EP2952564B1 - Compositions d'huile de lubrification - Google Patents
Compositions d'huile de lubrification Download PDFInfo
- Publication number
- EP2952564B1 EP2952564B1 EP15170237.0A EP15170237A EP2952564B1 EP 2952564 B1 EP2952564 B1 EP 2952564B1 EP 15170237 A EP15170237 A EP 15170237A EP 2952564 B1 EP2952564 B1 EP 2952564B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oil
- composition
- lubricating oil
- mass
- lubricating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 138
- 239000010687 lubricating oil Substances 0.000 title claims description 106
- -1 poly(ethylene-propylene) Polymers 0.000 claims description 87
- 239000000654 additive Substances 0.000 claims description 84
- 239000003921 oil Substances 0.000 claims description 81
- 229910052751 metal Inorganic materials 0.000 claims description 80
- 239000002184 metal Substances 0.000 claims description 80
- 239000003607 modifier Substances 0.000 claims description 75
- 230000000996 additive effect Effects 0.000 claims description 52
- 239000000314 lubricant Substances 0.000 claims description 48
- 238000005260 corrosion Methods 0.000 claims description 47
- 230000007797 corrosion Effects 0.000 claims description 41
- 229920000098 polyolefin Polymers 0.000 claims description 39
- 150000003839 salts Chemical class 0.000 claims description 36
- 229920001223 polyethylene glycol Polymers 0.000 claims description 34
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 29
- 239000010949 copper Substances 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 29
- 230000001050 lubricating effect Effects 0.000 claims description 23
- 229920001451 polypropylene glycol Polymers 0.000 claims description 22
- 239000002202 Polyethylene glycol Substances 0.000 claims description 21
- 150000008064 anhydrides Chemical group 0.000 claims description 21
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 17
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 16
- 229920002367 Polyisobutene Polymers 0.000 claims description 16
- 125000002947 alkylene group Chemical group 0.000 claims description 14
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 13
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 claims description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- 229910052725 zinc Inorganic materials 0.000 claims description 11
- 239000007795 chemical reaction product Substances 0.000 claims description 10
- 238000002485 combustion reaction Methods 0.000 claims description 9
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 8
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 8
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 8
- 239000005642 Oleic acid Substances 0.000 claims description 8
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 8
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 8
- 235000021313 oleic acid Nutrition 0.000 claims description 8
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 claims description 7
- 150000002334 glycols Chemical class 0.000 claims description 6
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 6
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 4
- 238000005461 lubrication Methods 0.000 claims description 4
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 claims description 3
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 claims description 2
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000005639 Lauric acid Substances 0.000 claims description 2
- 235000021314 Palmitic acid Nutrition 0.000 claims description 2
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 claims description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 2
- 239000003784 tall oil Substances 0.000 claims description 2
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 claims 1
- 235000020778 linoleic acid Nutrition 0.000 claims 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 claims 1
- 235000019198 oils Nutrition 0.000 description 79
- 239000002585 base Substances 0.000 description 43
- 239000011133 lead Substances 0.000 description 26
- 239000002199 base oil Substances 0.000 description 25
- 239000003599 detergent Substances 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 20
- 229920001577 copolymer Polymers 0.000 description 20
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 16
- 125000000217 alkyl group Chemical group 0.000 description 16
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 14
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 13
- 239000003963 antioxidant agent Substances 0.000 description 13
- 235000006708 antioxidants Nutrition 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- 150000002148 esters Chemical class 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 11
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000004034 viscosity adjusting agent Substances 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000002270 dispersing agent Substances 0.000 description 10
- 230000007935 neutral effect Effects 0.000 description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 9
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 9
- 239000012141 concentrate Substances 0.000 description 9
- 125000001183 hydrocarbyl group Chemical group 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 229920005862 polyol Polymers 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 8
- 239000005864 Sulphur Substances 0.000 description 8
- 125000002015 acyclic group Chemical group 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- 239000011574 phosphorus Substances 0.000 description 8
- 150000003077 polyols Chemical class 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000005078 molybdenum compound Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 239000003208 petroleum Substances 0.000 description 6
- 150000002989 phenols Chemical class 0.000 description 6
- 229920001281 polyalkylene Polymers 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 150000001721 carbon Chemical group 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002736 metal compounds Chemical class 0.000 description 5
- 150000002763 monocarboxylic acids Chemical class 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 150000002752 molybdenum compounds Chemical class 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000006596 Alder-ene reaction Methods 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920001484 poly(alkylene) Polymers 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000003871 sulfonates Chemical class 0.000 description 3
- 239000010689 synthetic lubricating oil Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 2
- 125000003504 2-oxazolinyl group Chemical class O1C(=NCC1)* 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 241001082241 Lythrum hyssopifolia Species 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000007866 anti-wear additive Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 150000001565 benzotriazoles Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 150000004659 dithiocarbamates Chemical class 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 125000003827 glycol group Chemical group 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000002530 phenolic antioxidant Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920013639 polyalphaolefin Polymers 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 150000008442 polyphenolic compounds Chemical class 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000013074 reference sample Substances 0.000 description 2
- 229960001860 salicylate Drugs 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 239000012991 xanthate Substances 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- 150000000177 1,2,3-triazoles Chemical class 0.000 description 1
- RDAGYWUMBWNXIC-UHFFFAOYSA-N 1,2-bis(2-ethylhexyl)benzene Chemical class CCCCC(CC)CC1=CC=CC=C1CC(CC)CCCC RDAGYWUMBWNXIC-UHFFFAOYSA-N 0.000 description 1
- YEYQUBZGSWAPGE-UHFFFAOYSA-N 1,2-di(nonyl)benzene Chemical class CCCCCCCCCC1=CC=CC=C1CCCCCCCCC YEYQUBZGSWAPGE-UHFFFAOYSA-N 0.000 description 1
- 150000004869 1,3,4-thiadiazoles Chemical class 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- 125000004827 1-ethylpropylene group Chemical group [H]C([H])([H])C([H])([H])C([H])([*:1])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- SZSSMFVYZRQGIM-UHFFFAOYSA-N 2-(hydroxymethyl)-2-propylpropane-1,3-diol Chemical compound CCCC(CO)(CO)CO SZSSMFVYZRQGIM-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- 229920002368 Glissopal ® Polymers 0.000 description 1
- DJOWTWWHMWQATC-KYHIUUMWSA-N Karpoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1(O)C(C)(C)CC(O)CC1(C)O)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C DJOWTWWHMWQATC-KYHIUUMWSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 150000003819 basic metal compounds Chemical class 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- VBIGULIJWJPALH-UHFFFAOYSA-L calcium;2-carboxyphenolate Chemical class [Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O VBIGULIJWJPALH-UHFFFAOYSA-L 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000010688 mineral lubricating oil Substances 0.000 description 1
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical class C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 125000001802 myricyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- PTISTKLWEJDJID-UHFFFAOYSA-N sulfanylidenemolybdenum Chemical group [Mo]=S PTISTKLWEJDJID-UHFFFAOYSA-N 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical class CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M161/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M111/00—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
- C10M111/06—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a compound of the type covered by group C10M109/00
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
- C10M137/10—Thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/18—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/22—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/18—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/24—Polyethers
- C10M145/26—Polyoxyalkylenes
- C10M145/38—Polyoxyalkylenes esterified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/02—Natural products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/08—Inorganic acids or salts thereof
- C10M2201/084—Inorganic acids or salts thereof containing sulfur, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/11—Complex polyesters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/11—Complex polyesters
- C10M2209/111—Complex polyesters having dicarboxylic acid centres
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/05—Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
- C10M2229/054—Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/42—Phosphor free or low phosphor content compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/45—Ash-less or low ash content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/54—Fuel economy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
Definitions
- the present invention relates to automotive lubricating oil compositions. More specifically, although not exclusively, the present invention relates to automotive crankcase lubricating oil compositions for use in gasoline (spark-ignited) and diesel (compression-ignited) internal combustion engines, such compositions being referred to as crankcase lubricants; and to the use of additives in such lubricating oil compositions for improving the anti-corrosion performance properties in respect of the non-ferrous metallic engine components (i.e. suppressing the corrosion of the non-ferrous metallic engine components), particularly the engine components containing copper and/or lead (e.g. bearings).
- the non-ferrous metallic engine components i.e. suppressing the corrosion of the non-ferrous metallic engine components
- the engine components containing copper and/or lead e.g. bearings
- a crankcase lubricant is an oil used for general lubrication in an internal combustion engine where an oil sump is situated generally below the crankshaft of the engine and to which circulated oil returns.
- Anti-wear agents are typically used as additives in a crankcase lubricant to reduce excessive wear of the metallic engine components. Such anti-wear agents are usually based on compounds containing sulphur or phosphorus or both, for example compounds that are capable of depositing polysulfide films on the surfaces of the metallic engine components. Common anti-wear agents which are routinely employed in a crankcase lubricant are dihydrocarbyl dithiophosphate metal salts.
- ashless organic friction modifiers for example ashless nitrogen-free organic friction modifiers (e.g. esters formed from carboxylic acids and alkanols, such as glycerol monooleate (GMO)), as additives in a crankcase lubricant to obtain improved friction properties and improved fuel economy performance.
- GMO glycerol monooleate
- lubricating oil formulators have typically employed a dihydrocarbyl dithiophosphate metal salt anti-wear additive in combination with an ashless organic friction modifier additive, such as GMO, in the lubricating oil composition.
- GMO ashless organic friction modifier additive
- the ashless organic friction modifier additive such as GMO
- a dihydrocarbyl dithiophosphate metal salt anti-wear additive the amount of lead corrosion typically further increases.
- the corrosive nature of the ashless organic friction modifier additive, such as GMO, and the increase in lead corrosion attributable to the combination of the ashless organic friction modifier additive and the dihydrocarbyl dithiophosphate metal salt presents problems for the lubricant oil formulator.
- the corrosive nature of the additive components may necessitate reduced treat rates of the additive(s) thereby impacting on the anti-wear performance and/or fuel economy performance of the lubricant; alternatively, or additionally, it may be necessary to include further relatively expensive anti-corrosion additives in the lubricant to counteract the corrosive nature of the dihydrocarbyl dithiophosphate metal salts and ashless organic friction modifier additives.
- the present invention provides a lubricating oil composition having a sulphated ash content of less than or equal to 1.2 mass % as determined by ASTM D874 and a phosphorous content of less than or equal to 0.12 mass % as determined by ASTM D5185, which lubricating oil composition comprises or is made by admixing:
- the use of the polymeric friction modifier (B), as defined in accordance with the first aspect of the invention, as an additive in an effective minor amount in a lubricating oil composition comprising an oil of lubricating viscosity in a major amount may suppress the corrosion of the non-ferrous metal (e.g. copper and/or lead) containing engine components compared with a comparable lubricant which does not include the polymeric friction modifier (B).
- the polymeric friction modifier (B) may function as an anti-corrosion agent in respect of the non-ferrous metal containing engine components, especially the engine components which include copper and/or lead, or an alloy containing such metals.
- oil-soluble or oil-dispersible polymeric friction modifier (B) as defined in the first aspect of the present invention as an additive in an effective minor amount, in combination with the oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt as defined in the first aspect of the present invention, as an additive in an effective minor amount, in a lubricating oil composition comprising an oil of lubricating viscosity in a major amount, typically provides a lubricant that exhibits an improved inhibition and/or reduction in the corrosion (i.e. suppresses the corrosion) of the non-ferrous metal (e.g.
- oil-soluble or oil-dispersible polymeric friction modifier (B) as defined in the first aspect of the present invention as an additive in an effective minor amount, in combination with the oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt as defined in the first aspect of the present invention, as an additive in an effective minor amount, in a lubricating oil composition comprising an oil of lubricating viscosity in a major amount, typically provides a lubricant that exhibits an improved inhibition and/or reduction in the corrosion (i.e.
- such reduced levels of non-ferrous metal corrosion e.g. reduced levels of copper and/or lead corrosion
- the polymeric friction modifier (B) compared with an ashless organic friction modifier such as GMO particularly when used in combination with a dihydrocarbyl dithiophosphate metal salt, may permit increased treat rates of the combination of such additives in a lubricant.
- such reduced levels of non-ferrous metal corrosion may reduce the need for the use of relatively expensive supplemental anti-corrosion additives.
- the use of the polymeric friction modifier (B) in combination with a dihydrocarbyl dithiophosphate metal salt typically provides the formulator with a higher degree of flexibility when formulating lubricating oil compositions which must meet strict anti-wear performance and fuel economy performance criteria as specified in industry lubricating oil specifications and in original equipment manufacturer's specifications.
- the present invention provides a method of lubricating a spark-ignited or compression-ignited internal combustion engine comprising lubricating the engine with a lubricating oil composition as defined in accordance with the first aspect of the present invention.
- the present invention provides the use, in the lubrication of a spark-ignited or compression-ignited internal combustion engine, of an oil-soluble or oil-dispersible polymeric friction modifier (B) as defined in the first aspect of the invention, as an additive in an effective minor amount, in a lubricating oil composition comprising an oil of lubricating viscosity in a major amount to reduce and/or inhibit corrosion (i.e. suppress the corrosion) of the non-ferrous metal containing engine components during operation of the engine engine, compared with a comparable lubricant which does not include the poylmeric friction modifier (B).
- the non-ferrous metal containing engine components include copper, lead, or an alloy of such metals.
- the lubricating oil composition as defined in the third aspect of the invention further includes a dihydrocarbyl dithiophosphate metal salt as defined in the first aspect of the present invention, as an additive in an effective minor amount.
- the oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt (C) is an oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate zinc salt (i.e. a zinc dihydrocarbyl dithiophosphate (ZDDP)), more preferably an oil-soluble or oil-dispersible zinc dialkyl dithiophosphate.
- ZDDP zinc dihydrocarbyl dithiophosphate
- the lubricating oil composition of the first aspect of the present invention and as defined in the second, third, fourth, fifth, sixth and seventh aspects of the present invention further includes one or more co-additives in an effective minor amount (e.g. 0.1 to 30 mass %), other than additive components (B) and (C), selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, pour point depressants, antiwear agents, friction modifiers, demulsifiers, antifoam agents and viscosity modifiers.
- additive components (B) and (C) selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, pour point depressants, antiwear agents, friction modifiers, demulsifiers, antifoam agents and viscosity modifiers.
- the lubricating oil composition of the present invention has a sulphated ash content of less than or equal to 1.2, preferably less than or equal to 1.1, more preferably less than or equal to 1.0, mass % (ASTM D874) based on the total mass of the composition.
- the lubricating oil composition of the present invention contains low levels of phosphorus.
- the lubricating oil composition contains phosphorus in an amount of less than or equal to 0.12 mass %, preferably up to 0.11 mass %, more preferably less than or equal to 0.10 mass %, even more preferably less than or equal to 0.09 mass %, even more preferably less than or equal to 0.08 mass %, most preferably less than or equal to 0.06, mass % of phosphorus (ASTM D5185) based on the total mass of the composition.
- the lubricating oil composition contains phosphorus in an amount of greater than or equal to 0.01, preferably greater than or equal to 0.02, more preferably greater than or equal to 0.03, even more preferably greater than or equal to 0.05, mass % of phosphorus (ASTM D5185) based on the total mass of the composition.
- the lubricating oil composition of the present invention may contain low levels of sulfur.
- the lubricating oil composition contains sulphur in an amount of up to 0.4, more preferably up to 0.3, even more preferably up to 0.2, mass % sulphur (ASTM D2622) based on the total mass of the composition.
- a lubricating oil composition according to the present invention contains up to 0.30, more preferably up to 0.20, most preferably up to 0.15, mass % nitrogen, based on the total mass of the composition and as measured according to ASTM method D5291.
- the lubricating oil composition may have a total base number (TBN), as measured in accordance with ASTM D2896, of 4 to 15, preferably 5 to 12, mg KOH/g.
- TBN total base number
- any upper and lower quantity, range and ratio limits set forth herein may be independently combined. Accordingly, any upper and lower quantity, range and ratio limits set forth herein associated with a particular technical feature of the present invention may be independently combined with any upper and lower quantity, range and ratio limits set forth herein associated with one or more other particular technical feature(s) of the present invention. Furthermore, any particular technical feature of the present invention, and all preferred variants thereof, may be independently combined with any other particular technical feature(s), and all preferred variants thereof.
- the oil of lubricating viscosity (sometimes referred to as “base stock” or “base oil”) is the primary liquid constituent of a lubricant, into which additives and possibly other oils are blended, for example to produce a final lubricant (or lubricant composition).
- a base oil is useful for making concentrates as well as for making lubricating oil compositions therefrom, and may be selected from natural (vegetable, animal or mineral) and synthetic lubricating oils and mixtures thereof.
- the base stock groups are defined in the American Petroleum Institute (API) publication "Engine Oil Licensing and Certification System", Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998 .
- the base stock will have a viscosity preferably of 3-12, more preferably 4-10, most preferably 4.5-8, mm 2 /s (cSt) at 100°C.
- base stocks and base oils in this invention are the same as those found in the American Petroleum Institute (API) publication "Engine Oil Licensing and Certification System", Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998 . Said publication categorizes base stocks as follows:
- oils of lubricating viscosity which may be included in the lubricating oil composition are detailed as follows: Natural oils include animal and vegetable oils (e.g. castor and lard oil), liquid petroleum oils and hydrorefined, solvent-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
- Synthetic lubricating oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g. dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenols (e.g. biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogues and homologues thereof.
- hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybut
- Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g. butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
- dicarboxylic acids e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dim
- esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
- Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols, and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
- Unrefined, refined and re-refined oils can be used in the compositions of the present invention.
- Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
- a shale oil obtained directly from retorting operations a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be unrefined oil.
- Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
- Re-refined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for approval of spent additive and oil breakdown products.
- base oil examples include gas-to-liquid (“GTL”) base oils, i.e. the base oil may be an oil derived from Fischer-Tropsch synthesised hydrocarbons made from synthesis gas containing H 2 and CO using a Fischer-Tropsch catalyst. These hydrocarbons typically require further processing in order to be useful as a base oil. For example, they may, by methods known in the art, be hydroisomerized; hydrocracked and hydroisomerized; dewaxed; or hydroisomerized and dewaxed.
- GTL gas-to-liquid
- the base oil of a lubricating oil composition according to the present invention typically comprises no more than 85 mass % Group IV base oil, the base oil may comprise no more than 70 mass % Group IV base oil, or even no more than 50 mass % Group IV base oil.
- the base oil of a lubricating oil composition according to the present invention may comprise 0 mass % Group IV base oil.
- the base oil of a lubricating oil composition according to the present invention may comprise at least 5 mass %, at least 10 mass % or at least 20 mass % Group IV base oil.
- the base oil of a lubricating oil composition according to the present invention may comprise from 0 to 85 mass%, or from 5-85 mass %, alternatively from 10-85 mass % Group IV base oil.
- the volatility of the oil of lubricating viscosity or oil blend is less than or equal to 20 %, preferably less than or equal to 16 %, preferably less than or equal to 12 %, more preferably less than or equal to 10 %.
- the viscosity index (VI) of the oil of lubricating viscosity is at least 95, preferably at least 110, more preferably up to 120 even more preferably at least 120, even more preferably at least 125, most preferably from about 130 to 140.
- the oil of lubricating viscosity is provided in a major amount, in combination with a minor amount of additive components (B) and (C), as defined herein and, if necessary, one or more co-additives, such as described hereinafter, constituting a lubricating oil composition.
- This preparation may be accomplished by adding the additives directly to the oil or by adding them in the form of a concentrate thereof to disperse or dissolve the additive.
- Additives may be added to the oil by any method known to those skilled in the art, either before, at the same time as, or after addition of other additives.
- the oil of lubricating viscosity is present in an amount of greater than 55 mass %, more preferably greater than 60 mass %, even more preferably greater than 65 mass %, based on the total mass of the lubricating oil composition.
- the oil of lubricating viscosity is present in an amount of less than 98 mass %, more preferably less than 95 mass %, even more preferably less than 90 mass %, based on the total mass of the lubricating oil composition.
- concentrates When concentrates are used to make the lubricating oil compositions, they may for example be diluted with 3 to 100, e.g. 5 to 40, parts by mass of oil of lubricating viscosity per part by mass of the concentrate.
- the lubricating oil composition is a multigrade oil identified by the viscometric descriptor SAE 20WX, SAE 15WX, SAE 10WX, SAE 5WX or SAE 0WX, where X represents any one of 20, 30, 40 and 50; the characteristics of the different viscometric grades can be found in the SAE J300 classification.
- the lubricating oil composition is in the form of an SAE 10WX, SAE 5WX or SAE 0WX, preferably in the form of a SAE 5WX or SAE 0WX, wherein X represents any one of 20, 30, 40 and 50.
- X is 20 or 30.
- the oil-soluble or oil-dispersible polymeric friction modifier (B) is the reaction product of solely:
- the polymeric friction modifier (B), as defined herein and in each aspect of the present invention, does not include the reaction product of (i) a functionalised polyolefin, as defined herein; (ii) a polyalkylene glycol (e.g. a polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol); (iii) a monocarboxylic acid; and, (iv) a polyol.
- a functionalised polyolefin as defined herein
- a polyalkylene glycol e.g. a polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol
- a monocarboxylic acid e.g. a monocarboxylic acid
- the polymeric friction modifier (B), as defined in each aspect of the present invention does not include a backbone moiety derived from a polyol which is capable of reacting with the functionalised polyolefin, as defined herein, or the copolymer reaction product derived from the reaction of (B(i)) with (B(ii)).
- the functionalised polyolefin (B(i)) and the polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol (B(ii)) are bonded directly to one another, via an appropriate functional group (e.g.
- an ester group where the functionalised polyolefin includes a diacid or anhydride functional group via an ester group where the functionalised polyolefin includes a diacid or anhydride functional group), and hence form an essentially polyolefin-polyethylene glycol copolymer or polyolefin-polypropylene glycol copolymer or polyolefin-poly(ethylene-propylene) glycol copolymer which copolymer chain is terminated by reaction with the monocarboxylic acid (e.g. a free hydroxyl group of the polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol moiety in the copolymer forms an ester by reaction with the monocarboxylic acid).
- the monocarboxylic acid e.g. a free hydroxyl group of the polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol moiety in the copolymer forms an ester
- the lubricating oil composition of the present invention also does not include a polymeric friction modifier which is the reaction product of (i) a functionalised polyolefin, as defined herein; (ii) a polyalkylene glycol (e.g. a polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol); (iii) a monocarboxylic acid; and, (iv) a polyol.
- a polymeric friction modifier which is the reaction product of (i) a functionalised polyolefin, as defined herein; (ii) a polyalkylene glycol (e.g. a polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol); (iii) a monocarboxylic acid; and, (iv) a polyol.
- the one or more functionalised polyolefins is a polyalkylene which includes at least one diacid or anhydride functional group.
- the one or more functionalised polyolefins is derived from polymerisation of a mono-olefin, having from 2 to 6 carbon atoms, such as ethene, propene, but-1-ene and isobutene (i.e. 2-methyl propene) and the resulting polyolefin functionalised with a diacid or anhydride functional group.
- the one or more functionalised polyolefins is a poly(C 2 to C 6 alkylene) functionalised with a diacid or anhydride functional group.
- the one or more functionalised polyolefins is derived from polymerisation of isobutene and the resulting polyisobutylene functionalised with a diacid or anhydride functional group (i.e. the functionalised polyolefin is functionalised polyisobutylene).
- the polyalkylene part (e.g. the poly(C 2 to C 6 alkylene)) of the one or more functionalised polyolefins suitably includes a carbon chain of 15 to 500 (e.g. 35 to 500, 40 to 500, 50 to 500), preferably 50 to 200, carbon atoms.
- the polyalkylene part of the one or more functionalised polyolefins has a number average molecular weight (Mn) of from 300 to 5000, preferably 500 to 1500, especially 800 to 1200 daltons.
- the functionalised polyolefin(s) includes at least one diacid or anhydride functional group which is capable of reacting with a hydroxyl functional group of the polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol (B(ii)) thereby forming, via an ester linkage, an essentially polyolefin-polyethylene glycol copolymer or polyolefin-polypropylene glycol copolymer or polyolefin-poly(ethylene-propylene) glycol copolymer.
- the functionalised polyolefin(s) may be formed from reaction of the polyolefin (i.e. polyalkylene) with an unsaturated diacid or anhydride.
- the functionalised polyolefin(s) includes an anhydride functional group.
- the anhydride functionalised polyalkylene(s) is derived from the reaction of the polyalkylene (e.g. poly(C 2 to C 6 alkylene)) with an anhydride, especially maleic anhydride which forms a succinic anhydride functional group.
- the functionalised polyolefin(s) includes an anhydride functional group, especially a succinic anhydride functional group.
- preferred functionalised polyolefin(s) are polyalkylene(s) which include an anhydride functional group, more preferably a poly(C 2 to C 6 alkylene) which includes an anhydride functional group, even more preferably a poly(C 2 to C 6 alkylene) which includes a succinic anhydride functional group, especially one or more polyisobutylenes (PIBs) which include a succinic anhydride functional group - namely polyisobutylene succinic anhydrides (PIBSAs).
- PIBs polyisobutylenes
- the polyisobutylene of the PIBSA has a number average molecular weight (Mn) of from 300 to 5000, preferably 500 to 1500, especially 800 to 1200 daltons.
- Mn number average molecular weight
- PIB is a commercially available compound and sold under the trade name of Glissopal by BASF and this product can be reacted to give a functionalised polyolefin (
- the functionalised polyolefin(s) which includes a diacid or anhydride functional group as defined herein a poly(C 2 to C 6 alkylene) which includes a diacid or anhydride functional group, even more preferably a poly(C 2 to C 6 alkylene) which includes a succinic anhydride functional group, especially a polyisobutylene (PIB) which includes a succinic anhydride functional group - namely polyisobutylene succinic anhydride (PIBSA)) is formed by a direct thermal condensation reaction (i.e. thermal ene reaction) between the appropriate unsaturated diacid or anhydride (e.g. maleic anhydride) and the polyolefin (e.g.
- PIB polyisobutylene
- This process is known as the thermal ene reaction and is usually conducted at a temperature of greater than 150°C for 1 to 48 hours.
- the functionalised polyolefin formed by the thermal ene reaction is chemically distinct and has different physical and chemical properties than a comparable functionalised polyolefin which is formed by a chlorination process (i.e. chlorination of the polyolefin followed by reaction with the appropriate diacid or anhydride).
- the one or more polyalkylene glycols (B(ii)) used in the formation of the oil-soluble or oil-dispersible polymeric friction modifier is selected from one or more polyethylene glycols, one or more polypropylene glycols, one or more mixed poly(ethylene-propylene) glycols, or combinations thereof.
- the one or more polyalkylene glycols (B(ii)) is one or more polyethylene glycols (PEGs), especially a water soluble PEG.
- the polyethylene glycol or polypropylene glycol or mixed poly(ethylene-propylene) glycol includes two hydroxyl groups which are capable of reacting with the functional group of the functionalised polyolefin, thereby forming an essentially polyolefin-polyethylene glycol copolymer or polyolefin-polypropylene glycol copolymer or polyolefin-poly(ethylene-propylene) glycol copolymer copolymer.
- the one or more polyalkylene glycols (B(ii)), namely one or more polyethylene glycols, one or more polypropylene glycols, or one or more mixed poly(ethylene-propylene) glycols, especially PEG has a number average molecular weight (Mn) of from 300 to 5000, preferably 400 to 1000, especially 400 to 800, daltons.
- Mn number average molecular weight
- the one or more polyalkylene glycols (B(ii)) is PEG 400 , PEG 600 or PEG 1000 .
- PEG 400 , PEG 600 and PEG 1000 are commercially available from Croda International.
- the functionalised polyolefin and the polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol react to form a copolymer.
- the functionalised polyolefin and the polyethylene glycol or polypropylene glycol or mixed poly(ethylene-propylene) glycol may react to form a block copolymer.
- the number of block copolymer units in the organic friction modifier additive typically ranges from 2 to 20, preferably 2 to 15, more preferably 2 to 10, units.
- the copolymer reaction product of the functionalised polyolefin (B(i)) and the polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol (B(ii)) includes a reactive hydroxyl functional group (i.e. a hydroxyl group associated with polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol moiety) and such copolymer is reacted with a monocarboxylic acid, thereby chain terminating the copolymer product of reaction (i.e.
- the monocarboxylic acid reacts with a hydroxyl functional group associated with a polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol moiety to form an ester, thereby chain terminating the copolymer).
- the one or more monocarboxylic acids is a C 6 to C 30 hydrocarbyl monocarboxylic acid, more preferably a C 12 to C 22 hydrocarbyl monocarboxylic acid.
- the one or more monocarboxylic acids is a saturated or unsaturated, branched or linear, acyclic C 2 to C 36 aliphatic hydrocarbyl monocarboxylic acid, especially a saturated or unsaturated, branched or linear, acyclic C 6 to C 30 aliphatic hydrocarbyl monocarboxylic acid, more especially a saturated or unsaturated, branched or linear, acyclic C 12 to C 22 aliphatic hydrocarbyl monocarboxylic acid.
- the one or more monocarboxylic acids is an unsaturated acyclic C 6 to C 30 aliphatic hydrocarbyl monocarboxylic acid, more especially an unsaturated, acyclic C 12 to C 22 aliphatic hydrocarbyl monocarboxylic acid.
- the carboxylic acid is chosen from the group comprising lauric acid, erucic acid, isostearic acid, palmitic acid, tall oil fatty acid, oleic acid and linoleic acid, especially oleic acid.
- oil-soluble or oil-dispersible polymeric friction modifier (B) is the reaction product of solely:
- the polymeric friction modifier (B) will typically comprise a mixture of molecules of various sizes.
- the polymeric friction modifier (B) has a number average molecular weight of from 1,000 to 30,000, preferably from 1,500 to 25,000, more preferably from 2,000 to 20,000, daltons.
- the polymeric friction modifier (B) suitably has an acid value of less than 20, preferably less than 15 and more preferably less than 10 mg KOH/g (ASTM D974).
- the polymeric friction modifier (B) suitably has an acid value of greater than 1, preferably greater than 1.5 mg KOH/g. In a preferred embodiment, the polymeric friction modifier (B) has an acid value in the range of 1.5 to 9 mg KOH/g.
- the polymeric friction modifier (B) may be prepared by analogous synthetic methodology as described in International Patent Application no. WO 2011/107739 .
- the functionalised polyolefin as defined herein, the polyalkylene glycol, as defined herein, and the monocarboxylic acid are heated at 100 to 250°C in the presence of a catalyst (e.g. tetrabutyl titanate) and water removed.
- a catalyst e.g. tetrabutyl titanate
- the polymeric friction modifier (B) is the reaction product of maleinised polyisobutylene (PIBSA), PEG, and oleic acid, wherein the polyisobutylene of the maleinised polyisobutylene has a number average molecular weight of around 950 daltons, the PIBSA has an approximate saponification value of 98mg KOH/g and the PEG has a number average molecular weight of around 600 daltons and a hydroxyl value of 190 mg KOH/g.
- PIBSA maleinised polyisobutylene
- PEG has a number average molecular weight of around 600 daltons
- a hydroxyl value of 190 mg KOH/g is the reaction product of maleinised polyisobutylene (PIBSA), PEG, and oleic acid
- a suitable additive may be made by charging 166.5 g (0.135 mol) of PIBSA, 135.3 g (0.226 mol) of PEG 600 and 34.3 g (0.121 mol) of oleic acid into a glass round bottomed flask equipped with a nitrogen purge, mechanical stirrer, isomantle heater and overhead condenser. The reaction takes place in the presence of 0.5 ml of esterification catalyst tetrabutyl titanate at 180-230 °C, with removal of water to a final acid value of 1.7 mg KOH/g.
- the polymeric friction modifier (B) is present in the lubricating oil composition of the present invention, on an active matter basis, in an amount of at least 0.1, preferably at least 0.2, mass % based on the total mass of the lubricating oil composition.
- the polymeric friction modifier of the present invention is suitably present in the lubricating oil composition, on an active matter basis, in an amount of less than or equal to 5, preferably less than or equal to 3, more preferably less than or equal to 1.5, mass %, based on the total mass of the lubricating oil composition.
- any suitable oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt having anti-wear properties in lubricating oil compositions may be employed.
- the metal may be an alkali or alkaline earth metal, or aluminium, lead, tin, molybdenum, manganese, nickel, copper, or preferably, zinc.
- a preferred dihydrocarbyl dithiophosphate metal salt is zinc dihydrocarbyl dithiophosphate (ZDDP), more preferably zinc dialkyl dithiophosphate, especially zinc di(C 2 to C 8 alkyl) dithiophosphate wherein the C 2 to C 8 alkyl groups of the zinc di(C 2 to C 8 alkyl) dithiophosphate may be the same or different.
- ZDDP zinc dihydrocarbyl dithiophosphate
- Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohols or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a metal compound.
- DDPA dihydrocarbyl dithiophosphoric acid
- a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
- multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
- any basic or neutral metal compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of metal due to the use of an excess of the basic metal compound in the neutralization reaction.
- ZDDP zinc dihydrocarbyl dithiophosphates
- R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals.
- Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms.
- the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
- the total number of carbon atoms (i.e. R and R') in the dithiophosphoric acid will generally be about 5 or greater.
- the zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
- the dihydrocarbyl dithiophosphate metal salt such as ZDDP
- ZDDP is added to the lubricating oil compositions in amounts sufficient to provide no greater than 1200ppm, preferably no greater than 1000ppm, more preferably no greater than 900ppm, most preferably no greater than 850ppm by mass of phosphorous to the lubricating oil, based upon the total mass of the lubricating oil composition, and as measured in accordance with ASTM D5185.
- the dihydrocarbyl dithiophosphate metal salt such as ZDDP
- ZDDP is added to the lubricating oil compositions in amounts sufficient to provide at least 100ppm, preferably at least 350ppm, more preferably at least 500ppm by mass of phosphorous to the lubricating oil, based upon the total mass of the lubricating oil composition, and as measured in accordance with ASTM D5185.
- the dihydrocarbyl dithiophosphate metal salt such as ZDDP
- the dihydrocarbyl dithiophosphate metal salt is present in an amount of greater than or equal to 0.1, preferably greater than or equal to 0.25, more preferably greater than or equal to 0.5, mass % based on the total mass of the lubricating oil composition.
- the dihydrocarbyl dithiophosphate metal salt, such as ZDDP is present in an amount of less than or equal to 10, preferably less than or equal to 5.0, more preferably less than or equal to 3.0, mass % based on the total mass of the lubricating oil composition.
- the lubricating oil compositions of the invention may be used to lubricate mechanical engine components, particularly in internal combustion engines, e.g. spark-ignited or compression-ignited internal combustion engines, particularly spark-ignited or compression-ignited two- or four- stroke reciprocating engines, by adding the composition thereto.
- the engines may be conventional gasoline or diesel engines designed to be powered by gasoline or petroleum diesel, respectively; alternatively, the engines may be specifically modified to be powered by an alcohol based fuel or biodiesel fuel.
- the final lubricating oil composition typically made by blending the or each additive into the base oil, may contain from 5 to 25, preferably 5 to 18, typically 7 to 15, mass % of the co-additives, the remainder being oil of lubricating viscosity.
- the lubricating oil composition includes one or more co-additives in a minor amount, other than additive components (B) and (C), selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, pour point depressants, antiwear agents, friction modifiers, demulsifiers, antifoam agents and viscosity modifiers.
- additive components (B) and (C) selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, pour point depressants, antiwear agents, friction modifiers, demulsifiers, antifoam agents and viscosity modifiers.
- additives can provide a multiplicity of effects, for example, a single additive may act as a dispersant and as an oxidation inhibitor.
- Metal detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life.
- Detergents generally comprise a polar head with a long hydrophobic tail, with the polar head comprising a metal salt of an acidic organic compound.
- the salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80 mg KOH/g.
- TBN total base number
- a large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide).
- the resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle.
- a metal base e.g. carbonate
- Such overbased detergents may have a TBN of 150 mg KOH/g or greater, and typically will have a TBN of from 250 to 450 mg KOH/g or more.
- the amount of overbased detergent can be reduced, or detergents having reduced levels of overbasing (e.g., detergents having a TBN of 100 to 200 mg KOH/g), or neutral detergents can be employed, resulting in a corresponding reduction in the SASH content of the lubricating oil composition without a reduction in the performance thereof.
- Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
- a metal particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
- the most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium. Combinations of detergents, whether overbased or neutral or both, may be used.
- the lubricating oil composition includes metal detergents that are chosen from neutral or overbased calcium sulfonates having TBN of from 20 to 450 mg KOH/g, and neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450 mg KOH/g, and mixtures thereof.
- Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
- the alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms.
- the alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
- the oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal.
- the amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 mass % (preferably at least 125 mass %) of that stoichiometrically required.
- Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art.
- Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
- the lubricating oil composition comprises metal detergents that are neutral or overbased alkali or alkaline earth metal salicylates having a TBN of from 50 to 450 mg KOH/g, preferably a TBN of 50 to 250 mg KOH/g, or mixtures thereof.
- Highly preferred salicylate detergents include alkaline earth metal salicylates, particularly magnesium and calcium, especially, calcium salicylates.
- alkali or alkaline earth metal salicylate detergents are the sole metal-containing detergent in the lubricating oil composition.
- Supplemental anti-wear agents other than dihydrocarbyl dithiophosphate metal salts (additive component (C)), which may be included in the lubricating oil composition comprise 1,2,3-triazoles, benzotriazoles, sulfurised fatty acid esters, and dithiocarbamate derivatives.
- Ashless dispersants comprise an oil-soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed.
- the dispersants comprise amine, alcohol, amide, or ester polar moieties attached to the polymer backbone often via a bridging group.
- the ashless dispersants may be, for example, selected from oil-soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and a polyalkylene polyamine.
- Friction modifiers include glycerol monoesters of higher fatty acids, for example, glycerol mono-oleate (GMO); esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines, for example, ethoxylated tallow amine and ethoxylated tallow ether amine.
- GMO glycerol mono-oleate
- esters of long chain polycarboxylic acids with diols for example, the butane diol ester of a dimerized unsaturated fatty acid
- oxazoline compounds oxazoline compounds
- alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines for example,
- the total amount of additional organic ashless friction modifier in a lubricant according to the present invention does not exceed 5 mass %, based on the total mass of the lubricating oil composition and preferably does not exceed 2 mass % and more preferably does not exceed 0.5 mass %.
- the lubricating oil composition contains no additional organic ashless friction modifier.
- Other known friction modifiers comprise oil-soluble organo-molybdenum compounds. Such organo-molybdenum friction modifiers also provide antioxidant and antiwear credits to a lubricating oil composition. Suitable oil-soluble organo-molybdenum compounds have a molybdenum-sulfur core. As examples there may be mentioned dithiocarbamates, dithiophosphates, dithiophosphinates, xanthates, thioxanthates, sulfides, and mixtures thereof. Particularly preferred are molybdenum dithiocarbamates, dialkyldithiophosphates, alkyl xanthates and alkylthioxanthates. The molybdenum compound is dinuclear or trinuclear.
- One class of preferred organo-molybdenum compounds useful in all aspects of the present invention is tri-nuclear molybdenum compounds of the formula Mo 3 S k L n Q z and mixtures thereof wherein L are independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compounds soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through to 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms should be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms.
- the molybdenum compounds may be present in a lubricating oil composition at a concentration in the range 0.1 to 2 mass %, or providing at least 10 such as 50 to 2,000 ppm by mass of molybdenum atoms.
- the molybdenum from the molybdenum compound is present in an amount of from 10 to 1500, such as 20 to 1000, more preferably 30 to 750, ppm based on the total weight of the lubricating oil composition.
- the molybdenum is present in an amount of greater than 500 ppm.
- Viscosity modifiers function to impart high and low temperature operability to a lubricating oil.
- the VM used may have that sole function, or may be multifunctional.
- Multifunctional viscosity modifiers that also function as dispersants are also known.
- Suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene and higher alpha-olefins, polymethacrylates, polyalkylmethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, inter polymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/ isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene and isoprene/divinylbenzene.
- Anti-oxidants sometimes referred to as oxidation inhibitors, increase the resistance of the composition to oxidation and may work by combining with and modifying peroxides to render them harmless, by decomposing peroxides, or by rendering oxidation catalysts inert. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
- suitable antioxidants are selected from copper-containing antioxidants, sulfur-containing antioxidants, aromatic amine-containing antioxidants, hindered phenolic antioxidants, dithiophosphates derivatives, and metal thiocarbamates.
- Preferred anti-oxidants are aromatic amine-containing antioxidants, hindered phenolic antioxidants and mixtures thereof.
- an antioxidant is present in a lubricating oil composition of the present invention.
- Rust inhibitors selected from the group consisting of nonionic polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, and anionic alkyl sulfonic acids may be used.
- Copper and lead bearing corrosion inhibitors may be used, but are typically not required with the formulation of the present invention.
- such compounds are the thiadiazole polysulfides containing from 5 to 50 carbon atoms, their derivatives and polymers thereof.
- Derivatives of 1, 3, 4 thiadiazoles such as those described in U.S. Patent Nos. 2,719,125 ; 2,719,126 ; and 3,087,932 ; are typical.
- Other similar materials are described in U.S. Patent Nos. 3,821,236 ; 3,904,537 ; 4,097,387 ; 4,107,059 ; 4,136,043 ; 4,188,299 ; and 4,193,882 .
- additives are the thio and polythio sulfenamides of thiadiazoles such as those described in UK Patent Specification No. 1,560,830 .
- Benzotriazoles derivatives also fall within this class of additives. When these compounds are included in the lubricating composition, they are preferably present in an amount not exceeding 0.2 wt. % active ingredient.
- a small amount of a demulsifying component may be used.
- a preferred demulsifying component is described in EP 330522 . It is obtained by reacting an alkylene oxide with an adduct obtained by reacting a bis-epoxide with a polyhydric alcohol.
- the demulsifier should be used at a level not exceeding 0.1 mass % active ingredient. A treat rate of 0.001 to 0.05 mass % active ingredient is convenient.
- Pour point depressants otherwise known as lube oil flow improvers, lower the minimum temperature at which the fluid will flow or can be poured.
- Such additives are well known. Typical of those additives which improve the low temperature fluidity of the fluid are C 8 to C 18 dialkyl fumarate/vinyl acetate copolymers, polyalkylmethacrylates and the like.
- Foam control can be provided by many compounds including an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
- each of the components can be added directly to the base stock or base oil blend by dispersing or dissolving it in the base stock or base oil blend at the desired level of concentration. Such blending may occur at ambient or elevated temperatures.
- all the additives except for the viscosity modifier and the pour point depressant are blended into a concentrate or additive package described herein as the additive package that is subsequently blended into base stock to make the finished lubricant.
- the concentrate will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration in the final formulation when the concentrate is combined with a predetermined amount of a base lubricant.
- the concentrate is preferably made in accordance with the method described in US 4,938,880 . That patent describes making a pre-mix of ashless dispersant and metal detergents that is pre-blended at a temperature of at least about 100°C. Thereafter, the pre-mix is cooled to at least 85°C and the additional components are added.
- the additive package used to formulate the lubricating oil composition according to the present invention has a total base number (TBN) as measured by ASTM D2896 of 25 to 100, preferably 45 to 80, and the lubricating oil composition according to the present invention has a total base number (TBN) as measured by ASTM D2896 of 4 to 15, preferably 5 to 12.
- the additive package does not have a total base number (TBN) as measured by ASTM D2896 of between 62 and 63.5 and the lubricating oil composition does not have a total base number (TBN) as measured by ASTM D2896 of between 9.05 and 9.27.
- the final crankcase lubricating oil formulation may employ from 2 to 20, preferably 4 to 18, and most preferably 5 to 17, mass % of the concentrate or additive package with the remainder being base stock.
- a lubricating oil composition according to the first aspect of the invention does not comprise 0.2-0.25 mass% of sulphur as measured according to ASTM method D4927.
- a lubricating oil composition according to the first aspect of the invention does not comprise 0.08-0.11 mass% of nitrogen as measured according to ASTM method D5291.
- a 500 cm 3 5-necked round-bottomed flask equipped with a nitrogen purge, stirrer with PTFE guide, temperature probe and distillation arm attached to an exit bubbler was charged with PIBSA (116.5 g, 0.135 mol), PEG 600 (135.3 g, 0.226 mol) and oleic acid (34.3 g, 0.121 mol) and the mixture heated at 180 °C with stirring for 1 hour.
- the reaction mixture was then heated to a temperature of 230°C for 1 hour and then tetrabutyl titanate (0.5 ml) added thereto and heating and stirring continued for 6 hours at a temperature of 230°C.
- the reaction mixture was cooled to below 100°C and the polymeric friction modifier (B) poured from the round bottom flask.
- the polymeric friction modifier (B) had an acid value of 1.7 mg KOH/g.
- Each of the base lubricant and Oils 1 to 5 contained an identical Group II base stock and equal amounts of the following identical additives: an overbased calcium sulphonate detergent (TBN 300 mg KOH/g); a dispersant; anti-oxidants; a molybdenum friction modifier; and a viscosity modifier.
- Oils 1 to 5 also included the additional additive(s), on an active ingredient basis, as detailed in Table 1. Those oils which included ZDDP (i.e. Oils 3 to 5) had a phosphorus content of 880ppm as measured by ASTM D5185.
- Oil 5 represents a lubricating oil composition of the present invention.
- HTCBT High Temperature Corrosion Bench Test
- test lubricating oil 100 ml
- the sample tube is immersed in a heated oil bath so that the temperature of the test lubricating oil is heated to 135°C.
- the test lubricating oil is heated at 135°C for 168 hours and during this time dry air is blown through the heated oil at a rate of 5 litres per hour. After which, the test lubricating oil is cooled and the metal specimens removed and examined for corrosion.
- concentration of copper, tin and lead in the test lubricating oil composition and a reference sample of the lubricating oil composition i.e.
- Oil 5 a lubricant of the invention which includes ZDDP and the polymeric friction modifier (B)
- Oil 4 a lubricant of the invention which includes ZDDP and the polymeric friction modifier (B)
- the polymeric friction modifier (B) provides significantly less lead corrosion than the ashless organic friction modifier present in Oil 4 (115 ppm versus 420 ppm) and the polymeric friction modifier is far superior than the ashless organic friction modifier at inhibiting copper corrosion (10 ppm versus 22 ppm).
- a comparison of the results of Oil 5 with those of the base lubricant clearly demonstrate that the presence of both ZDDP and the polymeric friction modifier provides a significant decrease in copper corrosion (10 ppm versus 33 ppm).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Claims (15)
- Composition d'huile lubrifiante ayant une teneur en cendres sulfatées inférieure ou égale à 1,2 % en masse telle que déterminée par la norme ASTM D874 et une teneur en phosphore inférieure ou égale à 0,12 % en masse telle que déterminée par la norme ASTM D5185, laquelle composition d'huile lubrifiante comprend ou est constituée en mélangeant :(A) une huile de viscosité propre à la lubrification, en une quantité majeure, fournissant un excès de 50 %, sur la base de la masse totale de la composition ;(B) un modificateur de frottement polymère soluble dans l'huile ou dispersible dans l'huile comme additif en une quantité mineure efficace d'au moins 0,1 % en masse sur la base de la masse totale de la composition d'huile lubrifiante, le modificateur de frottement polymère ayant un poids moléculaire moyen en nombre de 1 000 à 30 000 daltons et étant le produit de réaction de seulement :(i) une ou plusieurs polyoléfines fonctionnalisées qui sont un poly(alkylène en C2 à C6) fonctionnalisé avec au moins un groupe fonctionnel diacide ou anhydride ;(ii) un ou plusieurs polyalkylèneglycols choisis parmi un ou plusieurs polyéthylèneglycols, un ou plusieurs polypropylèneglycols ou un ou plusieurs poly(éthylène-propylène)glycols mixtes et leurs combinaisons ; et,(iii) un ou plusieurs acides hydrocarbylmonocarboxyliques aliphatiques en C6 à C30 ; et,(C) au moins un sel métallique de dihydrocarbyldithiophosphate soluble dans l'huile ou dispersible dans l'huile comme additif en une quantité mineure efficace fournissant à la composition d'huile lubrifiante au moins 100 ppm en masse de phosphore, sur la base de la masse totale de la composition d'huile lubrifiante, telle que mesurée selon la norme ASTM D5185.
- Composition selon la revendication 1, dans laquelle les une ou plusieurs polyoléfines fonctionnalisées (B (i)) sont un polyisobutylène fonctionnalisé avec au moins un groupe fonctionnel diacide ou anhydride.
- Composition selon l'une quelconque des revendications précédentes, dans laquelle les une ou plusieurs polyoléfines fonctionnalisées (B (i)) sont fonctionnalisées avec un groupe fonctionnel anhydride succinique.
- Composition selon la revendication 1, dans laquelle les une ou plusieurs polyoléfines fonctionnalisées (B (i)) sont un anhydride succinique de polyisobutylène (PIBSA).
- Composition selon l'une quelconque des revendications 1 à 4, dans laquelle les un ou plusieurs polyalkylèneglycols (B(ii)) sont un polyéthylèneglycol (PEG).
- Composition selon la revendication 5, dans laquelle le polyéthylèneglycol (PEG) est le PEG400, le PEG600 ou le PEG1000.
- Composition selon l'une quelconque des revendications 1 à 6, dans laquelle les un ou plusieurs acides hydrocarbylmonocarboxyliques aliphatiques en C6 à C30 (B(iii)) comprennent l'acide laurique, l'acide érucique, l'acide isostéarique, l'acide palmitique, un acide gras du tallöl, l'acide oléique et l'acide linoléique.
- Composition selon la revendication 7, dans laquelle les un ou plusieurs acides hydrocarbylmonocaboxyliques aliphatiques sont l'acide oléique.
- Composition selon l'une quelconque des revendications 1 à 8, dans laquelle le sel métallique de dihydrocarbyldithiophosphate soluble dans l'huile ou dispersible dans l'huile est un dihydrocarbyldithiophosphate de zinc.
- Procédé de lubrification d'un moteur à combustion interne à allumage par étincelle ou à allumage par compression comprenant la lubrification du moteur avec une composition d'huile lubrifiante selon l'une quelconque des revendications précédentes.
- Utilisation, dans la lubrification d'un moteur à combustion interne à allumage par étincelle ou à allumage par compression, d'un modificateur de frottement polymère soluble dans l'huile ou dispersible dans l'huile (B) tel que défini dans l'une quelconque des revendications 1 à 9, comme additif en une quantité mineure efficace, dans une composition d'huile lubrifiante comprenant une huile de viscosité propre à la lubrification en une quantité majeure pour réduire et/ou inhiber la corrosion des composants de moteur contenant un métal non ferreux durant le fonctionnement du moteur.
- Utilisation selon la revendication 11, dans laquelle les composants de moteur contenant un métal non ferreux comprennent le cuivre, le plomb ou un alliage de ces métaux.
- Utilisation selon la revendication 11 ou 12, dans laquelle la composition d'huile lubrifiante comprend en outre un sel métallique de dihydrocarbyldithiophosphate soluble dans l'huile ou dispersible dans l'huile (C) tel que défini dans l'une quelconque des revendications 1 à 9, comme additif en une quantité mineure efficace.
- Utilisation selon la revendication 13, dans laquelle les composants de moteur contenant un métal non ferreux comprennent le cuivre ou un de ses alliages.
- Utilisation, dans la lubrification d'un moteur à allumage par étincelle ou à allumage par compression, d'une composition d'huile lubrifiante selon l'une quelconque des revendications 1 à 9 pour réduire et/ou inhiber la corrosion des composants de moteur contenant un métal non ferreux, en particulier du cuivre, durant le fonctionnement du moteur, par rapport à un lubrifiant comparable qui ne comprend pas le modificateur de frottement polymère (B).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15170237.0A EP2952564B1 (fr) | 2014-06-02 | 2015-06-02 | Compositions d'huile de lubrification |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14170788 | 2014-06-02 | ||
EP15170237.0A EP2952564B1 (fr) | 2014-06-02 | 2015-06-02 | Compositions d'huile de lubrification |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2952564A1 EP2952564A1 (fr) | 2015-12-09 |
EP2952564B1 true EP2952564B1 (fr) | 2018-07-18 |
Family
ID=50828821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15170237.0A Active EP2952564B1 (fr) | 2014-06-02 | 2015-06-02 | Compositions d'huile de lubrification |
Country Status (8)
Country | Link |
---|---|
US (1) | US20150344813A1 (fr) |
EP (1) | EP2952564B1 (fr) |
JP (1) | JP6670048B2 (fr) |
CN (1) | CN105132087B (fr) |
BR (1) | BR102015012738B1 (fr) |
CA (1) | CA2893404C (fr) |
GB (1) | GB2528375B (fr) |
SG (1) | SG10201504245TA (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9732301B2 (en) * | 2014-11-05 | 2017-08-15 | Infineum International Limited | Power transmitting fluids with improved materials compatibility |
CN105524693A (zh) * | 2015-12-28 | 2016-04-27 | 芜湖市创源新材料有限公司 | 一种具有良好剪切稳定性的可降解合成液压油 |
EP3372658B1 (fr) | 2017-03-07 | 2019-07-03 | Infineum International Limited | Procédé de lubrification de surfaces |
US10479953B2 (en) | 2018-01-12 | 2019-11-19 | Afton Chemical Corporation | Emulsifier for use in lubricating oil |
JP7137586B2 (ja) * | 2018-02-05 | 2022-09-14 | 富士フイルム株式会社 | 処理液、及び、処理方法 |
US11085119B2 (en) * | 2019-11-14 | 2021-08-10 | The United States Of America As Represented By The Secratary Of The Navy | Corrosion preventive compositions |
US11898119B2 (en) | 2022-01-25 | 2024-02-13 | Afton Chemical Corporation | Lubricating oil compositions with resistance to engine deposit and varnish formation |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2719125A (en) | 1952-12-30 | 1955-09-27 | Standard Oil Co | Oleaginous compositions non-corrosive to silver |
US2719126A (en) | 1952-12-30 | 1955-09-27 | Standard Oil Co | Corrosion inhibitors and compositions containing same |
US3087932A (en) | 1959-07-09 | 1963-04-30 | Standard Oil Co | Process for preparing 2, 5-bis(hydrocarbondithio)-1, 3, 4-thiadiazole |
US3821236A (en) | 1972-05-03 | 1974-06-28 | Lubrizol Corp | Certain 2-halo-1,2,4-thiadiazole disulfides |
US3904537A (en) | 1972-05-03 | 1975-09-09 | Lubrizol Corp | Novel disulfides derived from 1,2,4-thiadiazole |
US4193882A (en) | 1973-07-06 | 1980-03-18 | Mobil Oil Corporation | Corrosion inhibited lubricant composition |
US4136043A (en) | 1973-07-19 | 1979-01-23 | The Lubrizol Corporation | Homogeneous compositions prepared from dimercaptothiadiazoles |
GB1560830A (en) | 1975-08-08 | 1980-02-13 | Exxon Research Engineering Co | Sulphenamides |
US4097387A (en) | 1976-09-03 | 1978-06-27 | Standard Oil Company (Indiana) | Olefin-dimercapto-thiadiazole compositions and process |
US4107059A (en) | 1977-06-27 | 1978-08-15 | Pennwalt Corporation | Polymer of 1,2,4-thiadiazole and lubricants containing it as an additive |
US4188299A (en) | 1978-05-17 | 1980-02-12 | Standard Oil Company (Indiana) | Oil soluble dithiophosphoric acid derivatives of mercaptothiadiazoles |
US4938880A (en) | 1987-05-26 | 1990-07-03 | Exxon Chemical Patents Inc. | Process for preparing stable oleaginous compositions |
IL89210A (en) | 1988-02-26 | 1992-06-21 | Exxon Chemical Patents Inc | Lubricating oil compositions containing demulsifiers |
ATE538195T1 (de) * | 2004-09-27 | 2012-01-15 | Infineum Int Ltd | Schmierölzusammenstzungen mit niedrigen phosphor-,schwefel- und sulfatierten asche-gehalten |
JP5203590B2 (ja) * | 2006-10-27 | 2013-06-05 | 出光興産株式会社 | 潤滑油組成物 |
GB201003579D0 (en) * | 2010-03-04 | 2010-04-21 | Croda Int Plc | Friction reducing additive |
US9963656B2 (en) * | 2012-04-12 | 2018-05-08 | Infineum International Limited | Lubricating oil compositions |
US9963655B2 (en) * | 2012-04-12 | 2018-05-08 | Infineum International Limited | Lubricating oil compositions |
-
2015
- 2015-05-29 SG SG10201504245TA patent/SG10201504245TA/en unknown
- 2015-06-01 CN CN201510292076.0A patent/CN105132087B/zh active Active
- 2015-06-01 BR BR102015012738-3A patent/BR102015012738B1/pt active IP Right Grant
- 2015-06-02 CA CA2893404A patent/CA2893404C/fr active Active
- 2015-06-02 EP EP15170237.0A patent/EP2952564B1/fr active Active
- 2015-06-02 US US14/727,927 patent/US20150344813A1/en not_active Abandoned
- 2015-06-02 GB GB1509518.5A patent/GB2528375B/en active Active
- 2015-06-02 JP JP2015112258A patent/JP6670048B2/ja active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN105132087B (zh) | 2020-07-03 |
GB201509518D0 (en) | 2015-07-15 |
CN105132087A (zh) | 2015-12-09 |
GB2528375A (en) | 2016-01-20 |
CA2893404A1 (fr) | 2015-12-02 |
JP2015227454A (ja) | 2015-12-17 |
SG10201504245TA (en) | 2016-01-28 |
CA2893404C (fr) | 2022-04-26 |
BR102015012738A2 (pt) | 2016-01-12 |
GB2528375B (en) | 2016-10-05 |
BR102015012738B1 (pt) | 2021-03-30 |
EP2952564A1 (fr) | 2015-12-09 |
JP6670048B2 (ja) | 2020-03-18 |
US20150344813A1 (en) | 2015-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2812480C (fr) | Compositions d'huile lubrifiante | |
EP2952561B1 (fr) | Compositions d'huile de lubrification | |
EP2952564B1 (fr) | Compositions d'huile de lubrification | |
EP3263676B1 (fr) | Compositions d'huile de lubrification | |
EP2952562B1 (fr) | Compositions d'huile de lubrification | |
EP2952563B1 (fr) | Compositions d'huile de lubrification | |
EP2977436B1 (fr) | Compositions d'huile de lubrification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150602 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20160115 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10N 30/12 20060101ALN20180115BHEP Ipc: C10N 10/04 20060101ALN20180115BHEP Ipc: C10N 40/25 20060101ALN20180115BHEP Ipc: C10M 161/00 20060101AFI20180115BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180228 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1019363 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015013612 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1019363 Country of ref document: AT Kind code of ref document: T Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181018 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181019 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181118 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181018 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015013612 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
26N | No opposition filed |
Effective date: 20190423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190602 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230509 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240514 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240509 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240509 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240514 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240611 Year of fee payment: 10 |