durch eine ineffiziente und kostenintensive Herstellungsweise herstellen oder weisen andere Nachteile auf.On the other hand, these bricks described in the prior art have the disadvantage that thermal bridges prevent efficient thermal insulation between the outside and inside of the walls made with the bricks. In addition, most of the bricks mentioned can only be produced by an inefficient and cost-intensive production method or have other disadvantages.

Ausgehend von dem oben beschriebenen Stand der Technik haben sich die Erfinder der vorliegenden Erfindung die Aufgabe gestellt, verbesserte Formsteine und Vollisolationssteine bereitzustellen, die sich zum einen leicht und kostengünstig herstellen lassen, und mit deren Hilfe sich stabile Bauwerke, z.B. Mauern und Gebäude, herstellen lassen. Insbesondere sollen die Formsteine und Vollisolationssteine auch eine gute Wärmeisolierung zwischen der Innen- und Außenseite der hiermit hergestellten Wände ermöglichen. Die Formsteine sollen in der Anwendung zudem gut transportfähig sein.Starting from the above-described prior art, the inventors of the present invention, the task of providing improved molded bricks and solid insulation bricks, which can be easily and inexpensively produced on the one hand, and with their help, stable structures, such as walls and buildings can be produced , In particular, the bricks and solid insulation stones should also allow good thermal insulation between the inside and outside of the walls produced herewith. The stones should also be easy to transport in the application.

Diese Aufgabe wird durch die in dem kennzeichnenden Teil der Patentansprüche angegebenen Merkmale gelöst, wie insbesondere auch aus den experimentellen Daten und den Ausführungsbeispielen ersichtlich ist.This object is achieved by the features specified in the characterizing part of the claims, as is apparent in particular from the experimental data and the embodiments.

Gemäß einem ersten Aspekt betrifft die Erfindung einen Formstein zum Errichten von Bauwerken. Der Formstein hat einen im Wesentlichen quaderartigen Umriss. Der Formstein umfasst eine Innenseite, eine Außenseite, zwei Längsseiten, eine Unterseite und eine Oberseite. Der Formstein umfasst mindestens zwei zueinander parallele, kanalartige Hohlräume. Diese Hohlräume führen von der Unterseite zur Oberseite und sind im Wesentlichen orthogonal zur Unterseite angeordnet. Der Formstein besteht aus Wärmeisolationsmaterial mit einer Wärmeleitfähigkeit von höchstens Lambda = 0,08 W/mK. Der erfindungsgemäße Formstein ist charakterisiert dadurch, dass sich in der Oberseite des Formsteins eine Aussparung befindet. Diese Aussparung ist durch die Außenseite, die Innenseite und die beiden Längsseiten begrenzt. Die Aussparung spart den Formstein mit einer Tiefe e im Bereich von 0,05 bis 5 cm aus. Durch eine solche Aussparung ist eine direkte Verbindung mit den kanalartigen Hohlräumen möglich. Dies kann zu einer verbesserten Lastübertragung führen und die allgemeine Stabilität der mit den Formsteinen errichteten Bauwerke erhöhen. Eine Aussparung gemäß dieser Offenbarung ist jede zumindest einseitig offene Auskehlung oder Aushöhlung von Material an oder innerhalb eines Formsteins oder Vollisolationssteins. So zählen beispielsweise Ausschnitte, Einschnitte, Kerben, Nuten, Rillen, Bohrungen, Senken oder Vertiefungen zu den gemäß dieser Offenbarung erwähnten möglichen Aussparungen. Die Aussparung des erfindungsgemäßen Formstein hält einen Abstand a zur Außenseite von mindestens 5 cm, einen Abstand b zur Innenseite von mindestens 1 cm und einen Abstand c zu den Längsseiten von mindestens 0,5 cm ein. Hierdurch wird ein stabiler Rahmen für weitere Anwendungen gemäß anderen Aspekten der Erfindung geschaffen, beispielsweise zur erleichterten Herstellung eines Vollisolationskörpers. Darüber hinaus trägt der große Abstand a zur Außenseite des Formsteins zur Wärmedämmung bei, wodurch unter Umständen auf weitere Isolierung verzichtet werden kann. Der erfindungsgemäße Formstein ist weiterhin charakterisiert dadurch, dass das Verhältnis zwischen dem Gesamtvolumen der kanalartigen Hohlräume und dem um die Hohlräume und die Aussparung reduzierten Gesamtvolumen des Formsteins zwischen 0,2 und 0,5 liegt, insbesondere bei circa 0,3. Damit liefert der Formstein gleichzeitig die nötigen Hohlräume für eine anschließende Stabilisierung, sowie eine hohe Dämmleistung durch das Unterbinden von Wärmebrücken. Wärmebrücken sind gemäß dieser Offenbarung alle Bereiche in Bauteilen oder ähnlichen Gegenständen, durch die Wärme schneller transportiert wird, als durch angrenzende Bauteile oder Objekte. Wärmebrücken werden häufig in Balkonen, Rollladenkästen, Mauersohlen, Fensterrahmen und -stürzen, Heizkörperbefestigungen im Mauerwerk, Heizkörpernischen, Deckenanschlüssen, Ecken im Haus, ungedämmten Stahlbetonbauteile sowie in auskragenden Stahlträgern gefunden.According to a first aspect, the invention relates to a molded block for building structures. The molded block has a substantially cuboid outline. The molded block comprises an inner side, an outer side, two longitudinal sides, a lower side and an upper side. The molded block comprises at least two mutually parallel, channel-like cavities. These cavities lead from the bottom to the top and are arranged substantially orthogonal to the bottom. The molded block consists of thermal insulation material with a thermal conductivity of at most lambda = 0.08 W / mK. The molded block according to the invention is characterized in that there is a recess in the top of the molded block. This recess is limited by the outside, the inside and the two long sides. The recess saves the shaped stone with a depth e in the range of 0.05 to 5 cm. By such a recess a direct connection with the channel-like cavities is possible. This can lead to improved load transfer and increase the overall stability of built with the bricks structures. A recess according to this disclosure is any at least one side open groove or cavity of material on or within a molded block or solid insulation block. For example, cutouts, cuts, notches, grooves, grooves, bores, depressions or depressions are among the possible recesses mentioned in this disclosure. The recess of the molded block according to the invention maintains a distance a to the outside of at least 5 cm, a distance b to the inside of at least 1 cm and a distance c to the longitudinal sides of at least 0.5 cm. This provides a stable framework for further applications in accordance with other aspects of the invention, for example, to facilitate production of a solid insulation body. In addition, the large distance a to the outside of the block contributes to the thermal insulation, which may be possible to dispense with further insulation under certain circumstances. The molded block according to the invention is further characterized in that the ratio between the total volume of channel-like cavities and reduced around the cavities and the recess total volume of the block is between 0.2 and 0.5, in particular at about 0.3. Thus, the molded block simultaneously provides the necessary cavities for a subsequent stabilization, as well as a high insulation performance by the prevention of thermal bridges. Thermal bridges, in accordance with this disclosure, are all areas in components or similar items that transport heat faster than adjacent components or objects. Thermal bridges are commonly found in balconies, roller shutters, masonry soles, window frames and lintels, radiator fixings in masonry, radiator niches, ceiling joints, in-house corners, uninsulated reinforced concrete structures, and overhanging steel girders.

In der Regel bezieht sich der Wert für Lambda auf eine Temperatur von 0°C und einer normalen Luftfeuchtigkeit. Ein Formstein mit den oben genannten Merkmalen lässt sich verfahrenstechnisch leichter und preisgünstiger herstellen als ein Formstein gemäß Stand der Technik. Die kanalartigen Hohlräume bzw. die Aussparung können in den Formstein gefräst, gebohrt, geschliffen, geschmolzen oder geschnitten werden. Durch das geringe Gewicht ist der Formstein vergleichsweise handlich und einfach zu lagern oder zu versetzen. Der Formstein besteht typischerweise aus einem wasserabweisenden Material, wodurch die Lagerung sowie der Transport und die Logistik deutlich vereinfacht werden.In general, the value for lambda refers to a temperature of 0 ° C and a normal humidity. A molded block with the above-mentioned features can be procedurally easier and cheaper to produce than a molded block according to the prior art. The channel-like cavities or the recess can be milled, drilled, ground, melted or cut into the shaped block. Due to the low weight of the molded block is relatively handy and easy to store or move. The molded block typically consists of a water-repellent material, which significantly simplifies storage, transport and logistics.

Der Vollisolationsstein hat vorzugsweise keine Fugen zwischen lastabtragendem und eingegossenem Material und dem Wärmedämmverbundsystem. Dies vermindert die Gefahr einer unkontrollierten Kondensatbildung und einer unkontrollierten Luftzirkulation.The solid insulation brick preferably has no joints between load-bearing and cast-in material and the thermal insulation composite system. This reduces the risk of uncontrolled condensation and uncontrolled air circulation.

Ein Formstein gemäß dieser Offenbarung ist jeder Stein, der zum Errichten von Mauern oder Bauwerken verwendet werden kann. Der Formstein besteht dabei aus einem oder mehreren Wärmeisolationsmaterialien. Wärmeleitfähigkeit gemäß dieser Offenbarung ist die thermische Leitfähigkeit oder Wärmeleitzahl Lamdba, gemessen als SI-Einheit in Watt pro Kelvin und pro Meter. Mit anderen Worten beschreibt Lambda die Materialeigenschaft, Wärme zu leiten. Wärmeisolationsmaterial gemäß dieser Offenbarung ist jedes Material, welches die Durchdringung oder Ausbreitung oder das Eindringung von Wärmeenergie erschwert, mit einer Wärmeleitfähigkeit von höchsten Lambda = 0,08 W/mK, besonders bevorzugt im Bereich von 0,01 bis 0,06 W/mK und insbesondere bevorzugt im Bereich von 0,03 bis 0,05 W/mK. Als Beispiele werden Aerogel, Schaumglas, Glasschaum-Granulat, Mineralwolle, Polyurethan, Polystyrol mit Graphit, Extrudiertes Polystyrol, Expandiertes Polystyrol, Polyethylen-Schaumstoffe, Wolle, Kork, Schilfrohrplatte, Zellulose, Holzfaserdämmplatte, Strohballen, Perlit, Holzwolle-Leichtbauplatten, Vakuumdämmplatten, Aerowolle, Calostat, Filz, Sägespäne, Holzkohle, Balsamwolle, Polyestervlies, Schafwolle, Zelluloseplatten, Hanfmatten, Rohrkolbendämmplatten sowie Aufschäumungen oder porenhaltige Systeme aus Gummi, Poroton, Lehm, PET, Polyimide, PEI, PTFE, PVC, Polyamide, Polypropylen, Polycarbonat, Epoxidharz, PMMA, Polyethylen und Silikon genannt. Weiterhin kann als Wärmeisolationsmaterial auch eine Mischung der oben genannten Materialien. Beispielsweise kann das Wärmeisolationsmaterial aus einer Mischung, bestehend aus Polyurethan und einem Material, ausgewählt aus Aerogel, Schaumglas, Glasschaum-Granulat, Mineralwolle, Polystyrol mit Graphit, Extrudiertes Polystyrol, Expandiertes Polystyrol, Polyethylen-Schaumstoffe, Wolle, Kork, Schilfrohrplatte, Zellulose, Holzfaserdämmplatte, Strohballen, Perlit, Holzwolle-Leichtbauplatten, Vakuumdämmplatten, Aerowolle, Calostat, Filz, Sägespäne, Holzkohle, Balsamwolle, Polyestervlies, Schafwolle, Zelluloseplatten, Hanfmatten, Rohrkolbendämmplatten sowie Aufschäumungen oder porenhaltige Systeme aus Gummi, Poroton, Lehm, PET, Polyimide, PEI, PTFE, PVC, Polyamide, Polypropylen, Polycarbonat, Epoxidharz, PMMA, Polyethylen und Silikon Poroton oder mit reinem Glasschaum, bestehen. Besonders bevorzugt ist das Wärmeisolationsmaterial ausgewählt aus der Gruppe, bestehend aus Styropor, Neopor, Kork, Polyethylenschaumstoffe, Mineralwolle, Holzfaserdämmplatten oder Mischungen aus diesen Materialien. Materialien wie Styropor und Neopor sind besonders günstig in der Anschaffung, sind einfach zu verarbeiten und witterungsbeständig und langlebig. Teilweise sind die Materialien auch recycelbar. Mineralwolle kann zu großen Teilen umweltschonend aus Altglas gewonnen werden, ist nichtbrennbar und beständig gegen Schimmel und Fäulnis. Durch die hohe thermische Stabilität kann flüssiges Füllmaterial in weiteren Arbeitsschritten erhitzt werden, wodurch die Aushärtung deutlich beschleunigt werden kann. Kork wird als Naturprodukt gewonnen, hat eine hohe Formstabilität sowie Elastizität und ist Resistent gegen Ungeziefer und Feuchtigkeit. Holzfaserdämmplatten werden umweltfreundlich aus entrindetem Restholz hergestellt und mit holzeigenem Harz verklebt. Zudem wirken sie feuchteregulierend und haben eine hohe spezifische Wärmekapazität, was einen erweiterten Wärmeschutz liefert. Als Wärmeisolationsmaterial dient auch jede Kombination der genannten Materialen. Kanalartiger Hohlraum gemäß dieser Offenbarung beschreibt jeden beliebigen Hohlraum in der Form eines Kanals. Beispiele für Kanäle umfassen dabei Leitungen, Röhren oder sonstige dreidimensionale Hohlkörper, innerhalb derer sich zumindest ein Fluid bewegen kann.A shaped brick according to this disclosure is any brick that can be used to build walls or structures. The molded block consists of one or more thermal insulation materials. Thermal conductivity according to this disclosure is the thermal conductivity or thermal conductivity Lamdba, measured as SI unit in watts per Kelvin and per meter. In other words, lambda describes the material property of conducting heat. Thermal insulation material according to this disclosure is any material which the penetration or propagation or the penetration of thermal energy difficult, with a thermal conductivity of highest lambda = 0.08 W / mK, more preferably in the range of 0.01 to 0.06 W / mK and particularly preferably in the range of 0.03 to 0.05 W / mK. Examples are airgel, foam glass, glass foam granules, mineral wool, polyurethane, polystyrene with graphite, extruded polystyrene, expanded polystyrene, polyethylene foams, wool, cork, reed plate, cellulose, Holzfaserdämmplatte, straw bales, perlite, wood wool lightweight panels, vacuum insulation panels, Aerowool , Calostat, felt, sawdust, charcoal, balsam wool, polyester fleece, sheep's wool, cellulose plates, hemp mats, tubular piston insulation boards as well as foams or porous systems of rubber, poroton, loam, PET, polyimides, PEI, PTFE, PVC, polyamides, polypropylene, polycarbonate, epoxy resin, Called PMMA, polyethylene and silicone. Furthermore, as a thermal insulation material, a mixture of the above materials. For example, the thermal insulation material may be a mixture consisting of polyurethane and a material selected from airgel, foam glass, glass foam granules, mineral wool, polystyrene with graphite, extruded polystyrene, expanded polystyrene, polyethylene foams, wool, cork, reed plate, cellulose, wood fiber insulation board , Straw bales, perlite, wood wool lightweight panels, vacuum insulation panels, aerowool, Calostat, felt, sawdust, charcoal, balsam wool, polyester fleece, sheep's wool, cellulose plates, hemp mats, Rohrkolbendämmplatten and foams or pore-containing systems of rubber, poroton, clay, PET, polyimides, PEI, PTFE, polyamide, polyamide, polypropylene, polycarbonate, epoxy resin, PMMA, polyethylene and silicone Poroton or with pure glass foam. Particularly preferably, the thermal insulation material is selected from the group consisting of Styrofoam, Neopor, cork, polyethylene foams, mineral wool, Holzfaserdämmplatten or mixtures of these materials. Materials such as Styrofoam and Neopor are particularly inexpensive to buy, are easy to work with, weatherproof and durable. Some of the materials are also recyclable. Mineral wool can be obtained in an environmentally friendly way from recycled glass, is non-combustible and resistant to mildew and rot. Due to the high thermal stability, liquid filling material can be used in further work steps be heated, whereby the curing can be significantly accelerated. Cork is obtained as a natural product, has a high dimensional stability and elasticity and is resistant to pests and moisture. Wood fiber insulation panels are made of debarked residual wood in an environmentally friendly manner and bonded with wood-grade resin. In addition, they have a moisturizing effect and have a high specific heat capacity, which provides extended thermal protection. As a thermal insulation material, any combination of said materials is used. Channel-like cavity according to this disclosure describes any cavity in the form of a channel. Examples of channels include lines, tubes or other three-dimensional hollow body, within which at least one fluid can move.

Gemäß einer bevorzugten Implementierung lässt sich der Formstein parallel zu den Längsseiten in zwei gleich große Untereinheiten teilen. Typischerweise werden die kanalartigen Hohlräume beim Teilen des Formsteins nicht beschädigt. Hierdurch sind das Errichten einer versetzten Mauer sowie die Ausgestaltung von verschiedensten Formen ohne Stabilitätsverlust möglich.According to a preferred implementation, the molded block can be divided parallel to the longitudinal sides into two subunits of equal size. Typically, the channel-like cavities are not damaged when dividing the molded block. As a result, the construction of an offset wall and the design of various shapes without loss of stability are possible.

Gemäß einer bevorzugten Implementierung lässt sich der Formstein parallel zu den Längsseiten in zwei oder mehrere ähnlich große Untereinheiten teilen. Typischerweise werden die kanalartigen Hohlräume beim Teilen des Formsteins nicht beschädigt. Durch die intakten kanalartigen Hohlräume können auch Untereinheiten des Formsteins weiterverarbeitet werden. Dies spart Ressourcen und Kosten.According to a preferred implementation, the shaped block can be divided parallel to the longitudinal sides into two or more similarly sized subunits. Typically, the channel-like cavities are not damaged when dividing the molded block. Through the intact channel-like cavities and subunits of the molded block can be further processed. This saves resources and costs.

Gemäß einer bevorzugten Implementierung können die kanalartigen Hohlräume gleich dimensioniert sein oder ungleich dimensioniert sein. Dabei ist die mehrfache Verwendung desselben Werkzeugs bzw. derselben Vorrichtung möglich, um Zeit und Kosten einzusparen. Gleich dimensioniert gemäß dieser Offenbarung sind alle kanalartigen Hohlräume deren Formen zueinander kongruent sind, d.h. diese Formen lassen sich durch Parallelverschiebung, Drehung, Spiegelung oder einer Verkettung dieser Operationen ineinander überführen. Beispiele für gleich dimensionierte Formen sind zwei oder mehrere Zylinder mit identischer Grundfläche, welche eine identische geometrische Grundform besitzt, und identischer Mantelfläche.According to a preferred implementation, the channel-like cavities can be the same size or unequal dimensioned. The multiple use of the same tool or the same device is possible in order to save time and costs. Equal dimensioned according to this disclosure are all channel-like cavities whose shapes are congruent to each other, ie these forms can be converted by parallel displacement, rotation, mirroring or concatenation of these operations into each other. Examples of equally sized shapes are two or more Cylinder with identical base, which has an identical geometric basic shape, and identical lateral surface.

Gemäß einer bevorzugten Implementierung sind durch die Anordnung oder Ausrichtung der kanalartigen Hohlräume im Wesentlichen keine Wärmebrücken von der Außenseite zur Innenseite vorhanden. Vorteilhaft ist hierbei, dass die vollständige Dämmung einer Mauer oder Bauwerkes ohne zusätzliche Arbeitsschritte auskommt.According to a preferred implementation, there are substantially no thermal bridges from the outside to the inside due to the arrangement or orientation of the channel-like cavities. It is advantageous here that the complete insulation of a wall or building manages without additional steps.

Gemäß einem zweiten Aspekt beinhaltet die Erfindung die Herstellung eines Vollisolationssteins. Im Wesentlichen umfasst die Herstellung folgende Schritte. In einem Schritt a) umfasst das Verfahren die Bereitstellung eines Formsteins gemäß dem ersten Aspekt der Erfindung. In einem Schritt b) findet das teilweise oder vollständige Befüllen der Hohlräume des Formsteins mit mindestens einem Füllmaterial statt. In einem Schritt c) kann gegebenenfalls die Herstellung des Vollisolationssteins unter Aushärten lassen des mindestens einen Füllmaterials stattfinden. Der Vollisolationsstein kann dabei fabriknah gefertigt und ohne weitere Bearbeitung auf der Baustelle genutzt werden. Das Füllen mit Füllmaterial in Schritt b) kann dabei durch Gießen, Streuen, Rütteln, Pumpen, Stecken oder Aufschäumen erfolgen. Im Gegensatz zu aktuellen wärmedämmenden Systemen kann die nachträgliche Verkleidung oder das Einbringung mit einem oder mehreren Isolationsmaterialien oder das Auffüllen von isolierenden Schalungen mit Flüssigbeton entfallen. Darüber hinaus sind die Füllmaterialien durch die Formsteinhülle vor extremen Temperaturschwankungen, Feuchtigkeit und Witterung geschützt, wodurch eine längere Unversehrtheit dieser Materialien erreicht werden kann. Durch die räumliche Trennung der einzelnen Füllmaterialsäulen puffert das anliegende Wärmeisolationsmaterial auftretende Ausdehnungen und Schrumpfungen des Füllmaterials infolge von Temperaturschwankungen oder feuchtigkeitsbedingtem Aufquellen. Dadurch werden Schwachstellen bekannter Mauersysteme, wie Zugspannungen und daraus resultierende Rissbildungen, verhindert. Ein Vollisolationsstein gemäß dieser Offenbarung ist jeder Stein, der zum Bauen von Mauern oder Bauwerken verwendet werden kann und dabei eine hohe Isolationseigenschaft aufweist. Ein Füllmaterial gemäß dieser Offenbarung ist jedes Material, welches sich eignet um Hohlräume teilweise oder vollständig auszufüllen. Beispiele für Füllmaterialien sind Beton, Flüssigbeton, Zement, Blähbeton, Lehm, Spanbeton, Stahlbeton, bewehrter Beton oder Betongemische, welche in die Hohlräume gefüllt, gerüttelt, gepumpt oder gestampft werden und eventuell anschließend ausgehärtet wird. Zudem eignen sich alle Formnegative der Hohlräume, um diese auszufüllen, welche beispielsweise aus gebranntem Ton, Kalkstein, Kalksandstein, Zement, Beton, Bims, Gips, Kunststoff, Blähbeton, Lehm, Holz, Holzspanbeton, Kunststoff, Stahlbeton, Stahl, Eisen, bewehrtem Beton oder Blähschiefer bestehen können. Negative entsprechen dabei in Form und Größe den aufzufüllenden Hohlräumen. Besonders bevorzugt findet dabei Beton Verwendung. Beton kann flüssig bis zähflüssig in die Hohlräume gepumpt, gegossen oder gerüttelt werden, und bindet mit der Zeit formgenau und formstabil ab. Zudem ist Beton günstig in der Anschaffung, langlebig und bietet eine hohe Stabilität, insbesondere eine hohe Druckfestigkeit. Darüber hinaus können die Eigenschaften von Beton durch Wahl des Bindemittels, der Gesteinskörnung und eventueller Zugabe weiterer Zusätze je nach Anforderung modifiziert werden.According to a second aspect, the invention involves the production of a solid insulation block. Essentially, the production comprises the following steps. In a step a), the method comprises the provision of a molded block according to the first aspect of the invention. In a step b) takes place the partial or complete filling of the cavities of the molded block with at least one filler. In a step c), if appropriate, the production of the solid insulating block can take place while the at least one filling material is allowed to harden. The solid insulation stone can be manufactured close to the factory and used on the construction site without further processing. The filling with filling material in step b) can be done by pouring, spreading, shaking, pumping, plugging or foaming. In contrast to current heat-insulating systems, the subsequent cladding or the incorporation of one or more insulation materials or the filling of insulating formwork with liquid concrete can be omitted. In addition, the filling materials are protected by the cast stone casing from extreme temperature fluctuations, moisture and weather, whereby a longer integrity of these materials can be achieved. Due to the spatial separation of the individual Füllmaterialienäulen buffers the applied thermal insulation material occurring expansions and shrinkages of the filler due to temperature fluctuations or moisture-induced swelling. This weak points of known wall systems, such as tensile stresses and resulting cracking prevented. A solid insulating brick according to this disclosure is any brick that can be used to build walls or structures while having a high insulating property. A filler according to this disclosure is any material that is suitable Fill cavities partially or completely. Examples of fillers are concrete, liquid concrete, cement, expanded concrete, loam, chipboard, reinforced concrete, reinforced concrete or concrete mixtures, which are filled in the cavities, vibrated, pumped or mashed and may then be cured. In addition, all the mold negatives of the cavities are suitable to fill these, for example, from calcined clay, limestone, limestone, cement, concrete, pumice, gypsum, plastic, expanded concrete, clay, wood, chipboard, plastic, reinforced concrete, steel, iron, reinforced concrete or expandable shale. Negatives correspond in form and size to the cavities to be filled. Particular preference is given to concrete use. Concrete can be pumped, poured or vibrated liquid to viscous into the cavities, and binds with time dimensionally accurate and dimensionally stable. In addition, concrete is inexpensive to buy, durable and offers high stability, in particular a high compressive strength. In addition, the properties of concrete can be modified by choice of binder, aggregate and possible addition of other additives as required.

Ein Verfahren zur Herstellung von Bauwerken kann einen Schritt a) mit dem Bereitstellen einer Vielzahl von Vollisolationssteinen gemäß vorherigen Aspekten der Erfindung beinhalten. In einem Schritt b) kann das Aufeinanderschichten der Vollisolationssteine unter Errichtung eines Bauwerkes erfolgen.A method of making structures may include a step a) of providing a plurality of solid insulation bricks according to previous aspects of the invention. In a step b), the stacking of the solid insulation stones can be done while building a structure.

Gemäß eines bevorzugten Aspekts der Erfindung kann der Formstein oder der Vollisolationsstein unter anderem im Bereich des Hochbaus oder des Tiefbaus, insbesondere zur Errichtung einer wärmegedämmten Mauer oder eines wärmegedämmten Gebäudes Verwendung finden. Hochbau gemäß dieser Offenbarung betrifft die Errichtung aller Bauwerke oberhalb der Geländelinie. Produktionsgebäude genannt. Tiefbau gemäß dieser Offenbarung ist das Errichten von Bauwerken unter der Geländelinie. Der Vollisolationsstein eignet sich zum Errichten von verschiedensten Gebäudetypen, beispielsweise Einfamilienhäuser, Massivhäuser, Fertighäuser, Niedrigenergie- und Passivhäuser, Bungalows, Reihenhäuser, Doppelhäuser oder auch Hausteilen und Anbauten. Der Vollisolationsstein unterbindet zum einen den Verlust von Wärme durch eine Wand, beispielsweise bei Gebäuden in gemäßigten oder subpolaren Klimazonen. Darüber hinaus dämmt der Vollisolationsstein auch das Eindringen von Wärme in ein Bauwerk, zum Beispiel bei Gebäuden in subtropischen oder tropischen Gebieten oder bei Gebäuden mit herabgesetzter Temperatur, beispielsweise Fischhallen oder Kühlräume.According to a preferred aspect of the invention, the molded brick or the solid insulation brick can be used inter alia in the field of building construction or civil engineering, in particular for the construction of a thermally insulated wall or a thermally insulated building. Building construction according to this disclosure relates to the erection of all structures above the off-road. Called production building. Civil engineering according to this disclosure is the construction of structures below the off-road. The solid insulation stone is suitable for erecting a wide variety of building types, for example single-family homes, solid houses, prefabricated houses, low-energy and passive houses, bungalows, terraced houses, semi-detached houses or even parts of houses and extensions. The solid insulating stone prevents the loss of heat through a wall, for example, in buildings in temperate or subpolar climates. In addition, the solid insulating stone also insulates the penetration of heat into a building, for example in buildings in subtropical or tropical areas or in buildings with reduced temperature, such as fish halls or cold storage.

Kurze Beschreibung der FigurenBrief description of the figures

Im Folgenden werden beispielhaft und nicht abschließend einige besondere Ausführungsformen der Erfindung unter Bezugnahme auf die beiliegenden Figuren beschrieben.Hereinafter, by way of example and not limitation, certain particular embodiments of the invention will be described with reference to the accompanying drawings.

Die besonderen Ausführungsformen dienen nur zur Erläuterung des allgemeinen erfinderischen Gedankens, jedoch beschränken sie die Erfindung nicht.The particular embodiments are merely illustrative of the general inventive concept, but do not limit the invention.

In den besonderen Ausführungsformen zeigt:

  • Fig. 1 eine perspektivische Aufsicht auf den Formstein gemäß einer möglichen Ausführungsform der Erfindung.
  • Fig. 2 einen Querschnitt durch den Formstein gemäß einer möglichen Ausführungsform der Erfindung parallel zu den Längsseiten.
  • Fig. 3 perspektivisch die beiden identischen Hälften des Formsteins gemäß einer möglichen Ausführungsform der Erfindung nach dem Teilen.
  • Fig. 4 einen Querschnitt durch den Vollisolationsstein gemäß einer möglichen Ausführungsform der Erfindung parallel zu Innen- und Außenseite und durch eine Reihe kanalartiger Hohlräume.
In the particular embodiments:
  • Fig. 1 a perspective view of the molded block according to a possible embodiment of the invention.
  • Fig. 2 a cross section through the shaped block according to a possible embodiment of the invention parallel to the longitudinal sides.
  • Fig. 3 in perspective, the two identical halves of the molded block according to a possible embodiment of the invention after the parts.
  • Fig. 4 a cross section through the solid insulating stone according to a possible embodiment of the invention parallel to the inside and outside and through a series of channel-like cavities.

Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

Fig. 1 zeigt eine perspektivische Aufsicht auf den Formstein 1. In diesem Beispiel ist der Formstein ein quaderförmiger Körper aus einem in der Tabelle 1 genannten Material mit einer Wärmleitfähigkeit Lambda von unter 0,08 W/mK. Wärmeisolationsmaterial Lambda [W/mK] Polystyrol 0,03 - 0,05 Neopor 0,032 Polyethylenschaumstoffe 0,034 - 0,04 Mineralwolle 0,032 - 0,05 Kork 0,035 - 0,046 Holzfaserdämmplatte 0,04 - 0,06 Fig. 1 shows a perspective view of the molded block 1. In this example, the block is a cuboid body of a material mentioned in Table 1 with a thermal conductivity Lambda of less than 0.08 W / mK. Thermal insulation material Lambda [W / mK] polystyrene 0.03 - 0.05 Neopor 0.032 polyethylene foams 0.034-0.04 mineral wool 0.032 - 0.05 cork 0.035-0.046 fibreboards 0.04-0.06

Der Formstein umfasst eine Innenseite 10, eine Außenseite 20, zwei Längsseiten 30a, 30b, eine Unterseite 40 und eine Oberseite 50. Zudem umfasst der Formstein in diesem Beispiel 12 zueinander parallele, kanalartige Hohlräume 60 innerhalb des Formsteins 1. Diese sind verfahrenstechnisch mit einem Werkzeug in der Form von kreisrunden Kanälen 60 im Verhältnis zur Oberseite 50 lotrecht und bis zur Unterseite 40 in den Formstein gefräst. Zudem ist in der Oberseite 50 eine rechteckige Aussparung 55 gefräst. Die kreisrunden Kanäle 60 münden in der Aussparung 55. Durch Befüllen der beiden Hohlräume 60 und der Aussparung 55 mit Beton 70, welcher anschließend festgerüttelt wird und aushärtet wird, erhält man einen Vollisolationsstein 100.The molded block comprises an inner side 10, an outer side 20, two longitudinal sides 30a, 30b, a lower side 40 and an upper side 50. In addition, the shaped block comprises in this example 12 mutually parallel, channel-like cavities 60 within the molded block 1. These are procedurally with a tool in the form of circular channels 60 perpendicular to the top 50 and milled to the bottom 40 in the form of stone. In addition, a rectangular recess 55 is milled in the top 50. The circular channels 60 open into the recess 55. By filling the two cavities 60 and the recess 55 with concrete 70, which is subsequently festgerüttelt and cured, one obtains a solid insulating stone 100th

Fig. 2 zeigt den Formstein 1 als Querschnitt parallel zu den beiden Längsseiten 30a, 30b. Deutlich zu erkennen sind die Aussparung 55 sowie die runden Hohlräume 60, welche den Formstein vollständig bis zur Unterseite 40 durchziehen. Durch die Verbindung der Hohlräume 60 mit der Aussparung 55 lässt sich der gesamte Hohlraum in nachfolgenden Schritten sehr einfach befüllen und in den Vollisolationsstein 100 überführen. Für zähflüssige Füllungen bietet die Aussparung 55 ein Reservoir und erlaubt das verfahrenstechnisch einfache Einrütteln oder Einsickern lassen dieser zähflüssigen Materialien 70 in die kreisrunden Hohlräume 60. Fig. 2 shows the shaped block 1 as a cross section parallel to the two longitudinal sides 30a, 30b. Clearly visible are the recess 55 and the circular cavities 60, which completely pass through the molded block to the bottom 40. By connecting the cavities 60 with the recess 55, the entire cavity can be very easily filled in subsequent steps and transferred into the solid insulation brick 100. For viscous fillings, the recess 55 provides a reservoir and allows the procedurally simple shaking or infiltration of these viscous materials 70 in the circular cavities 60th

Fig. 3 zeigt perspektivisch die beiden identischen Hälften 80a, 80b des Formsteins 1 nach dem Teilen. Die beiden Teile 80a, 80b sind dabei von identischer Größe, allerdings zueinander gespiegelt. Durch die Teilung wird auch die Aussparung 55 in zwei Einheiten geteilt. Dabei bleiben die runden Hohlräume 60 bei der Teilung unbeschädigt, späteres Befüllen der Einzelhälften mit Beton 70 stellt kein Problem dar. Der Formstein 1 kann zudem in anderen spezifischen Verhältnissen geteilt werden, ohne dass die einzelnen Hohlräume 60 beschädigt werden. Durch diese Eigenschaft lässt sich eine Vielzahl von versetzten Strukturen errichten, ohne dass das entstehende Bauwerk instabil wird. Zudem können dadurch Ressourcen und Geld gespart werden sowie umweltfreundlich gearbeitet werden. Fig. 3 shows in perspective the two identical halves 80a, 80b of the molded block 1 after splitting. The two parts 80a, 80b are of identical size, but mirrored to each other. By the division and the recess 55 is divided into two units. The circular cavities 60 remain at the pitch Undamaged, later filling the individual halves with concrete 70 is not a problem. The molded block 1 can also be divided in other specific ratios without the individual cavities 60 are damaged. This feature allows a variety of staggered structures without the resulting structure is unstable. It can also save resources and money and be environmentally friendly.

Fig. 4 zeigt einen Querschnitt durch einen Vollisolationsstein 100 parallel zu Innenseite 10 und Außenseite 20 und durch eine Reihe Betonsäulen. Dabei ist die innere Struktur eines Vollisolationsteins 1 zu erkennen. Neben zwei Parallelen Außenwänden besteht dieser von außen nach innen aus einer dicken Isolationsschicht nach außen, in Fig. 4 nicht zu sehen, einer Kombination aus Isolationsmaterial und Betonsäulen in der Mitte und einer etwas stärkeren Isolationsschicht nach innen. Zudem befindet sich oben die Betonplatte, welche durch vollständiges Befüllen der vorherigen Aussparung 55 mit Beton entsteht. Durch Aufschichten dieser Steine lässt sich eine Mauer errichten, welche durch Verbundmaterialien wie Mörtel stabilisiert wird. Mit den dickeren Isolationsschichten innen und außen kann eine Mauer aus Vollisolationssteinen je nach Anwendung den kompletten Wärmedämmschutz einer Wand oder eines Bauwerks übernehmen. Die Kraftübertragung innerhalb einer Mauer läuft dabei gleichmäßig von einem Vollisolationsstein zu den nächsttieferen Vollisolationssteinen. Dabei wird die Kraft auf eine Betonplatte über die mit dieser Betonplatte verbundenen Betonsäulen weitergeleitet. Diese Säulen führen die Kraft auf die Betonplatte des nächsttieferen Vollisolationssteins ab, bis die letzte Reihe an Vollisolationssteinen die gleichmäßige Übertragung auf das Fundament abschließt. Die Wand kann direkt im Anschluss mit Schlitzen für Leitungen und Rohre modifiziert und abschließend verputzt werden. Fig. 4 shows a cross section through a solid insulating brick 100 parallel to inside 10 and outside 20 and through a series of concrete columns. In this case, the inner structure of a solid insulating stone 1 can be seen. In addition to two parallel outer walls this consists of the outside to the inside of a thick insulation layer to the outside, in Fig. 4 not to be seen, a combination of insulation material and concrete columns in the middle and a slightly thicker insulation layer inside. In addition, at the top is the concrete slab, which is created by completely filling the previous recess 55 with concrete. By stacking these stones can build a wall, which is stabilized by composite materials such as mortar. Depending on the application, a wall made of solid insulation bricks can take over the complete thermal insulation protection of a wall or building with thicker insulation layers inside and outside. The power transmission within a wall runs evenly from a solid insulation stone to the next lower solid insulation stones. The force is transferred to a concrete slab via the concrete columns connected to this concrete slab. These columns transfer the force to the concrete slab of the next lower full insulation block until the last row of solid insulation blocks completes the uniform transfer to the foundation. The wall can be modified directly afterwards with slots for pipes and pipes and finally plastered.

Die fertiggestellte Mauer ist frei von Wärmebrücken und weist sehr gute Isolationseigenschaften bei gleichzeitig hoher Stabilität auf.The finished wall is free of thermal bridges and has very good insulation properties with high stability.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Formsteincast stone
1010
Innenseiteinside
2020
Außenseiteoutside
30a,30b30a, 30b
Längsseitelong side
4040
Unterseitebottom
5050
Oberseitetop
5555
Aussparungrecess
6060
kanalartige Hohlräumechannel-like cavities
7070
Füllmaterialfilling material
80a,80b80a, 80b
Untereinheiten des FormsteinsSubunits of the form stone
100100
VollisolationssteinFull insulation Stone

Claims (6)

  1. A moulded brick for the construction of buildings having a substantially parallelepipedal contour, comprising an inner side (10), an outer side (20), two longitudinal sides (30a, 30b), a lower side (40) and an upper side(50), comprising inside of the moulded brick at least two channel-like cavities (60) arranged in parallel, extending from the lower side (40) to the upper side (50) and arranged substantially orthogonally to the lower side (40),
    wherein the moulded brick consists essentially of a heat insulation material having a thermal conductivity not exceeding lambda = 0.08 W/mK, characterized in that a recess (55) is situated in the upper side (50), said recess being delimited by the outer side (20), inner side (10) and the two longitudinal sides (30a, 30b), wherein the recess is recessed in the moulded brick with a depth e ranging from 0.05 to 5 cm, and wherein the recess (55) is located from the outer side (20) at a distance a of least 5 cm, from the inner side (10) at a distance b of at least 1 cm and from the longitudinal sides (30a, 30b) at a distance c of at least 0.5 cm, and wherein the ratio of the total volume of the channel-like cavities (60) and the total volume of the molded brick, reduced by the volumes of the cavities (60) and the recess (55), is between 0.2 and 0.5, in particular is 0.3.
  2. The moulded brick according to claim 1, wherein the moulded brick may be divided in parallel to the longitudinal sides (30a, 30b) into two subunits (80a, 80 b) of equal size without damaging the channel-like cavities (60).
  3. The moulded brick according to any of the preceding claims, wherein the channel-like cavities (60) are dimensioned equally or are dimensioned differently.
  4. Solid insulation brick (100), obtainable by the following steps:
    (a) providing a moulded brick (1) according to any one of the preceding claims,
    (b) filling, partially or completely, the cavities (55, 60) of the moulded brick with at least one filling material (70), and
    (c) optionally, allowing the at least one filling material (70) to cure for providing the solid insulation brick (100).
  5. A method of constructing a building comprising the following, successive steps:
    (a) providing a plurality of solid insulation blocks (100) according to claim 4,
    (b) stacking the solid insulation blocks (100), thereby constructing a building.
  6. Use of the moulded brick (1) according to any one of claims 1 to 3 or according to claim 4 in building or civil engineering, in particular for constructing a thermally insulated wall or a thermally insulated building.
EP15164676.7A 2014-06-04 2015-04-22 Shaped brick and full insulation brick Active EP2952643B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014107854.3A DE102014107854B4 (en) 2014-06-04 2014-06-04 Form stone and solid insulation stone

Publications (2)

Publication Number Publication Date
EP2952643A1 EP2952643A1 (en) 2015-12-09
EP2952643B1 true EP2952643B1 (en) 2017-12-13

Family

ID=53016482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15164676.7A Active EP2952643B1 (en) 2014-06-04 2015-04-22 Shaped brick and full insulation brick

Country Status (2)

Country Link
EP (1) EP2952643B1 (en)
DE (1) DE102014107854B4 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1419713A (en) * 1919-08-19 1922-06-13 Philip H Bevier Hollow building block
DE873129C (en) * 1942-11-11 1953-04-09 Karl Geyer Lightweight block with cutouts
DE2618125C2 (en) * 1976-04-26 1977-12-08 Bruer, Manfred, Betriebsw.(grad.), 4300 Essen Large-format formwork element made of rigid foam, intended for concrete cladding
DE2739409C3 (en) * 1977-09-01 1984-10-25 Fa. Heinrich Oltmanns, 2905 Edewecht Hollow block
US4319440A (en) * 1979-10-11 1982-03-16 Rassias John N Building blocks, wall structures made therefrom and methods of making the same
DE3744037C2 (en) * 1987-12-24 1996-01-25 Goesele Karl Shell of a formwork block made of plastic foam, in particular polystyrene foam
DE9411494U1 (en) * 1994-07-15 1995-11-30 Lutz, Markus, 92353 Postbauer-Heng Component
EP0808812B1 (en) * 1996-02-19 2001-05-23 Arbeitsgemeinschaft Mauerziegel e.V. Porous masonry brick
DE19729692A1 (en) * 1997-07-11 1999-02-11 Hannelore Grunewald Storey-height building insulation
WO2008138377A1 (en) * 2007-05-14 2008-11-20 Hugo Leeb Set of building elements with elements of polypropylene
DE102007061451A1 (en) * 2007-12-20 2009-07-02 Wienerberger Ziegelindustrie Gmbh Wall-brick e.g. highly heat-insulating, flat-polished brick, for e.g. solar house, has filling chambers separated from each other by longitudinal and transverse bars, where chamber has width with preset cross section
BE1018592A3 (en) * 2009-12-08 2011-04-05 Saegher Jozef Serafin Julia De BRICK, WALL MANUFACTURED FROM SUCH BRICK AND METHOD FOR MANUFACTURING SUCH WALL.
BE1019164A3 (en) * 2010-01-26 2012-04-03 Vandersanden Steenfabrieken N V CONSTRUCTION STONE AND METHOD FOR CONSTRUCTING THIS CONSTRUCTION STONE.
DE202010016636U1 (en) * 2010-12-15 2011-04-07 Fischer, Karl Masonry or formwork stone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102014107854A1 (en) 2015-12-17
DE102014107854B4 (en) 2016-09-22
EP2952643A1 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
US9982445B2 (en) Insulated concrete form and method of using same
US5617686A (en) Insulating polymer wall panels
EA037767B1 (en) Structural panel and method for building a structure
US20180112389A1 (en) Composite concrete and foam building component
RU54982U1 (en) UNIVERSAL BUILDING UNIT
US20070199266A1 (en) Insulated concrete form system
CN1090362A (en) Improved building wall board and its manufacture method
US11686092B1 (en) Concrete wall section
JP5759486B2 (en) Energy efficient and weight efficient building block, its manufacturing and construction process
KR20170117049A (en) Interlocking structure Block strengthening means and modular construction system
US8827235B1 (en) Concrete form for building foundation construction with form insert creating recessed sections
DE19516098B4 (en) Ceiling edge formwork element and method and apparatus for its production
RU134968U1 (en) BLOCK FORMWORK UNIT (OPTIONS)
DE4413953A1 (en) Wall, ceiling or roof element for panel-type buildings
EP2952643B1 (en) Shaped brick and full insulation brick
DE3627647A1 (en) Process for producing structural parts with a load-bearing wooden structure
CN112262245A (en) Void former
WO2011060468A1 (en) Composite element and wood brick
DE202004021586U1 (en) Ziegelmanteldämmplatte
WO2000060189A1 (en) Wall, ceiling or roof construction for buildings and method for producing same
US8590242B1 (en) Insulated concrete wall
AT520127B1 (en) WALLROOM WITH INSULATION ELEMENT
US10597881B1 (en) Wall system
KR200284700Y1 (en) Prefabricated wooden building using wood block
WO1997026423A1 (en) Wall element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160609

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20161010

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 954506

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002536

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FABIANO, FRANKE AND MGT SAGL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180413

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002536

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180422

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: PIAZZETTA SAN CARLO 2, 6900 LUGANO (CH)

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150422

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20210421

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210422

Year of fee payment: 7

Ref country code: BE

Payment date: 20210421

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220422

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230213

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240417

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240422

Year of fee payment: 10