EP2977436B1 - Compositions d'huile de lubrification - Google Patents

Compositions d'huile de lubrification Download PDF

Info

Publication number
EP2977436B1
EP2977436B1 EP15170161.2A EP15170161A EP2977436B1 EP 2977436 B1 EP2977436 B1 EP 2977436B1 EP 15170161 A EP15170161 A EP 15170161A EP 2977436 B1 EP2977436 B1 EP 2977436B1
Authority
EP
European Patent Office
Prior art keywords
oil
lubricating oil
friction modifier
mass
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15170161.2A
Other languages
German (de)
English (en)
Other versions
EP2977436A1 (fr
Inventor
Anthony James Strong
Philip James Woodward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP15170161.2A priority Critical patent/EP2977436B1/fr
Publication of EP2977436A1 publication Critical patent/EP2977436A1/fr
Application granted granted Critical
Publication of EP2977436B1 publication Critical patent/EP2977436B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/68Esters
    • C10M129/78Complex esters, i.e. compounds containing at least three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compound: monohydroxy compounds, polyhydroxy compounds, monocarboxylic acids, polycarboxylic acids, hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/22Polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • C10M145/38Polyoxyalkylenes esterified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/30Complex esters, i.e. compounds containing at leasst three esterified carboxyl groups and derived from the combination of at least three different types of the following five types of compounds: monohydroxyl compounds, polyhydroxy xompounds, monocarboxylic acids, polycarboxylic acids or hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • C10M2209/111Complex polyesters having dicarboxylic acid centres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/11Complex polyesters
    • C10M2209/112Complex polyesters having dihydric acid centres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/14Metal deactivation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • the present invention relates to automotive lubricating oil compositions. More specifically, although not exclusively, the present invention relates to automotive crankcase lubricating oil compositions for use in gasoline (spark-ignited) and diesel (compression-ignited) internal combustion engines, such compositions being referred to as crankcase lubricants; and to the use of additives in such lubricating oil compositions for improving the anti-corrosion performance properties in respect of the non-ferrous metallic engine components (i.e. suppressing the corrosion of the non-ferrous metallic engine components), particularly the engine components containing copper and/or lead (e.g. bearings).
  • the non-ferrous metallic engine components i.e. suppressing the corrosion of the non-ferrous metallic engine components
  • the engine components containing copper and/or lead e.g. bearings
  • a crankcase lubricant is an oil used for general lubrication in an internal combustion engine where an oil sump is situated generally below the crankshaft of the engine and to which circulated oil returns.
  • Anti-wear agents are typically used as additives in a crankcase lubricant to reduce excessive wear of the metallic engine components. Such anti-wear agents are usually based on compounds containing sulphur or phosphorus or both, for example compounds that are capable of depositing polysulfide films on the surfaces of the metallic engine components. Common anti-wear agents which are routinely employed in a crankcase lubricant are dihydrocarbyl dithiophosphate metal salts.
  • ashless organic friction modifiers for example ashless nitrogen-free organic friction modifiers (e.g. esters formed from carboxylic acids and alkanols, such as glycerol monooleate (GMO)), as additives in a crankcase lubricant to obtain improved friction properties and improved fuel economy performance.
  • GMO glycerol monooleate
  • lubricating oil formulators have typically employed a dihydrocarbyl dithiophosphate metal salt anti-wear additive in combination with an ashless organic friction modifier additive, such as GMO, in the lubricating oil composition.
  • an ashless organic friction modifier additive such as GMO
  • GMO ashless organic friction modifier additive
  • a dihydrocarbyl dithiophosphate metal salt anti-wear additive the amount of lead corrosion typically further increases.
  • the corrosive nature of the ashless organic friction modifier additive, such as GMO, and the increase in lead corrosion attributable to the combination of the ashless organic friction modifier additive and the dihydrocarbyl dithiophosphate metal salt presents problems for the lubricant oil formulator.
  • the corrosive nature of the additive components may necessitate reduced treat rates of the additive(s) thereby impacting on the anti-wear performance and/or fuel economy performance of the lubricant; alternatively, or additionally, it may be necessary to include further relatively expensive anti-corrosion additives in the lubricant to counteract the corrosive nature of the dihydrocarbyl dithiophosphate metal salts and ashless organic friction modifier additives.
  • US 4,209,411 A discloses a cyclic methylol polyester lubricant additive useful as a copper corrosion inhibitor.
  • ashless organic friction modifier additives which exhibit improved anti-corrosion performance properties in respect of the non-ferrous metallic engine components, particularly those components which contain copper and/or lead, or alloys thereof. Still further, there is a need for ashless organic friction modifier additives which when used in combination with dihydrocarbyl dithiophosphate metal salt anti-wear agents exhibit improved anti-corrosion performance properties in respect of the non-ferrous metallic engine components, particularly those components which contain copper and/or lead, or alloys thereof.
  • the present invention provides the use, in the lubrication of a spark-ignited or compression-ignited internal combustion engine, of an oil-soluble or oil-dispersible polymeric friction modifier (B), as an additive in an effective minor amount of at least 0.1 mass % based on the total mass of the lubricating oil composition, in a lubricating oil composition comprising an oil of lubricating viscosity (A) in a major amount, to reduce and/or inhibit corrosion of the copper and/or lead, or an alloy of such metals, containing engine components during operation of the engine compared with a comparable lubricant which includes glycerol monooleate friction modifier and an oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt, wherein: the oil-soluble or oil-dispersible polymeric friction modifier (B) is the reaction product of only: (i) one or more polyisobutylene succinic anhydrides (PIBSAs); and, (i
  • the non-ferrous metal containing engine components include copper, lead, or an alloy of such metals.
  • the lubricating oil composition as defined in the first aspect of the present invention is a crankcase lubricant.
  • the use of the polymeric friction modifier (B), as defined in accordance with the first aspect of the invention, as an additive in an effective minor amount in a lubricating oil composition comprising an oil of lubricating viscosity in a major amount may suppress the corrosion of the non-ferrous metal (e.g. copper and/or lead) containing engine components compared with a comparable lubricant which does not include the polymeric friction modifier (B).
  • the polymeric friction modifier (B) may function as an anti-corrosion agent in respect of the non-ferrous metal containing engine components, especially the engine components which include copper and/or lead, or an alloy containing such metals.
  • the lubricating oil composition as defined in the first aspect of the present invention includes (C) at least one oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt as an additive in an effective minor amount.
  • the oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt (C) is an oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate zinc salt (i.e. a zinc dihydrocarbyl dithiophosphate (ZDDP)), more preferably an oil-soluble or oil-dispersible zinc dialkyl dithiophosphate.
  • ZDDP zinc dihydrocarbyl dithiophosphate
  • oil-soluble or oil-dispersible polymeric friction modifier (B) as defined in the first aspect of the present invention as an additive in an effective minor amount, in combination with an oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt as defined herein, as an additive in an effective minor amount, in a lubricating oil composition comprising an oil of lubricating viscosity in a major amount, typically provides a lubricant that exhibits an improved inhibition and/or reduction in the corrosion (i.e. suppresses the corrosion) of the non-ferrous metal (e.g.
  • a comparable lubricant which includes an ashless organic friction modifier, such as GMO, in combination with an oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt as defined herein.
  • oil-soluble or oil-dispersible polymeric friction modifier (B) as defined in the first aspect of the present invention as an additive in an effective minor amount, in combination with the oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt as defined herein, as an additive in an effective minor amount, in a lubricating oil composition comprising an oil of lubricating viscosity in a major amount, typically provides a lubricant that exhibits an improved inhibition and/or reduction in the corrosion (i.e.
  • such reduced levels of non-ferrous metal corrosion e.g. reduced levels of copper and/or lead corrosion
  • an ashless organic friction modifier such as GMO
  • such reduced levels of non-ferrous metal corrosion may reduce the need for the use of relatively expensive supplemental anti-corrosion additives.
  • the use of the polymeric friction modifier (B), particularly when used in combination with a dihydrocarbyl dithiophosphate metal salt, typically provides the formulator with a higher degree of flexibility when formulating lubricating oil compositions which must meet strict anti-wear performance and fuel economy performance criteria as specified in industry lubricating oil specifications and in original equipment manufacturer's specifications.
  • a method of inhibiting and/or reducing the corrosion (i.e. suppressing the corrosion) of the non-ferrous metal containing engine components of an engine comprises lubricating the engine with a lubricating oil composition which comprises an oil of lubricating viscosity (A) in a major amount and an oil-soluble or oil-dispersible polymeric friction modifier (B) as defined in the first aspect of the invention, as an additive in an effective minor amount, and operating the engine.
  • the non-ferrous metal containing engine components include copper, lead or an alloy of such metals.
  • the engine is a spark-ignited or compression-ignited internal combustion engine.
  • the lubricating oil composition includes (C) at least one oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt as an additive in an effective minor amount.
  • the oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt (C) is an oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate zinc salt (i.e. a zinc dihydrocarbyl dithiophosphate (ZDDP)).
  • the lubricating oil composition as defined in each aspect of the present invention further includes one or more co-additives in an effective minor amount (e.g. 0.1 to 30 mass %), other than additive components (B) and (C), selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, pour point depressants, antiwear agents, friction modifiers, demulsifiers, antifoam agents and viscosity modifiers.
  • additive components (B) and (C) selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, pour point depressants, antiwear agents, friction modifiers, demulsifiers, antifoam agents and viscosity modifiers.
  • the lubricating oil composition as defined in each aspect of the present invention has a sulphated ash content of less than or equal to 1.2, even more preferably less than or equal to 1.1, more preferably less than or equal to 1.0, mass % (ASTM D874) based on the total mass of the composition.
  • the lubricating oil composition as defined in each aspect of the present invention contains low levels of phosphorus.
  • the lubricating oil composition contains phosphorus in an amount of less than or equal to 0.12 mass %, more preferably up to 0.11 mass %, even more preferably less than or equal to 0.10 mass %, even more preferably less than or equal to 0.09 mass %, even more preferably less than or equal to 0.08 mass %, most preferably less than or equal to 0.06, mass % of phosphorus (ASTM D5185) based on the total mass of the composition.
  • the lubricating oil composition as defined in each aspect of the present invention contains phosphorus in an amount of greater than or equal to 0.01, preferably greater than or equal to 0.02, more preferably greater than or equal to 0.03, even more preferably greater than or equal to 0.05, mass % of phosphorus (ASTM D5185) based on the total mass of the composition.
  • the lubricating oil composition as defined in each aspect of the present invention may contain low levels of sulfur.
  • the lubricating oil composition contains sulphur in an amount of up to 0.4, more preferably up to 0.3, even more preferably up to 0.2, mass % sulphur (ASTM D2622) based on the total mass of the composition.
  • a lubricating oil composition as defined in each aspect of the present invention contains up to 0.30, more preferably up to 0.20, most preferably up to 0.15, mass % nitrogen, based on the total mass of the composition and as measured according to ASTM method D5291.
  • the lubricating oil composition as defined in each aspect of the present invention may have a total base number (TBN), as measured in accordance with ASTM D2896, of 4 to 15, preferably 5 to 12, mg KOH/g.
  • TBN total base number
  • any upper and lower quantity, range and ratio limits set forth herein may be independently combined. Accordingly, any upper and lower quantity, range and ratio limits set forth herein associated with a particular technical feature of the present invention may be independently combined with any upper and lower quantity, range and ratio limits set forth herein associated with one or more other particular technical feature(s) of the present invention. Furthermore, any particular technical feature of the present invention, and all preferred variants thereof, may be independently combined with any other particular technical feature(s), and all preferred variants thereof.
  • the oil of lubricating viscosity (sometimes referred to as “base stock” or “base oil”) is the primary liquid constituent of a lubricant, into which additives and possibly other oils are blended, for example to produce a final lubricant (or lubricant composition).
  • a base oil is useful for making concentrates as well as for making lubricating oil compositions therefrom, and may be selected from natural (vegetable, animal or mineral) and synthetic lubricating oils and mixtures thereof.
  • the base stock groups are defined in the American Petroleum Institute (API) publication "Engine Oil Licensing and Certification System", Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998 .
  • the base stock will have a viscosity preferably of 3-12, more preferably 4-10, most preferably 4.5-8, mm 2 /s (cSt) at 100°C.
  • base stocks and base oils in this invention are the same as those found in the American Petroleum Institute (API) publication "Engine Oil Licensing and Certification System", Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998 . Said publication categorizes base stocks as follows:
  • oils of lubricating viscosity which may be included in the lubricating oil composition are detailed as follows: Natural oils include animal and vegetable oils (e.g. castor and lard oil), liquid petroleum oils and hydrorefined, solvent-treated mineral lubricating oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale are also useful base oils.
  • Synthetic lubricating oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g. dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenols (e.g. biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogues and homologues thereof.
  • hydrocarbon oils such as polymerized and interpolymerized olefins (e.g. polybut
  • Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g. butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
  • dicarboxylic acids e.g. phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dim
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
  • Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols, and polyol ethers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
  • Unrefined, refined and re-refined oils can be used in the compositions of the present invention.
  • Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
  • a shale oil obtained directly from retorting operations a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be unrefined oil.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
  • Re-refined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for approval of spent additive and oil breakdown products.
  • base oil examples include gas-to-liquid (“GTL”) base oils, i.e. the base oil may be an oil derived from Fischer-Tropsch synthesised hydrocarbons made from synthesis gas containing H 2 and CO using a Fischer-Tropsch catalyst. These hydrocarbons typically require further processing in order to be useful as a base oil. For example, they may, by methods known in the art, be hydroisomerized; hydrocracked and hydroisomerized; dewaxed; or hydroisomerized and dewaxed.
  • GTL gas-to-liquid
  • the base oil of a lubricating oil composition according to the present invention typically comprises no more than 85 mass % Group IV base oil, the base oil may comprise no more than 70 mass % Group IV base oil, or even no more than 50 mass % Group IV base oil.
  • the base oil of a lubricating oil composition according to the present invention may comprise 0 mass % Group IV base oil.
  • the base oil of a lubricating oil composition according to the present invention may comprise at least 5 mass %, at least 10 mass % or at least 20 mass % Group IV base oil.
  • the base oil of a lubricating oil composition according to the present invention may comprise from 0 to 85 mass%, or from 5-85 mass %, alternatively from 10-85 mass % Group IV base oil.
  • the volatility of the oil of lubricating viscosity or oil blend is less than or equal to 20 %, preferably less than or equal to 16 %, preferably less than or equal to 12 %, more preferably less than or equal to 10 %.
  • the viscosity index (VI) of the oil of lubricating viscosity is at least 95, preferably at least 110, more preferably up to 120, even more preferably at least 120, even more preferably at least 125, most preferably from about 130 to 140.
  • the oil of lubricating viscosity is provided in a major amount, in combination with a minor amount of additive component (B) as defined herein, optionally in combination with a minor amount of additive component (C) as defined herein and, if necessary, one or more co-additives, such as described herein, constituting a lubricating oil composition.
  • This preparation may be accomplished by adding the additives directly to the oil or by adding them in the form of a concentrate thereof to disperse or dissolve the additive.
  • Additives may be added to the oil by any method known to those skilled in the art, either before, at the same time as, or after addition of other additives.
  • the oil of lubricating viscosity is present in an amount of greater than 55 mass %, more preferably greater than 60 mass %, even more preferably greater than 65 mass %, based on the total mass of the lubricating oil composition.
  • the oil of lubricating viscosity is present in an amount of less than 98 mass %, more preferably less than 95 mass %, even more preferably less than 90 mass %, based on the total mass of the lubricating oil composition.
  • concentrates When concentrates are used to make the lubricating oil compositions, they may for example be diluted with 3 to 100, e.g. 5 to 40, parts by mass of oil of lubricating viscosity per part by mass of the concentrate.
  • the lubricating oil composition is a multigrade oil identified by the viscometric descriptor SAE 20WX, SAE 15WX, SAE 10WX, SAE 5WX or SAE 0WX, where X represents any one of 20, 30, 40 and 50; the characteristics of the different viscometric grades can be found in the SAE J300 classification.
  • the lubricating oil composition is in the form of an SAE 10WX, SAE 5WX or SAE 0WX, preferably in the form of a SAE 5WX or SAE 0WX, wherein X represents any one of 20, 30, 40 and 50.
  • X is 20 or 30.
  • the oil-soluble or oil-dispersible polymeric friction modifier (B) is the reaction product of only:
  • oil-soluble or oil-dispersible polymeric friction modifier (B) is a copolymer formed by the reaction of only (i), (ii), (iii) and (iv).
  • the one or more functionalised polyolefins is a poly(alkylene) which includes at least one diacid or anhydride functional group.
  • the one or more functionalised polyolefins are preferably derived from polymerisation of an olefin, especially a mono-olefin, having from 2 to 6 carbon atoms, such as ethene, propene, but-1-ene and isobutene (i.e. 2-methyl propene) and the resulting polyolefin functionalised with a diacid or anhydride functional group.
  • the one or more functionalised polyolefins is a poly(C 2 to C 6 alkylene) which includes at least one diacid or anhydride functional group.
  • the one or more functionalised polyolefins are derived from polymerisation of isobutene and the resulting polyisobutylene functionalised with at least one diacid or anhydride functional group (i.e. the one or more functionalised polyolefins are preferably one or more functionalised polyisobutylenes).
  • the polyalkylene part (e.g. the poly(C 2 to C 6 alkylene)) of the one or more functionalised polyolefins suitably includes a carbon chain of 15 to 500 (e.g. 35 to 500, 40 to 500, 50 to 500), preferably 50 to 200, carbon atoms.
  • the polyalkylene part of the one or more functionalised polyolefins has a number average molecular weight (Mn) of from 300 to 5000, preferably 500 to 1500, especially 800 to 1200 daltons.
  • the one or more functionalised polyolefins include at least one diacid or anhydride functional group which is capable of reacting with a hydroxyl functional group of the one or more polyalkylene glycols (B(ii)) or a hydroxyl group of the one or more polyols (B(iii)).
  • the one or more functionalised polyolefins may be formed by reaction of the polyolefin (i.e. poly(alkylene)) with an unsaturated diacid or anhydride.
  • the one or more functionalised polyolefins include an anhydride functional group (i.e. a poly(alkylene) which includes at least one anhydride functional group).
  • the anhydride functionalised polyalkylene(s) is derived from the reaction of the poly(alkylene) (e.g. poly(C 2 to C 6 alkylene)) with an anhydride, especially maleic anhydride which forms a succinic anhydride functional group.
  • the one or more functionalised polyolefin(s) is a poly(alkylene) which includes at least one anhydride functional group, especially a succinic anhydride functional group (i.e. the one or more functionalised polyolefins is a poly(alkylene) which includes at least one succinic anhydride functional group).
  • the one or more functionalised polyolefins is preferably one or more polyalkylenes which include an anhydride functional group, more preferably a poly(C 2 to C 6 alkylene) which includes an anhydride functional group, even more preferably a poly(C 2 to C 6 alkylene) which includes a succinic anhydride functional group, especially one or more polyisobutylene succinic anhydrides (PIBSAs).
  • PIBSAs polyisobutylene succinic anhydrides
  • the polyisobutylene of the PIBSA has a number average molecular weight (Mn) of from 300 to 5000, preferably 500 to 1500, especially 800 to 1200 daltons.
  • PIB is a commercially available compound and sold under the trade name of Glissopal by BASF and this product can be reacted to give a functionalised polyolefin (B(i)).
  • the one or more polyalkylene glycols are one or more poly(C 2 to C 20 alkylene) glycols, preferably one or more poly(C 2 to C 10 alkylene) glycols, more preferably one or more poly(C 2 to C 6 alkylene) glycols. More preferably, the one or more polyalkylene glycols is polyethylene glycol or polypropylene glycol or a mixed poly(ethylene-propylene) glycol. Most preferably, the one or more polyalkylene glycols are one or more polyethylene glycols (PEGs), especially one or more water soluble PEGs.
  • PEGs polyethylene glycols
  • the one or more polyalkylene glycols include two hydroxyl groups which are capable of reacting with the diacid or anhydride functional group of the one or more functionalised polyolefins (B(i)), thereby forming an essentially polyolefin-polyalkylene glycol copolymer. It will be appreciated that such polymeric compounds may react further with the functionalised polyolefin (B(i)), the polyalkylene glycol (B(ii)), the polyol (B(iii)) and/or the monocarboxylic acid (B(iv)).
  • the one or more polyalkylene glycols e.g. PEG
  • Mn number average molecular weight
  • the one or more polyalkylene glycols (B(ii)) is PEG 400 , PEG 600 or PEG 1000 .
  • PEG 400 , PEG 600 and PEG 1000 are commercially available from Croda International.
  • the one or more polyol reactants (B(iii)) are capable of reacting with the one or more functionalised polyolefins (B(i)) thereby providing a backbone moiety which links together separate blocks of functionalised polyolefin.
  • the polyol provides a backbone moiety which links together, via ester bonds, separate blocks of the polyolefin.
  • the one or more polyols are alcohols which include two or more hydroxyl functional groups (i.e. polyhydric alcohols) but excludes a "polyalkylene glycol" (component B(ii)) which is used to form the oil-soluble or oil-dispersible polymeric friction modifier.
  • the one or more polyols include three or more hydroxyl functional groups.
  • the one or more polyols may be a diol, triol, tetrol, and/or related dimers or chain extended polymers of such compounds.
  • the one or more polyols are one or more C 2 to C 20 hydrocarbyl polyols, more preferably one or more C 2 to C 20 aliphatic hydrocarbyl polyols, even more preferably a saturated C 2 to C 20 aliphatic hydrocarbyl polyol, even more preferably a saturated C 2 to C 15 aliphatic hydrocarbyl polyol.
  • the polyol has a molecular weight (Mw) of less than or equal to 400, preferably less than or equal to 350, more preferably less than or equal to 300, most preferably less than or equal to 280, daltons.
  • polyols examples include glycerol, neopentyl glycol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, dipentaerythritol, tripentaerythritol and sorbitol.
  • the one or more polyols comprises glycerol.
  • the copolymer reaction product of the one or more functionalised polyolefins (B(i)), the one or more polyalkylene glycols (B(ii)) and the one or more polyols (B(iii)) includes a reactive hydroxyl functional group (i.e. a hydroxyl group associated with the polyalkylene glycol or polyol moiety) and such copolymer is reacted with one or more monocarboxylic acids (B(iv)), thereby capping (e.g. chain terminating) the copolymer product of reaction (i.e. the monocarboxylic acid reacts with a hydroxyl functional group associated with a polyalkylene glycol or polyol moiety to form an ester).
  • a reactive hydroxyl functional group i.e. a hydroxyl group associated with the polyalkylene glycol or polyol moiety
  • monocarboxylic acids B(iv)
  • the one or more monocarboxylic acids are one or more C 2 to C 36 hydrocarbyl monocarboxylic acids (e.g. C 2 to C 20 hydrocarbyl monocarboxylic acids), preferably one or more C 6 to C 30 hydrocarbyl monocarboxylic acids, more preferably one or more C 12 to C 22 hydrocarbyl monocarboxylic acids.
  • the one or more monocarboxylic acids are one or more saturated or unsaturated, branched or linear, acyclic C 2 to C 36 aliphatic hydrocarbyl monocarboxylic acids, especially one or more saturated or unsaturated, branched or linear, acyclic C 6 to C 30 aliphatic hydrocarbyl monocarboxylic acids, more especially one or more saturated or unsaturated, branched or linear, acyclic C 12 to C 22 aliphatic hydrocarbyl monocarboxylic acids.
  • the one or more monocarboxylic acids are one or more unsaturated acyclic C 6 to C 30 aliphatic hydrocarbyl monocarboxylic acids, more especially one or more unsaturated, acyclic C 12 to C 22 aliphatic hydrocarbyl monocarboxylic acids.
  • the one or more monocarboxylic acids are selected from lauric acid, erucic acid, isostearic acid, palmitic acid, tall oil fatty acid, oleic acid or linoleic acid and mixtures thereof, especially tall oil fatty acid, oleic acid or linoleic acid and mixtures thereof.
  • the one or more monocarboxylic acids are one or more monocarboxylic fatty acids, especially tall oil fatty acid which primarily consists of oleic acid and linoleic acid.
  • oil-soluble or oil-dispersible polymeric friction modifier (B) is the reaction product of only:
  • multiple reactions between the one or more functionalised polyolefins (B(i)), the one or more polyalkylene glycols (B(ii)), the one or more polyols (B(iii)) and the one or more monocarboxylic acids (B(iv)) may occur.
  • the functionalised polyolefin and the polyalkylene glycol may react so that the polyolefin is linked directly to the polyalkylene glycol (e.g. via an ester bond) and subsequent reactions may occur between the resulting polymer with either the functionalised polyolefin, polyalkylene glycol, polyol and/or monocarboxylic acid.
  • the one or more functionalised polyolefins (B(i)) may react with the one or more polyols (B(iii)) to form blocks of the functionalised polyolefin linked together (typically via an ester linkage) by the polyol and subsequent reactions may occur between the resulting blocks of functionalised polyolefin with the polyalkylene glycol (B(ii)) and or monocarboxylic acid (B(iv)).
  • the functionalised polyolefin (B(i)), polyalkylene glycol (B(ii)), polyol (B(iii)) and monocarboxylic acid (B(iv)) may react to form a block copolymer.
  • the number of block copolymer units in the organic friction modifier additive typically ranges from 2 to 20, preferably 2 to 15, more preferably 2 to 10, units.
  • the polymeric friction modifier will typically comprise a mixture of molecules of various sizes.
  • the polymeric friction modifier (B) suitably has a number average molecular weight of from 1,000 to 30,000, preferably from 1,500 to 25,000, more preferably from 2,000 to 20,000, daltons.
  • the polymeric friction modifier (B) suitably has an acid value of less than or equal to 20, preferably less than or equal to 15 and more preferably less than or equal to 10 mg KOH/g (ASTM D974).
  • the polymeric friction modifier (B) suitably has an acid value of greater than or equal to 1, preferably greater than or equal to 3, more preferably greater than or equal to 5 mg KOH/g. In a preferred embodiment, the polymeric friction modifier (B) has an acid value in the range of 5 to 12 mg KOH/g.
  • the polymeric friction modifier (B) may be prepared by analogous synthetic methodology as described in International Patent Application no. WO 2011/107739 .
  • the functionalised polyolefin as defined herein, the polyalkylene glycol, as defined herein, and the monocarboxylic acid are heated at 100 to 250°C in the presence of a catalyst (e.g. tetrabutyl titanate) and water removed.
  • a catalyst e.g. tetrabutyl titanate
  • the polymeric friction modifier (B) is the reaction product of maleinised polyisobutylene (PIBSA), PEG, glycerol and tall oil fatty acid, wherein the polyisobutylene of the maleinised polyisobutylene (PIBSA) has a number average molecular weight of around 950 daltons, the PIBSA has an approximate saponification value of 98 mg KOH/g and the PEG has a number average molecular weight of around 600 daltons and a hydroxyl value of 190 mg KOH/g.
  • PIBSA maleinised polyisobutylene
  • PEG polyisobutylene
  • glycerol glycerol
  • a suitable additive may be made by charging 110 g (0.10 mol) of PIBSA, 72 g (0.12 mol) of PEG 600 , 25 g (approximately 0.1 mol) of tall oil fatty acid and 5 g (0.054 mol) of glycerol into a glass round bottomed flask equipped with a nitrogen purge, mechanical stirrer, isomantle heater and distillation arm. The reaction takes place in the presence of 0.1 ml of esterification catalyst tetrabutyl titanate at 200-220°C, with removal of water, to a final acid value of 10 mg KOH/g. Accordingly, alternative polymeric friction modifiers (B) may be prepared by analogous synthetic methods.
  • the polymeric friction modifier (B) is suitably present in the lubricating oil composition, on an active matter basis, in an amount of at least 0.1, preferably at least 0.2, mass % based on the total mass of the lubricating oil composition.
  • the polymeric friction modifier is suitably present in the lubricating oil composition, on an active matter basis, in an amount of less than or equal to 5, preferably less than or equal to 3, more preferably less than or equal to 1.5, mass %, based on the total mass of the lubricating oil composition.
  • any suitable oil-soluble or oil-dispersible dihydrocarbyl dithiophosphate metal salt having anti-wear properties in lubricating oil compositions may be employed.
  • the metal may be an alkali or alkaline earth metal, or aluminium, lead, tin, molybdenum, manganese, nickel, copper, or preferably, zinc.
  • a preferred dihydrocarbyl dithiophosphate metal salt is zinc dihydrocarbyl dithiophosphate (ZDDP), more preferably zinc dialkyl dithiophosphate, especially zinc di(C 2 to C 8 alkyl) dithiophosphate wherein the C 2 to C 8 alkyl groups of the zinc di(C 2 to C 8 alkyl) dithiophosphate may be the same or different.
  • ZDDP zinc dihydrocarbyl dithiophosphate
  • Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohols or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a metal compound.
  • DDPA dihydrocarbyl dithiophosphoric acid
  • a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
  • multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
  • any basic or neutral metal compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of metal due to the use of an excess of the basic metal compound in the neutralization reaction.
  • ZDDP zinc dihydrocarbyl dithiophosphates
  • R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals.
  • Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms.
  • the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
  • the total number of carbon atoms (i.e. R and R') in the dithiophosphoric acid will generally be about 5 or greater.
  • the zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
  • the dihydrocarbyl dithiophosphate metal salt such as ZDDP
  • ZDDP is added to the lubricating oil compositions in amounts sufficient to provide no greater than 1200ppm, preferably no greater than 1000ppm, more preferably no greater than 900ppm, most preferably no greater than 850ppm by mass of phosphorous to the lubricating oil, based upon the total mass of the lubricating oil composition, and as measured in accordance with ASTM D5185.
  • the dihydrocarbyl dithiophosphate metal salt such as ZDDP, is suitably added to the lubricating oil compositions in amounts sufficient to provide at least 100ppm, preferably at least 350ppm, more preferably at least 500ppm by mass of phosphorous to the lubricating oil, based upon the total mass of the lubricating oil composition, and as measured in accordance with ASTM D5185.
  • the dihydrocarbyl dithiophosphate metal salt such as ZDDP
  • the dihydrocarbyl dithiophosphate metal salt is present in an amount of greater than or equal to 0.1, preferably greater than or equal to 0.25, more preferably greater than or equal to 0.5, mass % based on the total mass of the lubricating oil composition.
  • the dihydrocarbyl dithiophosphate metal salt, such as ZDDP is present in an amount of less than or equal to 10, preferably less than or equal to 5.0, more preferably less than or equal to 3.0, mass % based on the total mass of the lubricating oil composition.
  • the lubricating oil composition may be used to lubricate mechanical engine components, particularly in internal combustion engines, e.g. spark-ignited or compression-ignited internal combustion engines, particularly spark-ignited or compression-ignited two- or four- stroke reciprocating engines, by adding the composition thereto.
  • the engines may be conventional gasoline or diesel engines designed to be powered by gasoline or petroleum diesel, respectively; alternatively, the engines may be specifically modified to be powered by an alcohol based fuel or biodiesel fuel.
  • the final lubricating oil composition typically made by blending the or each additive into the base oil, may contain from 5 to 25, preferably 5 to 18, typically 7 to 15, mass % of the co-additives, the remainder being oil of lubricating viscosity.
  • the lubricating oil composition includes one or more co-additives in a minor amount, other than additive components (B) and (C), selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, pour point depressants, antiwear agents, friction modifiers, demulsifiers, antifoam agents and viscosity modifiers.
  • additive components (B) and (C) selected from ashless dispersants, metal detergents, corrosion inhibitors, antioxidants, pour point depressants, antiwear agents, friction modifiers, demulsifiers, antifoam agents and viscosity modifiers.
  • additives can provide a multiplicity of effects, for example, a single additive may act as a dispersant and as an oxidation inhibitor.
  • Metal detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life.
  • Detergents generally comprise a polar head with a long hydrophobic tail, with the polar head comprising a metal salt of an acidic organic compound.
  • the salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80 mg KOH/g.
  • TBN total base number
  • a large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide).
  • the resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle.
  • a metal base e.g. carbonate
  • Such overbased detergents may have a TBN of 150 mg KOH/g or greater, and typically will have a TBN of from 250 to 450 mg KOH/g or more.
  • the amount of overbased detergent can be reduced, or detergents having reduced levels of overbasing (e.g., detergents having a TBN of 100 to 200 mg KOH/g), or neutral detergents can be employed, resulting in a corresponding reduction in the SASH content of the lubricating oil composition without a reduction in the performance thereof.
  • Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
  • a metal particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
  • the most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium. Combinations of detergents, whether overbased or neutral or both, may be used.
  • the lubricating oil composition includes metal detergents that are chosen from neutral or overbased calcium sulfonates having TBN of from 20 to 450 mg KOH/g, and neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450 mg KOH/g, and mixtures thereof.
  • Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples include those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
  • the alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms.
  • the alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
  • the oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal.
  • the amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 mass % (preferably at least 125 mass %) of that stoichiometrically required.
  • Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art.
  • Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
  • the lubricating oil composition comprises metal detergents that are neutral or overbased alkali or alkaline earth metal salicylates having a TBN of from 50 to 450 mg KOH/g, preferably a TBN of 50 to 250 mg KOH/g, or mixtures thereof.
  • Highly preferred salicylate detergents include alkaline earth metal salicylates, particularly magnesium and calcium, especially, calcium salicylates.
  • alkali or alkaline earth metal salicylate detergents are the sole metal-containing detergent in the lubricating oil composition.
  • Supplemental anti-wear agents other than dihydrocarbyl dithiophosphate metal salts (additive component (C)), which may be included in the lubricating oil composition comprise 1,2,3-triazoles, benzotriazoles, sulfurised fatty acid esters, and dithiocarbamate derivatives.
  • Ashless dispersants comprise an oil-soluble polymeric hydrocarbon backbone having functional groups that are capable of associating with particles to be dispersed.
  • the dispersants comprise amine, alcohol, amide, or ester polar moieties attached to the polymer backbone often via a bridging group.
  • the ashless dispersants may be, for example, selected from oil-soluble salts, esters, amino-esters, amides, imides, and oxazolines of long chain hydrocarbon substituted mono and dicarboxylic acids or their anhydrides; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having a polyamine attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and a polyalkylene polyamine.
  • Friction modifiers include glycerol monoesters of higher fatty acids, for example, glycerol mono-oleate (GMO); esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines, for example, ethoxylated tallow amine and ethoxylated tallow ether amine.
  • GMO glycerol mono-oleate
  • esters of long chain polycarboxylic acids with diols for example, the butane diol ester of a dimerized unsaturated fatty acid
  • oxazoline compounds oxazoline compounds
  • alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines for example,
  • the total amount of additional organic ashless friction modifier in a lubricant does not exceed 5 mass %, based on the total mass of the lubricating oil composition and preferably does not exceed 2 mass % and more preferably does not exceed 0.5 mass %.
  • the lubricating oil composition contains no additional organic ashless friction modifier.
  • Other known friction modifiers comprise oil-soluble organo-molybdenum compounds. Such organo-molybdenum friction modifiers also provide antioxidant and antiwear credits to a lubricating oil composition. Suitable oil-soluble organo-molybdenum compounds have a molybdenum-sulfur core. As examples there may be mentioned dithiocarbamates, dithiophosphates, dithiophosphinates, xanthates, thioxanthates, sulfides, and mixtures thereof. Particularly preferred are molybdenum dithiocarbamates, dialkyldithiophosphates, alkyl xanthates and alkylthioxanthates. The molybdenum compound is dinuclear or trinuclear.
  • One class of preferred organo-molybdenum compounds useful in all aspects of the present invention is tri-nuclear molybdenum compounds of the formula Mo 3 S k L n Q z and mixtures thereof wherein L are independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compounds soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through to 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms should be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms.
  • the molybdenum compounds may be present in the lubricating oil composition at a concentration in the range 0.1 to 2 mass %, or providing at least 10 such as 50 to 2,000 ppm by mass of molybdenum atoms.
  • the molybdenum from the molybdenum compound is present in an amount of from 10 to 1500, such as 20 to 1000, more preferably 30 to 750, ppm based on the total weight of the lubricating oil composition.
  • the molybdenum is present in an amount of greater than 500 ppm.
  • Viscosity modifiers function to impart high and low temperature operability to a lubricating oil.
  • the VM used may have that sole function, or may be multifunctional.
  • Multifunctional viscosity modifiers that also function as dispersants are also known.
  • Suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene and higher alpha-olefins, polymethacrylates, polyalkylmethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, inter polymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/ isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene and isoprene/divinylbenzene.
  • Anti-oxidants sometimes referred to as oxidation inhibitors, increase the resistance of the composition to oxidation and may work by combining with and modifying peroxides to render them harmless, by decomposing peroxides, or by rendering oxidation catalysts inert. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
  • suitable antioxidants are selected from copper-containing antioxidants, sulfur-containing antioxidants, aromatic amine-containing antioxidants, hindered phenolic antioxidants, dithiophosphates derivatives, and metal thiocarbamates.
  • Preferred anti-oxidants are aromatic amine-containing antioxidants, hindered phenolic antioxidants and mixtures thereof.
  • an antioxidant is present in a lubricating oil composition of the present invention.
  • Rust inhibitors selected from the group consisting of nonionic polyoxyalkylene polyols and esters thereof, polyoxyalkylene phenols, and anionic alkyl sulfonic acids may be used.
  • Copper and lead bearing corrosion inhibitors may be used, but are typically not required Typically such compounds are the thiadiazole polysulfides containing from 5 to 50 carbon atoms, their derivatives and polymers thereof. Derivatives of 1, 3, 4 thiadiazoles such as those described in U.S. Patent Nos. 2,719,125 ; 2,719,126 ; and 3,087,932 ; are typical. Other similar materials are described in U.S. Patent Nos. 3,821,236 ; 3,904,537 ; 4,097,387 ; 4,107,059 ; 4,136,043 ; 4,188,299 ; and 4,193,882 .
  • additives are the thio and polythio sulfenamides of thiadiazoles such as those described in UK Patent Specification No. 1,560,830 .
  • Benzotriazoles derivatives also fall within this class of additives. When these compounds are included in the lubricating composition, they are preferably present in an amount not exceeding 0.2 wt. % active ingredient.
  • a small amount of a demulsifying component may be used.
  • a preferred demulsifying component is described in EP 330522 . It is obtained by reacting an alkylene oxide with an adduct obtained by reacting a bis-epoxide with a polyhydric alcohol.
  • the demulsifier should be used at a level not exceeding 0.1 mass % active ingredient. A treat rate of 0.001 to 0.05 mass % active ingredient is convenient.
  • Pour point depressants otherwise known as lube oil flow improvers, lower the minimum temperature at which the fluid will flow or can be poured.
  • Such additives are well known. Typical of those additives which improve the low temperature fluidity of the fluid are C 8 to C 18 dialkyl fumarate/vinyl acetate copolymers, polyalkylmethacrylates and the like.
  • Foam control can be provided by many compounds including an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
  • each of the components can be added directly to the base stock or base oil blend by dispersing or dissolving it in the base stock or base oil blend at the desired level of concentration. Such blending may occur at ambient or elevated temperatures.
  • all the additives except for the viscosity modifier and the pour point depressant are blended into a concentrate or additive package described herein as the additive package that is subsequently blended into base stock to make the finished lubricant.
  • the concentrate will typically be formulated to contain the additive(s) in proper amounts to provide the desired concentration in the final formulation when the concentrate is combined with a predetermined amount of a base lubricant.
  • the concentrate is preferably made in accordance with the method described in US 4,938,880 . That patent describes making a pre-mix of ashless dispersant and metal detergents that is pre-blended at a temperature of at least about 100°C. Thereafter, the pre-mix is cooled to at least 85°C and the additional components are added.
  • the additive package used to formulate the lubricating oil composition has a total base number (TBN) as measured by ASTM D2896 of 25 to 100, preferably 45 to 80, and the lubricating oil composition has a total base number (TBN) as measured by ASTM D2896 of 4 to 15, preferably 5 to 12.
  • the additive package does not have a total base number (TBN) as measured by ASTM D2896 of between 62 and 63.5 and the lubricating oil composition does not have a total base number (TBN) as measured by ASTM D2896 of between 9.05 and 9.27.
  • the final crankcase lubricating oil formulation may employ from 2 to 20, preferably 4 to 18, and most preferably 5 to 17, mass % of the concentrate or additive package with the remainder being base stock.
  • the lubricating oil composition does not comprise 0.2-0.25 mass% of sulphur as measured according to ASTM method D4927.
  • a lubricating oil composition does not comprise 0.08-0.11 mass% of nitrogen as measured according to ASTM method D5291.
  • a 500 cm 3 5-necked round-bottomed flask equipped with a nitrogen purge, stirrer with a gas-tight stirrer bearing, temperature probe and distillation arm attached to an exit bubbler was charged with PIBSA (110 g, 0.10 mol), PEG 600 (72 g, 0.12 mol), tall oil fatty acid (25 g, approximately 0.1 mol) and glycerol (5.0 g, 0.054 mol) and the mixture heated at 180 °C with stirring for 1 hour.
  • PIBSA 110 g, 0.10 mol
  • PEG 600 72 g, 0.12 mol
  • tall oil fatty acid 25 g, approximately 0.1 mol
  • glycerol 5.0 g, 0.054 mol
  • the reaction mixture was then heated to a temperature of 220°C for 1 hour and then tetrabutyl titanate (0.1 ml) added thereto and heating and stirring continued for 2 hours at a temperature of 220°C with removal of water and a reduced pressure of between 50 to 150 mbar.
  • the reaction mixture was cooled to below 100°C and the polymeric friction modifier (B) poured from the round bottom flask.
  • the polymeric friction modifier (B) had an acid value of 10 mg KOH/g.
  • Each of the base lubricant and Oils 1 to 4 contained an identical Group II base stock and equal amounts of the following identical additives: an overbased calcium sulphonate detergent (TBN 300 mg KOH/g); a dispersant; anti-oxidants; a molybdenum friction modifier; and a viscosity modifier.
  • Oils 1 to 4 also included the additional additive(s), on an active ingredient basis, as detailed in Table 1.
  • Those oils which included ZDDP i.e. Oils 2 to 4) had a phosphorus content of 880ppm as measured by ASTM D5185.
  • HTCBT High Temperature Corrosion Bench Test
  • test lubricating oil 100 ml
  • the sample tube is immersed in a heated oil bath so that the temperature of the test lubricating oil is heated to 135°C.
  • the test lubricating oil is heated at 135°C for 168 hours and during this time dry air is blown through the heated oil at a rate of 5 litres per hour. After which, the test lubricating oil is cooled and the metal specimens removed and examined for corrosion.
  • concentration of copper, tin and lead in the test lubricating oil composition and a reference sample of the lubricating oil composition i.e.
  • Oil 4 a lubricant which includes ZDDP and the polymeric friction modifier (B)
  • Oil 3 a lubricant which includes ZDDP and the polymeric friction modifier (B)
  • the polymeric friction modifier (B) provides significantly less lead corrosion than the ashless organic friction modifier present in Oil 3 (85 ppm versus 420 ppm) and the polymeric friction modifier is far superior than the ashless organic friction modifier at inhibiting copper corrosion (16 ppm versus 22 ppm).
  • a comparison of the results of Oil 4 with those of the base lubricant clearly demonstrate that the presence of both ZDDP and the polymeric friction modifier (B) provides a significant decrease in copper corrosion (16 ppm versus 33 ppm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Claims (11)

  1. Utilisation, dans la lubrification d'un moteur à combustion interne à allumage par étincelle ou à allumage par compression, d'un modificateur de frottement polymère soluble dans l'huile ou dispersible dans l'huile (B), en tant qu'additif en une quantité mineure efficace d'au moins 0,1 % en masse par rapport à la masse totale de la composition d'huile lubrifiante, dans une composition d'huile lubrifiante comprenant une huile de viscosité lubrifiante (A) en une quantité majeure, pour réduire et/ou inhiber la corrosion de composants de moteur contenant du cuivre et/ou du plomb, ou un alliage de ces métaux, durant le fonctionnement du moteur, en comparaison avec un lubrifiant comparable qui contient un modificateur de frottement monooléate de glycérol et un sel dihydrocarbyl-dithiophosphate métallique soluble dans l'huile ou dispersible dans l'huile, où : le modificateur de frottement polymère soluble dans l'huile ou dispersible dans l'huile (B) est le produit de la réaction de seulement : (i) un ou plusieurs anhydrides polyisobutylène-succiniques (PIBSA) ; et (ii) un ou plusieurs poly(alkylène en C2 à C6) glycols ; et (iii) un ou plusieurs hydrocarbyl-polyols aliphatiques en C2 à C20 ; et (iv) un ou plusieurs acides hydrocarbyl-monocarboxyliques en C6 à C30 acycliques insaturés ; et
    où la composition d'huile lubrifiante contient un sel dihydrocarbyl-dithiophosphate métallique soluble dans l'huile ou dispersible dans l'huile (C), en tant qu'additif, en une quantité mineure efficace.
  2. Utilisation selon la revendication 1, où le polyisobutylène des un ou plusieurs anhydrides polyisobutylène-succiniques a une masse moléculaire moyenne en nombre (Mn) de 300 à 5 000 daltons.
  3. Utilisation selon l'une quelconque des revendications précédentes, où les un ou plusieurs poly-(alkylène en C2 à C6) glycols (B (ii)) sont un ou plusieurs polyéthylèneglycols (PEG).
  4. Utilisation selon la revendication 3, où les un ou plusieurs polyéthylèneglycols ont une masse moléculaire moyenne en nombre (Mn) de 400 à 1 000 daltons.
  5. Utilisation selon l'une quelconque des revendications précédentes, où les un ou plusieurs hydrocarbyl-polyols aliphatiques en C2 à C20 (B (iii)) sont le glycérol.
  6. Utilisation selon l'une quelconque des revendications précédentes, où les un ou plusieurs acides hydrocarbyl-monocarboxyliques en C6 à C30 acycliques (B (iv)) sont un acide gras de tallol.
  7. Utilisation selon l'une quelconque des revendications précédentes, où le modificateur de frottement polymère (B) est le produit de la réaction de seulement : (i) un ou plusieurs anhydrides polyisobutylène-succiniques ; et (ii) un ou plusieurs polyéthylèneglycols ; et (iii) du glycérol ; et (iv) un acide gras de tallol.
  8. Utilisation selon l'une quelconque des revendications précédentes, où le modificateur de frottement polymère (B) a une masse moléculaire moyenne en nombre (Mn) de 1 000 à 30 000 daltons.
  9. Utilisation selon l'une quelconque des revendications précédentes, où le sel dihydrocarbyl-dithio-phosphate métallique soluble dans l'huile ou dispersible dans l'huile (C) est un dihydrocarbyl-dithiophosphate de zinc.
  10. Utilisation selon l'une quelconque des revendications précédentes, où le sel dihydrocarbyl-dithio-phosphate métallique soluble dans l'huile ou dispersible dans l'huile (C) est présent en une quantité dotant la composition d'huile lubrifiante d'au moins 100 ppm à au plus 1 200 ppm en masse de phosphore, par rapport à la masse totale de la composition d'huile lubrifiante, et telle que mesurée conformément à la norme ASTM D5185.
  11. Utilisation selon l'une quelconque des revendications précédentes, où les composants de moteur contenant un métal non ferreux comprennent du cuivre ou un alliage de celui-ci.
EP15170161.2A 2014-07-17 2015-06-01 Compositions d'huile de lubrification Active EP2977436B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15170161.2A EP2977436B1 (fr) 2014-07-17 2015-06-01 Compositions d'huile de lubrification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14177471 2014-07-17
EP15170161.2A EP2977436B1 (fr) 2014-07-17 2015-06-01 Compositions d'huile de lubrification

Publications (2)

Publication Number Publication Date
EP2977436A1 EP2977436A1 (fr) 2016-01-27
EP2977436B1 true EP2977436B1 (fr) 2021-07-14

Family

ID=51228293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15170161.2A Active EP2977436B1 (fr) 2014-07-17 2015-06-01 Compositions d'huile de lubrification

Country Status (7)

Country Link
EP (1) EP2977436B1 (fr)
JP (1) JP6906890B2 (fr)
CN (1) CN105273802B (fr)
BR (1) BR102015016942B1 (fr)
CA (1) CA2897619C (fr)
GB (1) GB2528569B (fr)
SG (1) SG10201505532TA (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10479953B2 (en) 2018-01-12 2019-11-19 Afton Chemical Corporation Emulsifier for use in lubricating oil
CN111073728A (zh) * 2019-11-15 2020-04-28 山西潞安矿业(集团)有限责任公司 一种高性能润滑油添加剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209411A (en) * 1979-03-23 1980-06-24 Exxon Research & Engineering Co. Methylol polyesters of C12 -C22 hydrocarbon substituted succinic anhydride or acid, their preparation and use as additives for lubricants and fuels

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719126A (en) 1952-12-30 1955-09-27 Standard Oil Co Corrosion inhibitors and compositions containing same
US2719125A (en) 1952-12-30 1955-09-27 Standard Oil Co Oleaginous compositions non-corrosive to silver
US3087932A (en) 1959-07-09 1963-04-30 Standard Oil Co Process for preparing 2, 5-bis(hydrocarbondithio)-1, 3, 4-thiadiazole
US3904537A (en) 1972-05-03 1975-09-09 Lubrizol Corp Novel disulfides derived from 1,2,4-thiadiazole
US3821236A (en) 1972-05-03 1974-06-28 Lubrizol Corp Certain 2-halo-1,2,4-thiadiazole disulfides
US4193882A (en) 1973-07-06 1980-03-18 Mobil Oil Corporation Corrosion inhibited lubricant composition
US4136043A (en) 1973-07-19 1979-01-23 The Lubrizol Corporation Homogeneous compositions prepared from dimercaptothiadiazoles
GB1560830A (en) 1975-08-08 1980-02-13 Exxon Research Engineering Co Sulphenamides
US4097387A (en) 1976-09-03 1978-06-27 Standard Oil Company (Indiana) Olefin-dimercapto-thiadiazole compositions and process
US4107059A (en) 1977-06-27 1978-08-15 Pennwalt Corporation Polymer of 1,2,4-thiadiazole and lubricants containing it as an additive
GB2017719B (en) * 1978-03-23 1982-07-21 Ici Ltd Surfactant compositions comprising a blend of two types of alk(en)yl succinic polyester
US4188299A (en) 1978-05-17 1980-02-12 Standard Oil Company (Indiana) Oil soluble dithiophosphoric acid derivatives of mercaptothiadiazoles
US4938880A (en) 1987-05-26 1990-07-03 Exxon Chemical Patents Inc. Process for preparing stable oleaginous compositions
IL89210A (en) 1988-02-26 1992-06-21 Exxon Chemical Patents Inc Lubricating oil compositions containing demulsifiers
EP2290043B1 (fr) * 2009-08-24 2012-08-29 Infineum International Limited Composition d'huile de lubrification comprenant un métal dialkyldithiophosphate et un carbodiimide
GB201003579D0 (en) 2010-03-04 2010-04-21 Croda Int Plc Friction reducing additive
US9963656B2 (en) * 2012-04-12 2018-05-08 Infineum International Limited Lubricating oil compositions
US9963655B2 (en) * 2012-04-12 2018-05-08 Infineum International Limited Lubricating oil compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209411A (en) * 1979-03-23 1980-06-24 Exxon Research & Engineering Co. Methylol polyesters of C12 -C22 hydrocarbon substituted succinic anhydride or acid, their preparation and use as additives for lubricants and fuels

Also Published As

Publication number Publication date
CA2897619C (fr) 2023-01-03
CN105273802B (zh) 2020-06-12
GB2528569B (en) 2016-10-19
JP6906890B2 (ja) 2021-07-21
SG10201505532TA (en) 2016-02-26
GB201509858D0 (en) 2015-07-22
BR102015016942B1 (pt) 2021-05-18
BR102015016942A2 (pt) 2016-01-19
GB2528569A (en) 2016-01-27
CN105273802A (zh) 2016-01-27
EP2977436A1 (fr) 2016-01-27
CA2897619A1 (fr) 2016-01-17
JP2016023312A (ja) 2016-02-08

Similar Documents

Publication Publication Date Title
CA2812480C (fr) Compositions d'huile lubrifiante
EP2952561B1 (fr) Compositions d'huile de lubrification
EP3263676B1 (fr) Compositions d'huile de lubrification
EP2952564B1 (fr) Compositions d'huile de lubrification
EP2457984B1 (fr) Composition d'huile lubrifiante
EP2952562B1 (fr) Compositions d'huile de lubrification
EP2952563B1 (fr) Compositions d'huile de lubrification
EP2913384B1 (fr) Composition d'huile lubrifiante
EP2977436B1 (fr) Compositions d'huile de lubrification

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20160219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210216

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOODWARD, PHILIP JAMES

Inventor name: STRONG, ANTHONY JAMES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015071247

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1410664

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210714

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1410664

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015071247

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

26N No opposition filed

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230509

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240509

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240509

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240611

Year of fee payment: 10