EP2944401A1 - Method for producing a component from a metallic alloy containing an amorphous phase - Google Patents
Method for producing a component from a metallic alloy containing an amorphous phase Download PDFInfo
- Publication number
- EP2944401A1 EP2944401A1 EP14168461.3A EP14168461A EP2944401A1 EP 2944401 A1 EP2944401 A1 EP 2944401A1 EP 14168461 A EP14168461 A EP 14168461A EP 2944401 A1 EP2944401 A1 EP 2944401A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- component
- temperature
- amorphous
- produced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001092 metal group alloy Inorganic materials 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 143
- 239000002245 particle Substances 0.000 claims abstract description 58
- 229910000808 amorphous metal alloy Inorganic materials 0.000 claims abstract description 28
- 230000009466 transformation Effects 0.000 claims abstract description 28
- 238000003825 pressing Methods 0.000 claims abstract description 20
- 238000002425 crystallisation Methods 0.000 claims abstract description 18
- 230000008025 crystallization Effects 0.000 claims abstract description 18
- 238000005245 sintering Methods 0.000 claims abstract description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 40
- 229910052786 argon Inorganic materials 0.000 claims description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 11
- 238000000889 atomisation Methods 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 10
- 239000010955 niobium Substances 0.000 claims description 10
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 5
- 229910052756 noble gas Inorganic materials 0.000 claims description 5
- 238000001513 hot isostatic pressing Methods 0.000 claims description 3
- 238000007731 hot pressing Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 239000011265 semifinished product Substances 0.000 abstract description 2
- 229910045601 alloy Inorganic materials 0.000 description 17
- 239000000956 alloy Substances 0.000 description 17
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 238000007873 sieving Methods 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000000155 melt Substances 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 101100365384 Mus musculus Eefsec gene Proteins 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000005300 metallic glass Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- HCBIBCJNVBAKAB-UHFFFAOYSA-N Procaine hydrochloride Chemical compound Cl.CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 HCBIBCJNVBAKAB-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/006—Amorphous articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/08—Metallic powder characterised by particles having an amorphous microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/002—Making metallic powder or suspensions thereof amorphous or microcrystalline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/10—Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/186—High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/03—Amorphous or microcrystalline structure
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2200/00—Crystalline structure
- C22C2200/02—Amorphous
Definitions
- the invention relates to a method for producing a component from an at least partially amorphous metal alloy.
- the invention further relates to a component made of a metal alloy with amorphous phase and the use of such a component.
- Amorphous metals and their alloys have been known for several decades. Thin tapes and their manufacture are disclosed, for example, in the disclosure DE 35 24 018 A1 described, wherein on a support by quench cooling from the molten phase, a thin metallic glass is produced. Also, for example, in the patent EP 2 430 205 B1 described a composite of an amorphous alloy, which requires a cooling rate of 102 K / s for its production. The disadvantage of this is that with such known methods only thin layers or very compact components can be constructed with a few millimeters in cross-section.
- the object of the invention is therefore to overcome the disadvantages of the prior art.
- a simple and inexpensive to implement method is to be developed with which a component can be made of a metal alloy with amorphous portion, which may have a volume of 0.1 cm 3 and more, preferably 1 cm 3 and more, and in different Even complex shapes can be generated.
- the component produced should also have the highest possible homogeneity with regard to the physical properties and the distribution of the amorphous phase.
- Object of the present invention is also to provide such a component.
- the process should be easy to implement and deliver highly reproducible results.
- the component produced should have the highest possible proportion of amorphous metallic phase. It is also desirable if the component produced is as compact as possible and has only a few pores.
- Another object can be seen that the method can be implemented with the largest possible number of different alloys having an amorphous phase. Furthermore, it is advantageous if the method can be implemented with the simplest and most commonly used in laboratories equipment and tools.
- the duration of the temperature treatment is selected such that the duration is at least so long that the powder is sintered after the heat treatment, and that the duration is at most so long that the component after the Temperature treatment still has an amorphous content of at least 85 percent.
- an amorphous material is a substance in which the atoms do not form ordered structures but form an irregular pattern and have only short-range order, but not long-range ordering. In contrast to amorphous, regularly structured materials are called crystalline.
- Spherical particles need not be geometrically perfect spheres within the meaning of the present invention, but may also deviate from the spherical shape.
- Preferred spherical powder particles have a rounded at least approximately spherical shape and have a ratio of the longest cross section to the shortest cross section of at most 2 to 1.
- a spherical geometry does not mean a strictly geometrical or mathematical sphere.
- the cross-sections relate to running within the powder particles extremale dimensions.
- Particularly preferred spherical powder particles may have a ratio of the longest cross section to the shortest cross section of at most 1.5 to 1, or most preferably spherical. In this case, the diameter of the largest cross-section of the powder particles is assumed according to the invention.
- the component may, in accordance with a preferred embodiment of the present invention, be considered to be sintered in particular if it has a density of at least 97% of the theoretical density of the completely amorphous metal alloy.
- sintering or sintering is understood as meaning a process in which the powder particles soften on the surface and combine with one another and remain connected after cooling. As a result, a coherent body or a coherent component is generated from the powder.
- the transformation temperature of an amorphous phase is often referred to as the glass transition temperature or as a transformation point or glass transition point, it being understood that these are equivalent terms for the transformation temperature.
- the powder is formed by filling the powder into a mold or into a tool and then pressing the powder in the mold or in the tool or by pressing it with the tool.
- the heating until reaching the transformation temperature and the cooling should be carried out according to the invention as quickly as possible, since even at these temperatures below the transformation temperature crystallization takes place on the inevitable seed crystals, but still no softening of the powder particles is achieved, leading to sintering of the powder could lead. It is to be achieved according to the invention a plastic deformation of the powder particles, which leads to a compacting of the powder and thus to an accelerated sintering of the powder. An overshoot of the temperature above the desired setpoint temperature or final temperature should be as low as possible.
- the powder particle size of the powder or the powder particle size distribution of the powder can be achieved by the manufacturing process and by sieving a starting powder.
- the powder provided according to the invention is thus produced by sieving a starting powder before it is provided or used for the process according to the invention.
- by sieving can also be ensured that the Number of powder particles having a shape deviating greatly from the spherical shape, which are formed by sintering several powder particles and which are contained in the starting powder, can be reduced or minimized.
- the temperature treatment is carried out under vacuum, wherein preferably the powder is compacted by a temperature treatment at a vacuum of at least 10 -3 mbar.
- metal oxides and other reaction products as nucleating agents for crystalline phases, have a negative effect on the purity of the amorphous phase in the produced component.
- the invention may additionally or alternatively be provided that the temperature treatment is carried out under a protective gas, in particular under a noble gas such as argon, preferably with a purity of at least 99.99%, more preferably with a purity of at least 99.999 % he follows. It may preferably be provided in such embodiments that the atmosphere in which the pressing and the temperature treatment or only the temperature treatment takes place is largely freed of residual gases by repeated evacuation and rinsing with inert gas, in particular with argon.
- a protective gas in particular under a noble gas such as argon
- the temperature treatment takes place under a reducing gas, in particular under a forming gas, in order to keep the amount of interfering metal oxides as low as possible.
- Another measure for reducing the number of metal oxides in the component can be achieved by the use of an oxygen getter in the temperature treatment of the powder and / or in the production of the powder.
- the powder is compacted by hot isostatic pressing or hot pressing.
- the combination of pressure and temperature treatment results in a more compact component.
- the connection is due to the plastic deformation of the Powder particles improved with each other and accelerated the sintering behavior, so that a shorter duration of the temperature treatment can be selected and the proportion of crystalline phase is reduced in the component.
- the duration of the temperature treatment is selected such that the component has an amorphous content of at least 90 percent, preferably of more than 95 percent, particularly preferably more than 98 percent.
- Preferred embodiments of the present invention may also provide that a powder of an amorphous metal alloy or an at least partially amorphous metal alloy having at least 50 weight percent zirconium is used.
- Zirconium-containing amorphous metal alloys are particularly well suited for practicing methods of the present invention because many of these alloys have a large difference between the transformation temperature and the crystallization temperature, making the process easier to implement.
- zirconium The remainder up to 100 percent by weight is zirconium. Common contaminants may be included in the alloy. These zirconium-containing amorphous metal alloys are particularly well suited for implementing inventive methods.
- the spherical amorphous metal alloy powder is produced by melt atomization, preferably by melt atomization in a noble gas, in particular in argon, particularly preferably by melt atomization in a noble gas of purity 99.99%, 99.999% or higher purity.
- an amorphous metal alloy is also used if the metal alloy has an amorphous phase content of at least 85% by volume.
- melt atomization powder particles can be produced with spherical shape in a simple and cost-effective manner.
- inert gas, in particular of argon or high-purity argon in the melt atomization causes that in the powder as few disturbing impurities as metal oxides are included.
- the powder has less than 1 percent by weight of particles with a diameter smaller than 5 microns or the powder is sieved or treated by air classification, so that it is less than 1 percent by weight of particles with a diameter has less than 5 microns.
- powder particles with a diameter of less than 5 ⁇ m are preferably removed by air classification, or more precisely, the proportion of powder particles with a diameter of less than 5 ⁇ m is reduced by air classification.
- the temperature treatment of the powder takes place at a temperature (T) between the transformation temperature and a maximum temperature, the maximum temperature being 30% higher than the temperature difference between the transformation temperature (T T ) and the crystallization temperature (T K ) of the amorphous phase of the metallic alloy is above the transformation temperature (T T ), the maximum temperature preferably being 20% or 10% of the temperature difference between the transformation temperature (T T ) and the crystallization temperature (T K ) the amorphous phase of the metallic alloy is above the transformation temperature (T T ).
- the temperature T at which the temperature treatment of the powder takes place should fulfill the following conditions: T T ⁇ T ⁇ T T + 30 / 100 * T K - T T or preferably T T ⁇ T ⁇ T T + (20/100) * (T K -T T ) or particularly preferably T T ⁇ T ⁇ T T + (10/100) * (T K -T T ).
- a particularly advantageous embodiment of the method according to the invention results if it is provided that the duration of the temperature treatment is selected as a function of the geometric shape, in particular the thickness, of the component to be produced, preferably as a function of the largest relevant diameter of the component to be produced ,
- the geometric shape, or the thickness, of the component to be produced is taken into account in that the heat conduction in the shaped powder or forming component should be sufficient to heat the powder inside the component or the component inside up to the transformation temperature or above the transformation temperature, so that also takes place inside the component sintering of the powder.
- the largest relevant diameter of the component can be geometrically determined by the largest sphere that can be geometrically accommodated within the component.
- the duration of the heat treatment in a time range of 3 seconds per millimeter of the thickness or the wall thickness of the component or the largest relevant diameter of the component to be produced to 900 seconds per millimeter of thickness or the largest relevant diameter of the Component takes place, wherein preferably the duration of the temperature treatment in a time range of 5 seconds per millimeter of the thickness or the wall thickness of the component or the largest relevant diameter of the component to be produced to 600 seconds per millimeter of thickness or the largest relevant diameter of the component to be produced he follows.
- the duration of the temperature treatment is selected so that sufficient sintering of the powder occurs, but at the same time as possible the formation of crystalline phase in the component is kept low or ideally minimal.
- it may already be sufficient if only the edge regions of the component are completely sintered and powder that is not yet sintered is present in the interior of the component.
- the component is sintered completely (also inside).
- the objects underlying the present invention are also achieved by a component made of a pressed, sintered, spherical, amorphous metal alloy powder, wherein the component has an amorphous content of at least 85 percent.
- the component is produced by a method according to the invention. Such methods according to the invention have been described above.
- the invention is based on the surprising finding that by using spherical powder particles of suitable size and a temperature treatment at the suitable temperature over a suitable short period, it is also possible to produce larger and / or complex components from a powder of an amorphous metal alloy consist of a high proportion (at least 85 percent by volume) of the amorphous phase and thus have advantageous physical properties of the amorphous metal alloy.
- the present invention thus describes for the first time a method in which a component of an amorphous metal alloy or of a metal alloy consisting of at least 85% of an amorphous phase can be produced by sintering a powder in which a high proportion of amorphous phase is retained.
- the duration of the temperature treatment is adapted to the dimensions of the component to be produced in order to obtain the highest possible proportion of amorphous phase during sintering of the powder, or to keep the proportion of crystalline phase in the metal alloy as low as possible.
- metal oxides and other reaction products act in particular as nuclei for the crystallization and thus reduce the proportion of amorphous phase in the component.
- amorphous metallic powders for producing the component are produced by melt atomization and the powders are X-ray amorphous, with their powder particles preferably being smaller than 125 ⁇ m.
- the resulting molten droplets of the alloy are very rapidly passed through the process gas stream (argon). cooled, whereby the presence of an amorphous powder fraction is promoted.
- the fine dust (particles smaller than 5 ⁇ m) and the coarse grain of greater than 125 ⁇ m be largely separated from this powder, for example by sieving and / or by air classification of the powder.
- Such powder fractions are then an optimum starting material (the powder provided) to produce complex amorphous components by pressing and temperature treatment, both successive or combined pressure and temperature steps having very good results with respect to the amorphous behavior of the component.
- the powder provided an optimum starting material
- the powder provided to produce complex amorphous components by pressing and temperature treatment, both successive or combined pressure and temperature steps having very good results with respect to the amorphous behavior of the component.
- the component thus produced and made of such a powder has a high degree of sintered powder particles and a low porosity, preferably a porosity of less than 5%.
- the amorphous powder is not heated to the crystallization temperature or beyond, otherwise crystallization occurs and the amorphous character of the alloy is lost.
- it is necessary to heat the material at least to the transformation temperature ie the temperature at which the amorphous phase of the metal alloy during the cooling from the plastic region in the rigid state passes. In this temperature range, the powder particles can connect, but without crystallizing.
- the transformation temperature can also be referred to as the glass transition temperature and is often referred to as such.
- the duration of the temperature treatment depends mainly on the volume of the component and should not take too long, as a rule, since each small crystal nucleus acts as a seed crystal and so crystals can grow, or so spreads the unwanted crystalline phase in the component.
- a temperature treatment in the temperature range according to the invention with a maximum duration of 400 seconds per 1 mm component cross-section gives particularly good results.
- the heating-up phase should also take place as quickly as possible since, in some cases, the undesired crystal growth already occurs 50 Kelvin below the transformation temperature.
- T is the working temperature
- T T is the transformation temperature of the amorphous metal alloy
- T K is the crystallization temperature of the amorphous phase of the metal alloy.
- an amorphous metallic powder is produced from a metallic alloy whose composition is suitable for forming an amorphous phase or which already consists of the amorphous phase. This is followed by a powder fractionation in which too small and too large powder particles or powder particles, in particular by sieving and air classification, are removed. The powder can then be pressed either with or without temperature entry in a desired shape. When the powder is pressed into the mold without the introduction of temperature, a temperature treatment is subsequently carried out, which in the context of the present invention is referred to as sintering or which causes sintering. The temperature treatment during pressing or after pressing takes place for a maximum period of 900 seconds per 1 mm component cross-section at a temperature above the Transformation temperature T T and below the crystallization temperature T K of the amorphous phase of the metallic alloy used.
- Niobium Film 99.97% Article Number 002378 was heated in an induction melting plant (VSG, inductively heated vacuum, melting and casting plant, Nürmont, Freiberg) under 800 mbar argon (argon 6.0, Linde AG, Pullach) melted and poured into a water-cooled copper mold. From the thus produced alloy was prepared by a method such as WO 99/30858 A1 is known, produced in a Nanoval Schmelzverdüsungs apparatus (Nanoval GmbH & Co. KG, Berlin) by atomizing the melt with argon, a fine powder.
- the fine grain is separated, so that less than 0.1% of the particles are smaller than 5 microns in size, ie at least 99.9% of the particles have a diameter or have a size of 5 microns or more, and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH, Haan Germany, Article No. 60.131.000125) are removed all powder particles that are larger than 125 microns.
- the powder thus produced is examined by means of X-ray diffractometry and has an amorphous content greater than 95%.
- the compacted compacts are finally compacted by hot isostatic pressing under a pressure of 200 megapascal (200 MPa) under high-purity argon (Argon 6.0, Linde AG, Pullach) at a temperature of 400 ° C for 90 seconds.
- Niobium Film 99.97% Article Number 002378 was heated in an induction melting plant (VSG, inductively heated vacuum, melting and casting plant, Nürmont, Freiberg) under 800 mbar argon (argon 6.0, Linde AG, Pullach) melted and poured into a water-cooled copper mold. From the thus produced alloy was prepared by a method such as WO 99/30858 A1 is known, produced in a Nanoval Schmelzverdüsungs apparatus (Nanoval GmbH & Co. KG, Berlin) by atomizing the melt with argon, a fine powder.
- the fine grain was separated by separation by means of air classification Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Germany), so that less than 0.1% of the particles are smaller than 5 microns in size and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH , Haan Germany, article number 60.131.000125) were all powder particles larger than 125 microns are, removed.
- the powder thus produced was examined by means of X-ray diffractometry and has an amorphous content greater than 95%.
- niobium film 99.97% article number 002378 was used in an induction melting plant (VSG, inductively heated vacuum, melting and casting plant, Nürmont, Freiberg) under 800 mbar argon (argon 6.0, Linde AG, Pullach) melted and poured into a water-cooled copper mold. From the thus produced alloy was prepared by a method such as WO 99/30858 A1 is known, produced in a Nanoval Schmelzverdüsungs apparatus (Nanoval GmbH & Co. KG, Berlin) by atomizing the melt with argon, a fine powder.
- niobium film 99.97% article number 002378 was used in an induction melting plant (VSG, inductively heated vacuum, melting and casting plant, Nürmont, Freiberg) under 800 mbar argon (argon 6.0, Linde AG, Pullach) melted and poured into a water-cooled copper mold. From the thus produced alloy was prepared by a method such as WO 99/30858 A1 is known, produced in a Nanoval Schmelzverdüsungs apparatus (Nanoval GmbH & Co. KG, Berlin) by atomizing the melt with argon, a fine powder.
- the fine grain was separated by separation by means of air classification Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Germany), so that less than 0.1% of the particles are smaller than 5 microns in size and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH , Haan Germany, article number 60.131.000125), all powder particles larger than 125 ⁇ m were removed.
- the powder thus produced was examined by means of X-ray diffractometry and has an amorphous content greater than 95%.
- the component produced in this way was examined by means of several metallographic micrographs for the amorphous area fraction in the microstructure. This shows that on average 90% of the surfaces are amorphous.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus einer zumindest teilweise amorphen Metalllegierung mit den Schritten: Bereitstellen eines Pulvers aus einer zumindest teilweise amorphen Metalllegierung, wobei das Pulver aus sphärischen Pulverpartikeln besteht und die Pulverpartikel einen Durchmesser von weniger als 125 µm aufweisen; Pressen des Pulvers in die gewünschte Form des zu erzeugenden Bauteils; Verdichten und Sintern des Pulvers durch eine Temperaturbehandlung des Pulvers während des Pressens oder nach dem Pressen bei einer Temperatur, die zwischen der Transformationstemperatur und der Kristallisationstemperatur der amorphen Phase der Metalllegierung liegt, wobei die Dauer der Temperaturbehandlung derart gewählt wird, dass das Bauteil nach der Temperaturbehandlung gesintert ist und einen amorphen Anteil von mindestens 85 Prozent aufweist. Die Erfindung betrifft auch ein Bauteil aus einem gepressten, gesinterten, sphärischen, amorphen Metalllegierungs-Pulver, wobei das Bauteil einen amorphen Anteil von mindestens 85 Prozent aufweist, und die Verwendung eines solchen Bauteils als Zahnrad, Reibrad, verschleißfeste Komponente, Gehäuse, Uhrengehäuse, Teil eines Getriebes oder Halbzeug.The invention relates to a method for producing a component from an at least partially amorphous metal alloy with the steps: Providing a powder of an at least partially amorphous metal alloy, wherein the powder consists of spherical powder particles and the powder particles have a diameter of less than 125 microns; Pressing the powder into the desired shape of the component to be produced; Densifying and sintering the powder by a temperature treatment of the powder during pressing or after pressing at a temperature which is between the transformation temperature and the crystallization temperature of the amorphous phase of the metal alloy, wherein the duration of the temperature treatment is selected such that the component after the temperature treatment is sintered and has an amorphous content of at least 85 percent. The invention also relates to a component of a pressed, sintered, spherical, amorphous metal alloy powder, wherein the component has an amorphous content of at least 85 percent, and the use of such a component as gear, friction wheel, wear-resistant component, housing, watch case, part a gear or semi-finished product.
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus einer zumindest teilweisen amorphen Metalllegierung.The invention relates to a method for producing a component from an at least partially amorphous metal alloy.
Die Erfindung betrifft ferner ein Bauteil aus einer Metalllegierung mit amorpher Phase und die Verwendung eines solchen Bauteils.The invention further relates to a component made of a metal alloy with amorphous phase and the use of such a component.
Amorphe Metalle und deren Legierungen sind seit mehreren Jahrzehnten bekannt. Dünne Bänder und deren Herstellung werden zum Beispiel in der Offenlegung
Ein Problem besteht also darin, große Bauteile in komplexen Formen herzustellen, die eine amorphe Struktur aufweisen. Die notwendigen Abkühlraten sind für komplexe Bauteile und Halbzeuge mit großem Volumen technisch nicht realisierbar. Aus der
Nachteilig ist hieran, dass das Verfahren nur sehr aufwendig und kostspielig umzusetzen ist. Zudem ist mit einem solchen Verfahren keine ausreichende Homogenität der physikalischen Eigenschaften des erzeugten Bauteils zu erzielen. Durch das lokale Aufschmelzen und wieder Abkühlen des Pulvers kommt es zu einer punktuellen Überschreitung der Kristallisationstemperatur und einer Kristallisation der Legierung, wenn die Abkühlrate der Schmelze zu gering verläuft. Dadurch entsteht eine unerwünschte Menge und eine ungleichmäßige Verteilung an kristalliner Phase in dem Bauteil.The disadvantage of this is that the method is very expensive and expensive to implement. In addition, with such a method, it is not possible to achieve sufficient homogeneity of the physical properties of the component produced. The local melting and again cooling of the powder leads to a punctual exceeding of the crystallization temperature and a crystallization of the alloy if the cooling rate of the melt is too low. This results in an undesirable amount and an uneven distribution of crystalline phase in the component.
Die Aufgabe der Erfindung besteht also darin, die Nachteile des Stands der Technik zu überwinden. Insbesondere soll ein einfaches und kostengünstig zu realisierendes Verfahren entwickelt werden, mit dem ein Bauteil aus einer Metalllegierung mit amorphem Anteil hergestellt werden kann, das ein Volumen 0,1 cm3 und mehr, bevorzugt 1 cm3 und mehr, aufweisen kann und das in unterschiedlichen auch komplexen Formen erzeugt werden kann. Das erzeugte Bauteil soll auch eine möglichst hohe Homogenität hinsichtlich der physikalischen Eigenschaften und der Verteilung der amorphen Phase aufweisen. Aufgabe der vorliegenden Erfindung ist es auch ein solches Bauteil bereitzustellen. Das Verfahren soll dabei einfach umzusetzen sein und gut reproduzierbare Ergebnisse liefern. Das erzeugte Bauteil soll einen möglichst hohen Anteil an amorpher metallischer Phase aufweisen. Auch ist es wünschenswert, wenn das erzeugte Bauteil möglichst kompakt ist und nur wenige Poren aufweist. Eine weitere Aufgabe kann darin gesehen werden, dass das Verfahren mit einer möglichst großen Anzahl unterschiedlicher Legierungen umsetzbar ist, die eine amorphe Phase aufweisen. Ferner ist es vorteilhaft, wenn das Verfahren mit möglichst einfachen und in Labors üblicherweise vorhandenen Apparaturen und Werkzeugen umsetzbar ist.The object of the invention is therefore to overcome the disadvantages of the prior art. In particular, a simple and inexpensive to implement method is to be developed with which a component can be made of a metal alloy with amorphous portion, which may have a volume of 0.1 cm 3 and more, preferably 1 cm 3 and more, and in different Even complex shapes can be generated. The component produced should also have the highest possible homogeneity with regard to the physical properties and the distribution of the amorphous phase. Object of the present invention is also to provide such a component. The process should be easy to implement and deliver highly reproducible results. The component produced should have the highest possible proportion of amorphous metallic phase. It is also desirable if the component produced is as compact as possible and has only a few pores. Another object can be seen that the method can be implemented with the largest possible number of different alloys having an amorphous phase. Furthermore, it is advantageous if the method can be implemented with the simplest and most commonly used in laboratories equipment and tools.
Die Aufgaben der Erfindung werden gelöst durch ein Verfahren zur Herstellung eines Bauteils aus einer zumindest teilweise amorphen Metalllegierung mit den Schritten:
- A) Bereitstellen eines Pulvers aus einer zumindest teilweise amorphen Metalllegierung, wobei das Pulver aus sphärischen Pulverpartikeln besteht und die Pulverpartikel einen Durchmesser von weniger als 125 µm aufweisen;
- B) Pressen des Pulvers in die gewünschte Form des zu erzeugenden Bauteils;
- C) Verdichten und Sintern des Pulvers durch eine Temperaturbehandlung des Pulvers während des Pressens oder nach dem Pressen bei einer Temperatur, die zwischen der Transformationstemperatur und der Kristallisationstemperatur der amorphen Phase der Metalllegierung liegt, wobei die Dauer der Temperaturbehandlung derart gewählt wird, dass das Bauteil nach der Temperaturbehandlung gesintert ist und einen amorphen Anteil von mindestens 85 Prozent aufweist.
- A) providing a powder of an at least partially amorphous metal alloy, wherein the powder consists of spherical powder particles and the powder particles have a diameter of less than 125 microns;
- B) pressing the powder into the desired shape of the component to be produced;
- C) compacting and sintering the powder by a temperature treatment of the powder during pressing or after pressing at a temperature which is between the transformation temperature and the crystallization temperature of the amorphous phase of the metal alloy, wherein the duration of the temperature treatment is selected so that the component after the heat treatment is sintered and has an amorphous content of at least 85 percent.
Bevorzugt wird die Dauer der Temperaturbehandlung derart gewählt, dass die Dauer zumindest so lange ist, dass das Pulver nach der Temperaturbehandlung gesintert ist, und dass die Dauer höchstens so lange ist, dass das Bauteil nach der Temperaturbehandlung noch einen amorphen Anteil von mindestens 85 Prozent aufweist.Preferably, the duration of the temperature treatment is selected such that the duration is at least so long that the powder is sintered after the heat treatment, and that the duration is at most so long that the component after the Temperature treatment still has an amorphous content of at least 85 percent.
Bevorzugt besteht das Pulver aus Pulverpartikeln von denen 100% weniger als 125 µm Durchmesser haben. Solche Partikelgrößen beziehungsweise Partikelverteilungen werden häufig auch mit D100 = 125 µm bezeichnet.The powder preferably consists of powder particles of which 100% are less than 125 μm in diameter. Such particle sizes or particle distributions are often also denoted by D 100 = 125 μm.
Als amorphes Material bezeichnet man in der Physik und der Chemie einen Stoff, bei dem die Atome keine geordneten Strukturen, sondern ein unregelmäßiges Muster bilden und lediglich über Nahordnung, nicht aber Fernordnung verfügen. Im Gegensatz zu amorphen bezeichnet man regelmäßig strukturierte Materialien als kristallin.In physics and chemistry, an amorphous material is a substance in which the atoms do not form ordered structures but form an irregular pattern and have only short-range order, but not long-range ordering. In contrast to amorphous, regularly structured materials are called crystalline.
Sphärische Partikel müssen im Sinne der vorliegenden Erfindung keine geometrisch perfekten Kugeln sein, sondern können auch von der Kugelform abweichen. Bevorzugte sphärische Pulverpartikel weisen eine abgerundete zumindest näherungsweise kugelförmige Form auf und haben ein Verhältnis des längsten Querschnitts zum kürzesten Querschnitt von höchstens 2 zu 1. Im Sinne der vorliegenden Erfindung ist mit einer sphärischen Geometrie also keine streng geometrische beziehungsweise mathematische Kugel gemeint. Die Querschnitte beziehen sich dabei auf innerhalb der Pulverpartikel verlaufende extremale Abmessungen. Besonders bevorzugte sphärische Pulverpartikel können ein Verhältnis des längsten Querschnitts zum kürzesten Querschnitt von höchstens 1,5 zu 1 aufweisen oder ganz besonders bevorzugt kugelförmig sein. Als Durchmesser wird dabei erfindungsgemäß der größte Querschnitt der Pulverpartikel angenommen.Spherical particles need not be geometrically perfect spheres within the meaning of the present invention, but may also deviate from the spherical shape. Preferred spherical powder particles have a rounded at least approximately spherical shape and have a ratio of the longest cross section to the shortest cross section of at most 2 to 1. For the purposes of the present invention, a spherical geometry does not mean a strictly geometrical or mathematical sphere. The cross-sections relate to running within the powder particles extremale dimensions. Particularly preferred spherical powder particles may have a ratio of the longest cross section to the shortest cross section of at most 1.5 to 1, or most preferably spherical. In this case, the diameter of the largest cross-section of the powder particles is assumed according to the invention.
Die sphärische Form der Pulverpartikel hat die folgenden Vorteile:
- Es kann eine hohe Schüttdichte des Pulvers erreicht werden;
- Die Pulverpartikel weisen ähnlich gekrümmte Oberflächen auf, die bei der Temperaturbehandlung bei den gleichen Bedingungen (Temperatur und Zeit beziehungsweise dem gleichen Wärmeenergieeintrag) weich werden - oder zumindest unter in guter Näherung den gleichen Bedingungen weich werden. Dadurch verbinden sich diese beziehungsweise sintern diese besonders gut und innerhalb einer kurzen Zeitspanne, beziehungsweise zu einem vorbekannten Zeitpunkt beziehungsweise in einem vorbekannten Zeitintervall, mit benachbarten Pulverpartikeln. Ein weiterer Vorteil einer hohen Schüttdichte ist ein geringer Schrumpf des Bauteils beim Sintern. Dadurch wird eine endformnahe Fertigung möglich.
- It can be achieved a high bulk density of the powder;
- The powder particles have similar curved surfaces, which soften in the temperature treatment under the same conditions (temperature and time or the same heat energy input) - or at least be softened to a good approximation the same conditions. As a result, they combine or sinter these particularly well and within a short period of time, or at a known time or in a known time interval, with adjacent powder particles. Another advantage of high bulk density is a smaller one Shrinkage of the component during sintering. As a result, production close to the final shape is possible.
Das Bauteil kann gemäß einer bevorzugten Ausführung der vorliegenden Erfindung insbesondere dann als gesintert angesehen werden, wenn es eine Dichte von mindestens 97% der theoretischen Dichte der vollständig amorphen Metalllegierung aufweist.The component may, in accordance with a preferred embodiment of the present invention, be considered to be sintered in particular if it has a density of at least 97% of the theoretical density of the completely amorphous metal alloy.
Unter einer Sinterung oder einem Sintern wird im Rahmen der vorliegenden Erfindung ein Vorgang verstanden, bei dem die Pulverpartikel an der Oberfläche weich werden und sich miteinander verbinden und nach dem Abkühlen verbunden bleiben. Dadurch wird aus dem Pulver ein zusammenhängender Körper beziehungsweise ein zusammenhängendes Bauteil erzeugt.In the context of the present invention, sintering or sintering is understood as meaning a process in which the powder particles soften on the surface and combine with one another and remain connected after cooling. As a result, a coherent body or a coherent component is generated from the powder.
Die Transformationstemperatur einer amorphen Phase wird häufig auch als Glasübergangstemperatur oder als Transformationspunkt oder Glasübergangspunkt bezeichnet, wobei hiermit klargestellt sein soll, dass dies äquivalente Begriffe für die Transformationstemperatur sind.The transformation temperature of an amorphous phase is often referred to as the glass transition temperature or as a transformation point or glass transition point, it being understood that these are equivalent terms for the transformation temperature.
Bevorzugt wird das Pulver geformt, indem das Pulver in eine Form oder in ein Werkzeug gefüllt wird und anschließend das Pulver in der Form oder in dem Werkzeug gepresst wird, beziehungsweise mit dem Werkzeug gepresst wird.Preferably, the powder is formed by filling the powder into a mold or into a tool and then pressing the powder in the mold or in the tool or by pressing it with the tool.
Das Aufheizen bis zum Erreichen der Transformationstemperatur und das Abkühlen sollen erfindungsgemäß so schnell wie möglich erfolgen, da auch bei diesen Temperaturen unterhalb der Transformationstemperatur eine Kristallisation an den zwangsläufig vorhandenen Impfkristallen erfolgt, aber noch keine Erweichung der Pulverpartikel erreicht wird, die zu einem Sintern des Pulvers führen könnte. Es soll erfindungsgemäß eine plastische Verformung der Pulverpartikel erreicht werden, die zu einem Kompaktieren des Pulvers und somit zu einem beschleunigten Sintern des Pulvers führt. Ein Überschwingen der Temperatur über die gewünschte Solltemperatur oder Endtemperatur soll dabei möglichst gering ausfallen.The heating until reaching the transformation temperature and the cooling should be carried out according to the invention as quickly as possible, since even at these temperatures below the transformation temperature crystallization takes place on the inevitable seed crystals, but still no softening of the powder particles is achieved, leading to sintering of the powder could lead. It is to be achieved according to the invention a plastic deformation of the powder particles, which leads to a compacting of the powder and thus to an accelerated sintering of the powder. An overshoot of the temperature above the desired setpoint temperature or final temperature should be as low as possible.
Die Pulverpartikelgröße des Pulvers beziehungsweise die Pulverpartikelgrößenverteilung des Pulvers kann durch den Herstellungsprozess und durch ein Sieben eines Ausgangs-Pulvers erreicht werden. Das erfindungsgemäß bereitgestellte Pulver wird also durch Sieben eines Ausgangs-Pulvers hergestellt, bevor es für das erfindungsgemäße Verfahren bereitgestellt beziehungsweise verwendet wird. Zudem kann durch Sieben auch sichergestellt werden, dass die Anzahl der Pulverpartikel mit einer von der sphärischen Form stark abweichenden Form, die durch Ansintern mehrerer Pulverpartikel entstanden sind und die in dem Ausgangs-Pulver enthalten sind, reduziert oder minimiert werden kann.The powder particle size of the powder or the powder particle size distribution of the powder can be achieved by the manufacturing process and by sieving a starting powder. The powder provided according to the invention is thus produced by sieving a starting powder before it is provided or used for the process according to the invention. In addition, by sieving can also be ensured that the Number of powder particles having a shape deviating greatly from the spherical shape, which are formed by sintering several powder particles and which are contained in the starting powder, can be reduced or minimized.
Mit der Erfindung wird als bevorzugte Ausgestaltung des Verfahrens auch vorgeschlagen, dass die Temperaturbehandlung unter Vakuum erfolgt, wobei bevorzugt das Pulver durch eine Temperaturbehandlung bei einem Vakuum von zumindest 10-3 mbar verdichtet wird.With the invention is also proposed as a preferred embodiment of the method that the temperature treatment is carried out under vacuum, wherein preferably the powder is compacted by a temperature treatment at a vacuum of at least 10 -3 mbar.
Hierdurch wird erreicht, dass die Oberfläche des Pulvers weniger stark mit den umgebenden Gasen reagieren kann. Metalloxide und andere Reaktionsprodukte wirken sich nämlich als Keimbildner für kristalline Phasen negativ auf die Reinheit der amorphen Phase in dem erzeugten Bauteil aus.This ensures that the surface of the powder can react less strongly with the surrounding gases. Namely, metal oxides and other reaction products, as nucleating agents for crystalline phases, have a negative effect on the purity of the amorphous phase in the produced component.
Aus dem gleichen Grund kann erfindungsgemäß zusätzlich oder auch alternativ vorgesehen sein, dass die Temperaturbehandlung unter einem Schutzgas erfolgt, insbesondere unter einem Edelgas, wie beispielsweise Argon, bevorzugt mit einer Reinheit von wenigstens 99,99% erfolgt, besonders bevorzugt mit einer Reinheit von wenigstens 99,999% erfolgt. Bevorzugt kann bei solchen Ausführungsformen vorgesehen sein, dass die Atmosphäre, in der das Pressen und die Temperaturbehandlung oder nur die Temperaturbehandlung erfolgt, durch mehrmaliges Evakuieren und Spülen mit Edelgas, insbesondere mit Argon, weitgehend von Restgasen befreit wird.For the same reason, the invention may additionally or alternatively be provided that the temperature treatment is carried out under a protective gas, in particular under a noble gas such as argon, preferably with a purity of at least 99.99%, more preferably with a purity of at least 99.999 % he follows. It may preferably be provided in such embodiments that the atmosphere in which the pressing and the temperature treatment or only the temperature treatment takes place is largely freed of residual gases by repeated evacuation and rinsing with inert gas, in particular with argon.
Es kann erfindungsgemäß alternativ auch vorgesehen sein, dass die Temperaturbehandlung unter einem reduzierenden Gas erfolgt, insbesondere unter einem Formiergas erfolgt, um die Menge an störenden Metall-Oxiden möglichst gering zu halten.It can alternatively be provided according to the invention that the temperature treatment takes place under a reducing gas, in particular under a forming gas, in order to keep the amount of interfering metal oxides as low as possible.
Eine weitere Maßnahme zur Verringerung der Anzahl von Metalloxiden in dem Bauteil kann durch die Anwendung eines Sauerstoff-Getters bei der Temperaturbehandlung des Pulvers und/oder bei der Herstellung des Pulvers erreicht werden.Another measure for reducing the number of metal oxides in the component can be achieved by the use of an oxygen getter in the temperature treatment of the powder and / or in the production of the powder.
Ferner kann erfindungsgemäß vorgesehen sein, dass das Pulver durch HeißIsostatisches Pressen oder Heißpressen verdichtet wird.Furthermore, it can be provided according to the invention that the powder is compacted by hot isostatic pressing or hot pressing.
Die Kombination von Druck- und Temperaturbehandlung bewirkt ein kompakteres Bauteil. Zudem wird die Verbindung durch die plastische Verformung der Pulverpartikel untereinander verbessert und das Sinterverhalten beschleunigt, so dass eine kürzere Dauer der Temperaturbehandlung gewählt werden kann und der Anteil kristalliner Phase in dem Bauteil reduziert wird.The combination of pressure and temperature treatment results in a more compact component. In addition, the connection is due to the plastic deformation of the Powder particles improved with each other and accelerated the sintering behavior, so that a shorter duration of the temperature treatment can be selected and the proportion of crystalline phase is reduced in the component.
Gemäß einer Weiterbildung der Erfindung kann auch vorgesehen sein, dass die Dauer der Temperaturbehandlung derart gewählt wird, dass das Bauteil einen amorphen Anteil von mindestens 90 Prozent aufweist, bevorzugt von mehr als 95 Prozent, besonders bevorzugt von mehr als 98 Prozent aufweist.According to a development of the invention, it can also be provided that the duration of the temperature treatment is selected such that the component has an amorphous content of at least 90 percent, preferably of more than 95 percent, particularly preferably more than 98 percent.
Je höher der Anteil der amorphen Phase in dem Bauteil ist, desto mehr nähert man sich den gewünschten physikalischen Eigenschaften eines vollständig aus amorpher Phase bestehenden Bauteils.The higher the proportion of the amorphous phase in the component, the more one approaches the desired physical properties of a fully amorphous phase component.
Bevorzugte Ausgestaltungen der vorliegenden Erfindung können auch vorsehen, dass ein Pulver aus einer amorphen Metalllegierung oder einer zumindest teilweise amorphen Metalllegierung mit mindestens 50 Gewichtsprozenten Zirkonium verwendet wird.Preferred embodiments of the present invention may also provide that a powder of an amorphous metal alloy or an at least partially amorphous metal alloy having at least 50 weight percent zirconium is used.
Zirkonium-haltige amorphe Metalllegierungen sind besonders gut zum Umsetzen erfindungsgemäßer Verfahren geeignet, da bei vielen dieser Legierungen eine große Differenz zwischen der Transformationstemperatur und der Kristallisationstemperatur existiert, wodurch das Verfahren leichter umzusetzen ist.Zirconium-containing amorphous metal alloys are particularly well suited for practicing methods of the present invention because many of these alloys have a large difference between the transformation temperature and the crystallization temperature, making the process easier to implement.
Ganz besonders bevorzugte Ausgestaltungen der vorliegenden Erfindung können vorsehen, dass ein Pulver aus einer amorphen Metalllegierung oder einer zumindest teilweise amorphen Metalllegierung aus
- a) 58 bis 77 Gewichtsprozenten Zirkonium,
- b) 0 bis 3 Gewichtsprozenten Hafnium,
- c) 20 bis 30 Gewichtsprozenten Kupfer,
- d) 2 bis 6 Gewichtsprozenten Aluminium, und
- e) 1 bis 3 Gewichtsprozenten Niob
- a) 58 to 77% by weight zirconium,
- b) 0 to 3% by weight hafnium,
- c) 20 to 30% by weight of copper,
- d) 2 to 6 weight percent aluminum, and
- e) 1 to 3 weight percent niobium
Der Restanteil bis auf 100 Gewichtsprozente ist dabei Zirkonium. Übliche Verunreinigungen können in der Legierung enthalten sein. Diese Zirkonium-haltigen amorphen Metalllegierungen sind ganz besonders gut zum Umsetzen erfindungsgemäßer Verfahren geeignet.The remainder up to 100 percent by weight is zirconium. Common contaminants may be included in the alloy. These zirconium-containing amorphous metal alloys are particularly well suited for implementing inventive methods.
Des Weiteren kann vorgesehen sein, dass das sphärische amorphe Metalllegierungs-Pulver durch Schmelzverdüsung hergestellt wird, bevorzugt durch Schmelzverdüsung in einem Edelgas, insbesondere in Argon, besonders bevorzugt durch Schmelzverdüsung in einem Edelgas der Reinheit 99,99%, 99,999% oder einer höheren Reinheit. Im Rahmen der vorliegenden Erfindung wird auch dann von einer amorphen Metalllegierung gesprochen, wenn die Metalllegierung einen Anteil an amorpher Phase von wenigstens 85 Volumenprozent aufweist.Furthermore, it can be provided that the spherical amorphous metal alloy powder is produced by melt atomization, preferably by melt atomization in a noble gas, in particular in argon, particularly preferably by melt atomization in a noble gas of purity 99.99%, 99.999% or higher purity. In the context of the present invention, an amorphous metal alloy is also used if the metal alloy has an amorphous phase content of at least 85% by volume.
Die Herstellung des Pulvers erfolgt selbstverständlich vor dem Bereitstellen des Pulvers. Durch die Schmelzverdüsung lassen sich Pulverpartikel mit sphärischer Form auf einfache und kostengünstige Art herstellen. Die Verwendung von Edelgas, insbesondere von Argon oder hochreinem Argon bei der Schmelzverdüsung bewirkt, dass in dem Pulver möglichst wenige störende Verunreinigungen wie Metalloxide enthalten sind.The preparation of the powder is of course prior to the provision of the powder. By melt atomization powder particles can be produced with spherical shape in a simple and cost-effective manner. The use of inert gas, in particular of argon or high-purity argon in the melt atomization causes that in the powder as few disturbing impurities as metal oxides are included.
Gemäß einer Weiterbildung der vorliegenden Erfindung kann auch vorgesehen sein, dass das Pulver weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm aufweist oder das Pulver gesiebt oder durch Windsichten behandelt wird, so dass es weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm aufweist.According to one embodiment of the present invention, it can also be provided that the powder has less than 1 percent by weight of particles with a diameter smaller than 5 microns or the powder is sieved or treated by air classification, so that it is less than 1 percent by weight of particles with a diameter has less than 5 microns.
Erfindungsgemäß bevorzugt werden Pulverpartikel mit einem Durchmesser von weniger als 5 µm durch Windsichten entfernt, beziehungsweise genauer der Anteil von Pulverpartikeln mit einem Durchmesser von weniger als 5 µm durch Windsichten reduziert.According to the invention, powder particles with a diameter of less than 5 μm are preferably removed by air classification, or more precisely, the proportion of powder particles with a diameter of less than 5 μm is reduced by air classification.
Durch den geringen Anteil von Pulverpartikeln mit einem Durchmesser kleiner als 5 µm wird die für eine Oxidation oder für eine andere störende chemische Reaktion der Pulverpartikel mit umgebendem Gas empfindliche Oberfläche des Pulvers (Summe der Oberflächen aller Pulverpartikel) begrenzt. Des Weiteren wird durch die Begrenzung der Korngröße des Pulvers sichergestellt, dass die Erweichung der Pulverpartikel zu ähnlichen Bedingungen (hinsichtlich der Temperatur und der Zeit beziehungsweise des erfolgten Energieeintrags) stattfinden wird, da die Krümmungen der Oberflächen der Pulverpartikel dann ähnlich sind und sich hierdurch eine kompakte Füllung des Pulvers durch Pressen erreichen lässt. Ein geringer Anteil von feinen Pulverpartikeln (kleiner als 5 µm) wirkt sich nicht nachteilig aus, da solche Pulverpartikel sich in den Zwischenräumen zwischen größeren Partikeln einlagern können und somit die Dichte des ungesinterten Pulvers erhöhen.Due to the low proportion of powder particles with a diameter smaller than 5 .mu.m, the surface of the powder which is sensitive to oxidation or to another disturbing chemical reaction of the powder particles with surrounding gas (sum of the surfaces of all powder particles) is limited. Furthermore, by limiting the grain size of the powder, it is ensured that the softening of the powder particles will take place under similar conditions (in terms of temperature and time or energy input), since the curvatures of the surfaces of the powder particles will then be similar and thus compact Filling of the powder can be achieved by pressing. A small proportion of fine powder particles (less than 5 microns) does not adversely affect because such powder particles can intercalate in the interstices between larger particles and thus increase the density of the unsintered powder.
Mit einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens wird vorgeschlagen, dass die Temperaturbehandlung des Pulvers bei einer Temperatur (T) zwischen der Transformationstemperatur und einer Maximal-Temperatur erfolgt, wobei die Maximal-Temperatur um 30% von der Temperaturdifferenz zwischen der Transformationstemperatur (TT) und der Kristallisationstemperatur (TK) der amorphen Phase der metallischen Legierung oberhalb der Transformationstemperatur (TT) liegt, wobei bevorzugt die Maximal-Temperatur um 20% oder 10% von der Temperaturdifferenz zwischen der Transformationstemperatur (TT) und der Kristallisationstemperatur (TK) der amorphen Phase der metallischen Legierung oberhalb der Transformationstemperatur (TT) liegt.With a preferred development of the method according to the invention, it is proposed that the temperature treatment of the powder takes place at a temperature (T) between the transformation temperature and a maximum temperature, the maximum temperature being 30% higher than the temperature difference between the transformation temperature (T T ) and the crystallization temperature (T K ) of the amorphous phase of the metallic alloy is above the transformation temperature (T T ), the maximum temperature preferably being 20% or 10% of the temperature difference between the transformation temperature (T T ) and the crystallization temperature (T K ) the amorphous phase of the metallic alloy is above the transformation temperature (T T ).
Wenn die Temperaturbehandlung dicht bei oder oberhalb der Transformationstemperatur erfolgt, wird das Entstehen und das Wachsen kristalliner Phase relativ gering ausfallen und damit die Reinheit der amorphen Phase in dem Bauteil hoch sein. Als Formel ausgedrückt soll die Temperatur T, bei der die Temperaturbehandlung des Pulvers erfolgt, bezogen auf die Transformationstemperatur TT und die Kristallisationstemperatur TK der amorphen Phase der metallischen Legierung die folgenden Bedingungen erfüllen:
bevorzugt TT < T < TT + (20/100) * (TK-TT) oder
besonders bevorzugt TT < T < TT + (10/100) * (TK-TT).If the temperature treatment is close to or above the transformation temperature, the formation and growth of the crystalline phase will be relatively low, and thus the purity of the amorphous phase in the component will be high. Expressed as a formula, the temperature T at which the temperature treatment of the powder takes place, based on the transformation temperature T T and the crystallization temperature T K of the amorphous phase of the metallic alloy, should fulfill the following conditions:
preferably T T <T <T T + (20/100) * (T K -T T ) or
particularly preferably T T <T <T T + (10/100) * (T K -T T ).
Mit den in den vorangegangenen mathematischen Formeln angegebenen Temperaturbereichen, in denen die Temperaturbehandlung stattfinden soll, wird eine Sinterung bei geringer Ausbildung kristalliner Phasen in dem Bauteil erreicht.With the temperature ranges specified in the preceding mathematical formulas, in which the temperature treatment is to take place, sintering is achieved with little formation of crystalline phases in the component.
Eine besonders vorteilhafte Ausgestaltung erfindungsgemäßer Verfahren ergibt sich wenn vorgesehen ist, dass die Dauer der Temperaturbehandlung in Abhängigkeit von der geometrischen Form, insbesondere von der Dicke, des zu erzeugenden Bauteils gewählt wird, bevorzugt in Abhängigkeit von dem größten relevanten Durchmesser des zu erzeugenden Bauteils gewählt wird.A particularly advantageous embodiment of the method according to the invention results if it is provided that the duration of the temperature treatment is selected as a function of the geometric shape, in particular the thickness, of the component to be produced, preferably as a function of the largest relevant diameter of the component to be produced ,
Die geometrische Form, beziehungsweise die Dicke, des zu erzeugenden Bauteils wird dahingehend berücksichtigt, dass die Wärmeleitung in dem geformten Pulver beziehungsweise sich formenden Bauteil ausreichen soll, um auch das Pulver im Inneren des Bauteils beziehungsweise das Bauteil im Inneren bis zur Transformationstemperatur oder bis oberhalb der Transformationstemperatur zu erhitzen, so dass auch im Inneren des Bauteils eine Sinterung des Pulvers erfolgt.The geometric shape, or the thickness, of the component to be produced is taken into account in that the heat conduction in the shaped powder or forming component should be sufficient to heat the powder inside the component or the component inside up to the transformation temperature or above the transformation temperature, so that also takes place inside the component sintering of the powder.
Der größte relevante Durchmesser des Bauteils kann geometrisch durch die größte Kugel bestimmt werden, die geometrisch innerhalb des Bauteils untergebracht werden kann. Bei der Bestimmung des größten relevanten Durchmessers können Kanäle oder Spalten in dem Körper unberücksichtigt bleiben, die zum Wärmeeintrag über ein umgebendes Gas und/oder eine andere Wärmequelle nicht oder nur wenig (beispielsweise in der Summe weniger als 5%) beitragen.The largest relevant diameter of the component can be geometrically determined by the largest sphere that can be geometrically accommodated within the component. When determining the largest relevant diameter, it is possible to disregard channels or gaps in the body which do not or only slightly contribute to the heat input via a surrounding gas and / or another heat source (for example in the sum of less than 5%).
Bevorzugt kann vorgesehen sein, dass die Dauer der Temperaturbehandlung in einem zeitlichen Bereich von 3 Sekunden pro Millimeter der Dicke beziehungsweise der Wandstärke des Bauteils oder des größten relevanten Durchmessers des zu erzeugenden Bauteils bis 900 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils erfolgt, wobei bevorzugt die Dauer der Temperaturbehandlung in einem zeitlichen Bereich von 5 Sekunden pro Millimeter der Dicke beziehungsweise der Wandstärke des Bauteils oder des größten relevanten Durchmessers des zu erzeugenden Bauteils bis 600 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils erfolgt.Preferably, it may be provided that the duration of the heat treatment in a time range of 3 seconds per millimeter of the thickness or the wall thickness of the component or the largest relevant diameter of the component to be produced to 900 seconds per millimeter of thickness or the largest relevant diameter of the Component takes place, wherein preferably the duration of the temperature treatment in a time range of 5 seconds per millimeter of the thickness or the wall thickness of the component or the largest relevant diameter of the component to be produced to 600 seconds per millimeter of thickness or the largest relevant diameter of the component to be produced he follows.
Durch die Berücksichtigung der Form, der Dicke, beziehungsweise der Wandstärke des Bauteils, und/oder des größten relevanten Durchmessers des Bauteils wird die Dauer der Temperaturbehandlung so gewählt, dass eine ausreichende Versinterung des Pulvers erfolgt, gleichzeitig aber die Bildung kristalliner Phase in dem Bauteil möglichst gering gehalten wird oder idealerweise minimal ist. Für bestimmte Bauteile und für einige Anwendungen kann es bereits ausreichend sein, wenn nur die Randbereiche des Bauteils vollständig gesintert sind und im Inneren des Bauteils noch nicht gesintertes Pulver vorhanden ist. Bevorzugt wird das Bauteil aber vollständig (auch im Inneren) gesintert.By taking into account the shape, the thickness, or the wall thickness of the component, and / or the largest relevant diameter of the component, the duration of the temperature treatment is selected so that sufficient sintering of the powder occurs, but at the same time as possible the formation of crystalline phase in the component is kept low or ideally minimal. For certain components and for some applications, it may already be sufficient if only the edge regions of the component are completely sintered and powder that is not yet sintered is present in the interior of the component. Preferably, however, the component is sintered completely (also inside).
Die der vorliegenden Erfindung zugrundeliegenden Aufgaben werden auch gelöst durch ein Bauteil aus einem gepressten, gesinterten, sphärischen, amorphen Metalllegierungs-Pulver, wobei das Bauteil einen amorphen Anteil von mindestens 85 Prozent aufweist.The objects underlying the present invention are also achieved by a component made of a pressed, sintered, spherical, amorphous metal alloy powder, wherein the component has an amorphous content of at least 85 percent.
Dabei kann vorgesehen sein, dass das Bauteil mit einem erfindungsgemäßen Verfahren hergestellt ist. Solche erfindungsgemäßen Verfahren sind zuvor beschrieben.It can be provided that the component is produced by a method according to the invention. Such methods according to the invention have been described above.
Die der Erfindung zugrundeliegenden Aufgaben werden auch gelöst durch die Verwendung eines solchen Bauteils als Zahnrad, Reibrad, verschleißfeste Komponente, Gehäuse, Uhrengehäuse, Teil eines Getriebes oder Halbzeug.The objects underlying the invention are also achieved by the use of such a component as a gear, friction wheel, wear-resistant component, housing, watch case, part of a transmission or semi-finished.
Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass es durch die Verwendung von sphärischen Pulverpartikeln geeigneter Größe und eine Temperaturbehandlung bei der geeigneten Temperatur über eine geeignete kurze Dauer gelingt, aus einem Pulver einer amorphen Metalllegierung auch größere und/oder komplexe Bauteile zu erzeugen, die zu einem hohen Anteil (zumindest 85 Volumenprozent) aus der amorphen Phase bestehen und damit über vorteilhafte physikalische Eigenschaften der amorphen Metalllegierung verfügen. Die vorliegende Erfindung beschreibt damit erstmals ein Verfahren, bei dem ein Bauteil aus einer amorphen Metalllegierung oder aus einer zu zumindest 85% aus einer amorphen Phase bestehende Metalllegierung durch Sintern eines Pulvers erzeugt werden kann, bei dem ein hoher Anteil amorpher Phase erhalten bleibt. Bevorzugt ist die Dauer der Temperaturbehandlung dabei an die Abmessungen des zu erzeugenden Bauteils angepasst, um beim Sintern des Pulvers einen möglichst hohen Anteil amorpher Phase zu erhalten, beziehungsweise um den Anteil kristalliner Phase in der Metalllegierung so gering wie möglich zu halten. Zu dem gleichen Zweck ist es vorteilhaft, die Temperaturbehandlung unter Schutzgas oder unter Vakuum durchzuführen, um einen möglichst geringen Anteil von Metalloxiden oder anderen Reaktionsprodukten mit Luft in dem Pulver und damit in dem Bauteil zu erzeugen. Solche Metalloxide und andere Reaktionsprodukte wirken dabei insbesondere als Keime für die Kristallisation und verringern so den Anteil an amorpher Phase in dem Bauteil.The invention is based on the surprising finding that by using spherical powder particles of suitable size and a temperature treatment at the suitable temperature over a suitable short period, it is also possible to produce larger and / or complex components from a powder of an amorphous metal alloy consist of a high proportion (at least 85 percent by volume) of the amorphous phase and thus have advantageous physical properties of the amorphous metal alloy. The present invention thus describes for the first time a method in which a component of an amorphous metal alloy or of a metal alloy consisting of at least 85% of an amorphous phase can be produced by sintering a powder in which a high proportion of amorphous phase is retained. Preferably, the duration of the temperature treatment is adapted to the dimensions of the component to be produced in order to obtain the highest possible proportion of amorphous phase during sintering of the powder, or to keep the proportion of crystalline phase in the metal alloy as low as possible. For the same purpose, it is advantageous to carry out the temperature treatment under protective gas or under vacuum in order to produce as small as possible a proportion of metal oxides or other reaction products with air in the powder and thus in the component. Such metal oxides and other reaction products act in particular as nuclei for the crystallization and thus reduce the proportion of amorphous phase in the component.
Es wurde im Rahmen der vorliegenden Erfindung gefunden, dass erfindungsgemäße Verfahren zu besonders guten Resultaten führen, wenn die amorphen metallischen Pulver zur Herstellung des Bauteils über Schmelzverdüsung hergestellt werden und die Pulver röntgenamorph sind, wobei bevorzugt deren Pulverpartikel kleiner als 125 µm sind. Bei der Schmelzverdüsung werden die entstehenden schmelzflüssigen Tröpfchen der Legierung sehr schnell durch den Prozessgasstrom (Argon) abgekühlt, wodurch das Vorliegen einer amorphen Pulverfraktion gefördert wird. Mit einer Weiterentwicklung der Erfindung wird vorgeschlagen, dass von diesem Pulver der Feinstaub (Teilchen kleiner 5 µm) sowie das Grobkorn von größer 125 µm weitgehend abgetrennt wird, beispielsweise durch Sieben und/oder durch Windsichten des Pulvers entfernt wird. Solche Pulverfraktionen sind dann ein optimales Ausgangsmaterial (das bereitgestellt Pulver), um durch Pressen und eine Temperaturbehandlung komplexe amorphe Bauteile herzustellen, wobei hier sowohl nacheinander ausgeführte oder kombinierte Druck- und Temperaturschritte sehr gute Resultate in Bezug auf das amorphe Verhalten des Bauteils aufweisen. Mit derart hergestellten Pulvern erhält man ein Bauteil mit besonders hohem Anteil an amorpher metallischer Phase. Gleichzeitig hat das so erzeugte und aus einem derartigen Pulver hergestellte Bauteil einen hohen Grad an gesinterten Pulverpartikel und eine geringe Porosität, bevorzugt eine Porosität von weniger als 5%.It has been found within the scope of the present invention that processes according to the invention lead to particularly good results when the amorphous metallic powders for producing the component are produced by melt atomization and the powders are X-ray amorphous, with their powder particles preferably being smaller than 125 μm. During melt atomization, the resulting molten droplets of the alloy are very rapidly passed through the process gas stream (argon). cooled, whereby the presence of an amorphous powder fraction is promoted. With a further development of the invention, it is proposed that the fine dust (particles smaller than 5 μm) and the coarse grain of greater than 125 μm be largely separated from this powder, for example by sieving and / or by air classification of the powder. Such powder fractions are then an optimum starting material (the powder provided) to produce complex amorphous components by pressing and temperature treatment, both successive or combined pressure and temperature steps having very good results with respect to the amorphous behavior of the component. With powders produced in this way, a component with a particularly high proportion of amorphous metallic phase is obtained. At the same time, the component thus produced and made of such a powder has a high degree of sintered powder particles and a low porosity, preferably a porosity of less than 5%.
Wichtig ist dabei, dass bei dem Verfahren das amorphe Pulver nicht bis zur Kristallisationstemperatur oder darüber hinaus erhitzt wird, da sonst Kristallisation eintritt und der amorphe Charakter der Legierung verloren geht. Andererseits ist es notwendig, das Material mindestens auf die Transformationstemperatur, also die Temperatur, bei der die amorphe Phase der Metalllegierung während der Abkühlung aus dem plastischen Bereich in den starren Zustand übergeht, zu erhitzen. In diesem Temperaturbereich können sich die Pulverpartikel verbinden, ohne jedoch zu kristallisieren. Die Transformationstemperatur kann auch als Glasübergangstemperatur bezeichnet werden und wird auch häufig so bezeichnet.It is important that in the process, the amorphous powder is not heated to the crystallization temperature or beyond, otherwise crystallization occurs and the amorphous character of the alloy is lost. On the other hand, it is necessary to heat the material at least to the transformation temperature, ie the temperature at which the amorphous phase of the metal alloy during the cooling from the plastic region in the rigid state passes. In this temperature range, the powder particles can connect, but without crystallizing. The transformation temperature can also be referred to as the glass transition temperature and is often referred to as such.
Da es jedoch technisch kaum möglich und wirtschaftlich nicht sinnvoll ist, absolut frei von Verunreinigungen sowie auch frei von insbesondere Sauerstoff zu sein, sind mikrokristalline Einschlüsse nicht zu vermeiden. Geringe, im zweistelligen ppm Bereich liegende Sauerstoffanteile verursachen entsprechende Oxidbildung der sauerstoffaffinen Bestandteile der Legierung. Diese sind dann als kleine Kristallisationskeime vorhanden und können so zu kleinen Oxid-Einschlüssen mit Körnern führen, die im Schliffbild bei 1000-facher Vergrößerung oder bei einer Röntgendiffraktometrie-Untersuchung als Peak erkennbar sind. Ähnliche Effekte können auch durch weitere beziehungsweise andere Verunreinigungen der Ausgangsmaterialien sowie weitere Elemente, wie beispielsweise Stickstoff, entstehen.However, since it is technically hardly possible and economically not sensible to be absolutely free of impurities and also free of oxygen in particular, microcrystalline inclusions can not be avoided. Low levels of oxygen in the two-digit ppm range cause corresponding oxide formation of the oxygen-affine components of the alloy. These are then present as small crystallization nuclei and can thus lead to small oxide inclusions with grains which can be recognized as a peak in the micrograph at 1000 × magnification or in an X-ray diffractometry examination. Similar effects can also be caused by further or other impurities of the starting materials as well as other elements, such as nitrogen.
Die Dauer der Temperaturbehandlung richtet sich hauptsächlich nach dem Bauteilvolumen und sollte in der Regel nicht zu lange dauern, da jeder noch so kleine Kristallkeim als Impfkristall wirkt und so Kristalle wachsen können, beziehungsweise sich so die unerwünschte kristalline Phase in dem Bauteil ausbreitet. In Versuchen mit Zirkon-basierten Legierungen konnte aufgezeigt werden, dass eine Temperaturbehandlung in dem erfindungsgemäßen Temperaturbereich mit einer Dauer von maximal 400 Sekunden pro 1 mm Bauteilquerschnitt, besonders gute Ergebnisse liefert. Auch die Aufheizphase sollte so schnell wie möglich erfolgen, da teilweise bereits 50 Kelvin unter der Transformationstemperatur das unerwünschte Kristallwachstum eintritt.The duration of the temperature treatment depends mainly on the volume of the component and should not take too long, as a rule, since each small crystal nucleus acts as a seed crystal and so crystals can grow, or so spreads the unwanted crystalline phase in the component. In experiments with zirconium-based alloys, it was possible to show that a temperature treatment in the temperature range according to the invention with a maximum duration of 400 seconds per 1 mm component cross-section gives particularly good results. The heating-up phase should also take place as quickly as possible since, in some cases, the undesired crystal growth already occurs 50 Kelvin below the transformation temperature.
Im Folgenden werden weitere Ausführungsbeispiele der Erfindung anhand eines schematisch dargestellten Ablaufdiagramms erläutert, ohne jedoch dabei die Erfindung zu beschränken.
In dem Ablaufdiagramm wird mit T die Arbeitstemperatur, mit TT die Transformationstemperatur der amorphen Metalllegierung und mit TK die Kristallisationstemperatur der amorphen Phase der Metalllegierung bezeichnet.In the flow chart, T is the working temperature, T T is the transformation temperature of the amorphous metal alloy, and T K is the crystallization temperature of the amorphous phase of the metal alloy.
Aus einer metallischen Legierung, deren Zusammensetzung zur Bildung einer amorphen Phase geeignet ist oder die bereits aus der amorphen Phase besteht, wird ein amorphes metallisches Pulver erzeugt. Anschließend erfolgt eine Pulverfraktionierung, bei der zu kleine und zu große Pulver-Teilchen beziehungsweise Pulverpartikel, insbesondere durch Sieben und Windsichten, entfernt werden. Das Pulver kann dann entweder mit oder ohne Temperatureintrag in eine gewünschte Form gepresst werden. Wenn das Pulver ohne Temperatureintrag in Form gepresst wird, erfolgt im Anschluss daran eine Temperaturbehandlung, die im Rahmen der vorliegenden Erfindung als Sinterung bezeichnet wird beziehungsweise die eine Sinterung bewirkt. Die Temperaturbehandlung während des Pressens oder nach dem Pressen erfolgt für einen Zeitraum von maximal 900 Sekunden pro 1 mm Bauteilquerschnitt bei einer Temperatur oberhalb der Transformationstemperatur TT und unterhalb der Kristallisationstemperatur TK der amorphen Phase der verwendeten metallischen Legierung.From a metallic alloy whose composition is suitable for forming an amorphous phase or which already consists of the amorphous phase, an amorphous metallic powder is produced. This is followed by a powder fractionation in which too small and too large powder particles or powder particles, in particular by sieving and air classification, are removed. The powder can then be pressed either with or without temperature entry in a desired shape. When the powder is pressed into the mold without the introduction of temperature, a temperature treatment is subsequently carried out, which in the context of the present invention is referred to as sintering or which causes sintering. The temperature treatment during pressing or after pressing takes place for a maximum period of 900 seconds per 1 mm component cross-section at a temperature above the Transformation temperature T T and below the crystallization temperature T K of the amorphous phase of the metallic alloy used.
Es folgen konkrete Ausführungsbeispiele, in denen erfindungsgemäße Verfahren beschrieben werden und bei denen eine Auswertung der so erhaltenen Ergebnisse erfolgt.Following are concrete embodiments in which inventive methods are described and in which an evaluation of the results obtained in this way.
Eine Legierung aus 70,5 Gewichtsprozent Zirkonium (Haines&Maassen Metallhandelsgesellschaft mbH Bonn, Zr-201-Zirkon Crystalbar), 0,2 Gewichtsprozent Hafnium (Alpha Aesar GmbH & Co KG Karlsruhe, Hafnium Crystal Bar milled chips 99,7% Artikelnummer 10204), 23,9 Gewichtsprozent Kupfer (Alpha Aesar GmbH & Co KG Karlsruhe, Copper plate, Oxygen free, High Conductivity (OFCH) Artikelnummer 45210), 3,6 Gewichtsprozent Aluminium (Alpha Aesar GmbH & Co KG Karlsruhe, Aluminium Ingot 99,999% Artikelnummer 10571) und 1,8 Gewichtsprozent Niob (Alpha Aesar GmbH & Co KG Karlsruhe, Niob Folie 99,97% Artikelnummer 00238) wurde in einer Induktionsschmelzanlage (VSG, induktiv beheizte Vakuum-, Schmelz- und Gießanlage, Nürmont, Freiberg) unter 800 mbar Argon (Argon 6.0, Linde AG, Pullach) erschmolzen und in eine wassergekühlte Kupferkokille abgegossen. Aus der so erzeugten Legierung wurde mit einem Verfahren, wie es beispielsweise aus der
Durch Abtrennung mittels Windsichten mit einem Condux-Feinstsichter CFS (NetschFeinmahltechnik GmbH Selb Deutschland) wird das Feinkorn abgetrennt, so dass weniger als 0,1 % der Teilchen kleiner als 5 µm groß sind, das heißt zumindest 99,9% der Teilchen einen Durchmesser oder eine Abmessungen von 5 µm oder mehr aufweisen, und mittels Siebung durch ein Analysensieb mit 125 µm Maschenweite (Retsch GmbH, Haan- Deutschland, Artikelnummer 60.131.000125) werden alle Pulverpartikel entfernt, die größer als 125 µm sind. Das derart erzeugte Pulver wird mittels Röntgendiffraktometrie untersucht und weist einen amorphen Anteil größer 95% auf.By separation by means of air classification with a Condux-Feinstsichter CFS (NetschFeinmahltechnik GmbH Selb Germany), the fine grain is separated, so that less than 0.1% of the particles are smaller than 5 microns in size, ie at least 99.9% of the particles have a diameter or have a size of 5 microns or more, and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH, Haan Germany, Article No. 60.131.000125) are removed all powder particles that are larger than 125 microns. The powder thus produced is examined by means of X-ray diffractometry and has an amorphous content greater than 95%.
Jeweils 5,0 Gramm dieser derart gewonnen Pulverfraktion werden in einer Laborpresse 54MP250D (mssiencetific Chromatographie-Handel GmbH, Berlin) mit einem Presswerkzeug (32 mm, P0764, mssiencetific Chromatographie-Handel GmbH, Berlin) und einer Presskraft von 15 Tonnen verdichtet. Die Presslinge werden anschließend in einer Vakuumsinterung (Gero Hochtemperatur-Vakuumtemperofen LHTW 100-200/22, Neuhausen) bei 410 °C und einem Druck von etwa 10-5 mbar für 120 Sekunden verdichtet. Anschließend werden die verdichteten Presslinge durch heißisostatisches Pressen unter einem Druck von 200 Megapascal (200 MPa) unter hochreinem Argon (Argon 6.0, Linde AG, Pullach) bei einer Temperatur von 400°C für 90 Sekunden endverdichtet.In each case 5.0 grams of this powder fraction thus obtained are in a laboratory press 54MP250D (mssiencetific Chromatographie-Handel GmbH, Berlin) with a compression tool (32 mm, P0764, mssiencetific chromatography trade GmbH, Berlin) and a pressing force of 15 tons. The compacts are then densified in a vacuum sintering (Gero high-temperature vacuum annealing LHTW 100-200 / 22, Neuhausen) at 410 ° C and a pressure of about 10 -5 mbar for 120 seconds. Subsequently, the compacted compacts are finally compacted by hot isostatic pressing under a pressure of 200 megapascal (200 MPa) under high-purity argon (Argon 6.0, Linde AG, Pullach) at a temperature of 400 ° C for 90 seconds.
Fünfzehn derart hergestellte Bauteile werden mittels metallographischer Schliffbilder auf den amorphen Flächenanteil im Gefüge untersucht. Hierbei zeigt sich, dass im Durchschnitt 92 % der Flächen amorph sind.Fifteen such manufactured components are examined by means of metallographic micrographs on the amorphous area fraction in the microstructure. This shows that on average 92% of the surfaces are amorphous.
Eine Legierung aus 70,5 Gewichtsprozent Zirkonium (Haines&Maassen Metallhandelsgesellschaft mbH Bonn, Zr-201-Zirkon Crystalbar), 0,2 Gewichtsprozent Hafnium (Alpha Aesar GmbH & Co KG Karlsruhe, Hafnium Crystal Bar milled chips 99,7% Artikelnummer 10204), 23,9 Gewichtsprozent Kupfer (Alpha Aesar GmbH & Co KG Karlsruhe, Copper plate, Oxygen free, High Conductivity (OFCH) Artikelnummer 45210), 3,6 Gewichtsprozent Aluminium (Alpha Aesar GmbH & Co KG Karlsruhe, Aluminium Ingot 99,999% Artikelnummer 10571) und 1,8 Gewichtsprozent Niob (Alpha Aesar GmbH & Co KG Karlsruhe, Niob Folie 99,97% Artikelnummer 00238) wurde in einer Induktionsschmelzanlage (VSG, induktiv beheizte Vakuum-,Schmelz- und Gießanlage, Nürmont, Freiberg) unter 800 mbar Argon (Argon 6.0, Linde AG, Pullach) erschmolzen und in eine wassergekühlte Kupferkokille abgegossen. Aus der derart erzeugten Legierung wurde mit einem Verfahren, wie es beispielsweise aus der
Durch Abtrennung mittels Windsichten Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Deutschland) wurde das Feinkorn abgetrennt, so dass weniger als 0,1 % der Teilchen kleiner als 5 µm groß sind und mittels Siebung durch ein Analysensieb mit 125 µm Maschenweite (Retsch GmbH, Haan- Deutschland, Artikelnummer 60.131.000125) wurden alle Pulverpartikel, die größer als 125 µm sind, entfernt. Das derart erzeugte Pulver wurde mittels Röntgendiffraktometrie untersucht und weist einen amorphen Anteil größer 95% auf.The fine grain was separated by separation by means of air classification Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Germany), so that less than 0.1% of the particles are smaller than 5 microns in size and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH , Haan Germany, article number 60.131.000125) were all powder particles larger than 125 microns are, removed. The powder thus produced was examined by means of X-ray diffractometry and has an amorphous content greater than 95%.
Jeweils 15,0 Gramm dieser derart gewonnen Pulverfraktion wurden durch Heißpressen mit einem Druck von 200 Megapascal (200 MPa) bei einer Temperatur von 400 °C für 3 Minuten versintert.Each 15.0 grams of this powder fraction thus obtained was sintered by hot pressing at a pressure of 200 megapascals (200 MPa) at a temperature of 400 ° C for 3 minutes.
Fünfzehn derart hergestellte Bauteile wurden mittels metallographischer Schliffbilder auf den amorphen Flächenanteil im Gefüge untersucht. Hierbei zeigte sich, dass im Durchschnitt 85 % der Flächen amorph sind.Fifteen such components were examined by means of metallographic micrographs on the amorphous area fraction in the microstructure. It showed that on average 85% of the areas are amorphous.
Eine Legierung aus 70,6 Gewichtsprozent Zirkonium (Haines&Maassen Metallhandelsgesellschaft mbH Bonn, Zr-201-Zirkon Crystalbar), 23,9 Gewichtsprozent Kupfer (Alpha Aesar GmbH & Co KG Karlsruhe, Copper plate, Oxygen free, High Conductivity (OFCH) Artikelnummer 45210), 3,7 Gewichtsprozent Aluminium (Alpha Aesar GmbH & Co KG Karlsruhe, Aluminium Ingot 99,999% Artikelnummer 10571) und 1,8 Gewichtsprozent Niob (Alpha Aesar GmbH & Co KG Karlsruhe, Niob Folie 99,97% Artikelnummer 00238) wurde in einer Induktionsschmelzanlage (VSG, induktiv beheizte Vakuum-,Schmelz- und Gießanlage, Nürmont, Freiberg) unter 800 mbar Argon (Argon 6.0, Linde AG, Pullach) erschmolzen und in eine wassergekühlte Kupferkokille abgegossen. Aus der derart erzeugten Legierung wurde mit einem Verfahren, wie es beispielsweise aus der
Durch Abtrennung mittels Windsichten Condux-Feinstsichter CFS (NetschFeinmahltechnik GmbH Selb Deutschland) wurde das Feinkorn abgetrennt, so dass weniger als 0,1 % der Teilchen kleiner als 5 µm groß sind und mittels Siebung durch ein Analysensieb mit 125 µm Maschenweite (Retsch GmbH, Haan- Deutschland, Artikelnummer 60.131.000125) wurden alle Pulverpartikel, die größer als 125 µm sind, entfernt. Das so erzeugte Pulver wurde mittels Röntgendiffraktometrie untersucht und weist einen amorphen Anteil größer 95% auf.By separation by means of air classification Condux-Feinstsichter CFS (NetschFeinmahltechnik GmbH Selb Germany), the fine grain was separated, so that less than 0.1% of the particles are smaller than 5 microns in size and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH, Haan - Germany, article number 60.131.000125), all powder particles larger than 125 μm were removed. The powder thus produced was examined by X-ray diffractometry and has an amorphous content greater than 95%.
Jeweils 15,0 Gramm dieser derart gewonnen Pulverfraktion wurden durch Pressen unter einem Druck von 200 Megapascal (200 MPa) bei einer Temperatur von 400°C für 3 Minuten versintert.Each 15.0 grams of this powder fraction thus obtained was sintered by pressing under a pressure of 200 megapascals (200 MPa) at a temperature of 400 ° C for 3 minutes.
Fünfzehn derart hergestellte Bauteile wurden mittels metallographischer Schliffbilder auf den amorphen Flächenanteil im Gefüge untersucht. Hierbei zeigte sich, dass im Durchschnitt 87 % der Flächen amorph sind.Fifteen such components were examined by means of metallographic micrographs on the amorphous area fraction in the microstructure. It turned out that on average 87% of the areas are amorphous.
Eine Legierung aus 70,6 Gewichtsprozent Zirkonium (Haines&Maassen Metallhandelsgesellschaft mbH Bonn, Zr-201-Zirkon Crystalbar), 23,9 Gewichtsprozent Kupfer (Alpha Aesar GmbH & Co KG Karlsruhe, Copper plate, Oxygen free, High Conductivity (OFCH) Artikelnummer 45210), 3,7 Gewichtsprozent Aluminium (Alpha Aesar GmbH & Co KG Karlsruhe, Aluminium Ingot 99,999% Artikelnummer 10571) und 1,8 Gewichtsprozent Niob (Alpha Aesar GmbH & Co KG Karlsruhe, Niob Folie 99,97% Artikelnummer 00238) wurde in einer Induktionsschmelzanlage (VSG, induktiv beheizte Vakuum-,Schmelz- und Gießanlage, Nürmont, Freiberg) unter 800 mbar Argon (Argon 6.0, Linde AG, Pullach) erschmolzen und in eine wassergekühlte Kupferkokille abgegossen. Aus der derart erzeugten Legierung wurde mit einem Verfahren, wie es beispielsweise aus der
Durch Abtrennung mittels Windsichten Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Deutschland) wurde das Feinkorn abgetrennt, so dass weniger als 0,1 % der Teilchen kleiner als 5 µm groß sind und mittels Siebung durch ein Analysensieb mit 125 µm Maschenweite (Retsch GmbH, Haan- Deutschland, Artikelnummer 60.131.000125) wurden alle Pulverpartikel, die größer als 125 µm sind, entfernt. Das derart erzeugte Pulver wurde mittels Röntgendiffraktometrie untersucht und weist einen amorphen Anteil größer 95% auf.The fine grain was separated by separation by means of air classification Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Germany), so that less than 0.1% of the particles are smaller than 5 microns in size and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH , Haan Germany, article number 60.131.000125), all powder particles larger than 125 μm were removed. The powder thus produced was examined by means of X-ray diffractometry and has an amorphous content greater than 95%.
50 Gramm dieser derart gewonnen Pulverfraktion wurden in einer Laborpresse 54MP250D (mssiencetific Chromatographie-Handel GmbH, Berlin) mit einem Presswerkzeug (32 mm, P0764, mssiencetific Chromatographie-Handel GmbH, Berlin) und der maximalen Presskraft von 25 Tonnen verdichtet und unter hochreinem Argon (Argon 6.0, Linde AG, Pullach) bei einer Temperatur von 410°C für 5 Minuten versintert.50 grams of this powder fraction thus obtained were compressed in a laboratory press 54MP250D (mssiencetific Chromatography-Handel GmbH, Berlin) with a pressing tool (32 mm, P0764, mssiencetific Chromatography-Handel GmbH, Berlin) and the maximum pressing force of 25 tons and under high purity argon (Argon 6.0, Linde AG, Pullach) sintered at a temperature of 410 ° C for 5 minutes.
Das so hergestellte Bauteil wurde mittels mehrerer metallographischer Schliffbilder auf den amorphen Flächenanteil im Gefüge untersucht. Hierbei zeigt sich, dass im Durchschnitt 90 % der Flächen amorph sind.The component produced in this way was examined by means of several metallographic micrographs for the amorphous area fraction in the microstructure. This shows that on average 90% of the surfaces are amorphous.
-
1) Methode zur Bestimmung der Partikelgröße von Metalllegierungs-Pulvern:
- Die Partikelgröße von anorganischen Pulvern wurde durch Laserlichtstreuung mit einem Mastersizer 2000 (Malvern Instruments Ltd., Großbritannien) bestimmt.
- The particle size of inorganic powders was determined by laser light scattering with a Mastersizer 2000 (Malvern Instruments Ltd., Great Britain).
-
2) Prüfmethode für die Bestimmung der Dichte:
- Für die Bestimmung der Dichte kann ein geometrisch exakter Quader durch Schleifen der Oberflächen erzeugt werden, so dass dieser mit einer Digitalen Bügelmessschraube (PR1367, Mitutoyo Messgeräte Leonberg GmbH, Leonberg) exakt vermessen werden kann. Mathematisch wird nun das Volumen bestimmt und
- anschließend wird auf einer Analysenwaage (XPE-Analysenwaagen von Mettler-Toledo GmbH) das genaue Gewicht bestimmt. Durch Bildung des Verhältnisses aus gewogenem Gewicht und berechnetem Volumen ergibt sich die Dichte.
Die theoretische Dichte einer amorphen Legierung entspricht der Dichte beim Schmelzpunkt.
- To determine the density, a geometrically exact cuboid can be created by grinding the surfaces so that it can be precisely measured with a digital micrometer (PR1367, Mitutoyo Messgeräte Leonberg GmbH, Leonberg). Mathematically, the volume is now determined and
- Subsequently, the exact weight is determined on an analytical balance (XPE analytical balances from Mettler-Toledo GmbH). By forming the ratio of weighed weight and calculated volume, the density is obtained.
The theoretical density of an amorphous alloy corresponds to the density at the melting point.
-
3) Prüfmethode für die Bestimmung des amorphen Flächenanteils im Bauteil:
- Hierzu werden jeweils fünfzehn metallographische Schliffe in Anlehnung an die DIN EN ISO 1463 angefertigt, wobei mit einer SiC-Folie 1200 (Struers GmbH, Willich) sowie anschließend folgenden Polierschritten mit Diamantpoliermittel mit 6µm, 3µm und 1 µm (Struers GmbH, Willich) und abschließend mit den chemo-mechanischen Oxidpoliersuspensionen OP-S (Struers GmbH, Willich) poliert wird. Die so erzeugten Schliffoberflächen werden unter einem Lichtmikroskop (Leica DM 4000 M, Leica DM 6000 M) mit einer Vergrößerung von 1000 auf kristalline Flächenanteile im Schliffbild untersucht. Hierbei erfolgt eine Auswertung nach Flächenprozent kristalliner-Anteil zu Gesamtfläche des Schliffs.
- For this purpose, fifteen metallographic sections are made on the basis of DIN EN ISO 1463 using a SiC film 1200 (Struers GmbH, Willich) and subsequent polishing steps with diamond polishing agents of 6 μm, 3 μm and 1 μm (Struers GmbH, Willich) and finally is polished with the chemo-mechanical oxide polishing suspensions OP-S (Struers GmbH, Willich). The ground surfaces thus produced are grown under a light microscope (Leica DM 4000 M, Leica DM 6000 M) at a magnification of 1000 to crystalline surface portions in the micrograph examined. In this case, an evaluation is carried out according to area percent crystalline content to total area of the cut.
Die in der voranstehenden Beschreibung, sowie den Ansprüchen, dem Ablaufdiagramm und den Ausführungsbeispielen offenbarten Merkmale der Erfindung können sowohl einzeln, als auch in jeder beliebigen Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.The features of the invention disclosed in the foregoing description, as well as the claims, the flowchart and the embodiments can be essential both individually and in any combination for the realization of the invention in its various embodiments.
Claims (15)
wobei die Dauer der Temperaturbehandlung derart gewählt wird, dass das Bauteil nach der Temperaturbehandlung gesintert ist und einen amorphen Anteil von mindestens 85 Prozent aufweist.
wherein the duration of the temperature treatment is selected such that the component is sintered after the temperature treatment and has an amorphous content of at least 85 percent.
die Dauer der Temperaturbehandlung derart gewählt wird, dass das Bauteil einen amorphen Anteil von mindestens 90 Prozent aufweist, bevorzugt von mehr als 95 Prozent, besonders bevorzugt von mehr als 98 Prozent.Method according to one of the preceding claims, characterized in that
the duration of the temperature treatment is selected such that the component has an amorphous content of at least 90 percent, preferably more than 95 percent, particularly preferably more than 98 percent.
ein Pulver aus einer amorphen Metalllegierung mit mindestens 50 Gewichtsprozenten Zirkonium verwendet wird.Method according to one of the preceding claims, characterized in that
a powder of an amorphous metal alloy containing at least 50% by weight of zirconium is used.
ein Pulver aus einer amorphen Metalllegierung aus
a powder of an amorphous metal alloy
das sphärische amorphe Metalllegierungs-Pulver durch Schmelzverdüsung hergestellt wird, bevorzugt durch Schmelzverdüsung in einem Edelgas, insbesondere in Argon, besonders bevorzugt durch Schmelzverdüsung in einem Edelgas der Reinheit 99,99%, 99,999% oder einer höheren Reinheit.Method according to one of the preceding claims, characterized in that
the spherical amorphous metal alloy powder is produced by melt atomization, preferably by melt atomization in a noble gas, in particular in argon, more preferably by melt atomization in a noble gas of 99.99%, 99.999% or higher purity.
das Pulver weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm aufweist oder das Pulver gesiebt oder durch Windsichten behandelt wird, so dass es weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm aufweist.Method according to one of the preceding claims, characterized in that
the powder has less than 1% by weight of particles of diameter less than 5 μm, or the powder is screened or treated by air classification so that it has less than 1% by weight of particles with a diameter smaller than 5 μm.
die Temperaturbehandlung des Pulvers bei einer Temperatur (T) zwischen der Transformationstemperatur und einer Maximal-Temperatur erfolgt, wobei die Maximal-Temperatur um 30% von der Temperaturdifferenz zwischen der Transformationstemperatur (TT) und der Kristallisationstemperatur (TK) der amorphen Phase der metallischen Legierung oberhalb der Transformationstemperatur (TT) liegt, wobei bevorzugt die Maximal-Temperatur um 20% oder 10% von der Temperaturdifferenz zwischen der Transformationstemperatur (TT) und der Kristallisationstemperatur (TK) der amorphen Phase der metallischen Legierung oberhalb der Transformationstemperatur (TT) liegt.Method according to one of the preceding claims, characterized in that
the temperature treatment of the powder at a temperature (T) between the transformation temperature and a maximum temperature, wherein the maximum temperature is 30% of the temperature difference between the transformation temperature (T T ) and the crystallization temperature (T K ) of the amorphous phase of the metallic Alloy above the Transformation temperature (T T ) is, wherein the maximum temperature is preferably 20% or 10% of the temperature difference between the transformation temperature (T T ) and the crystallization temperature (T K ) of the amorphous phase of the metallic alloy above the transformation temperature (T T ) ,
die Dauer der Temperaturbehandlung in Abhängigkeit von der geometrischen Form, insbesondere von der Dicke, des zu erzeugenden Bauteils gewählt wird, bevorzugt in Abhängigkeit von dem größten relevanten Durchmesser des zu erzeugenden Bauteils gewählt wird.Method according to one of the preceding claims, characterized in that
the duration of the temperature treatment is selected as a function of the geometric shape, in particular of the thickness, of the component to be produced, preferably selected as a function of the largest relevant diameter of the component to be produced.
die Dauer der Temperaturbehandlung in einem zeitlichen Bereich von 3 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils bis 900 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils erfolgt, wobei bevorzugt die Dauer der Temperaturbehandlung in einem zeitlichen Bereich von 5 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils bis 600 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils erfolgt.Method according to one of the preceding claims, characterized in that
the duration of the temperature treatment in a time range of 3 seconds per millimeter of the thickness or the largest relevant diameter of the component to be produced to 900 seconds per millimeter of thickness or the largest relevant diameter of the component to be produced, preferably the duration of the temperature treatment in a Time range of 5 seconds per millimeter of the thickness or the largest relevant diameter of the component to be produced up to 600 seconds per millimeter of the thickness or the largest relevant diameter of the component to be produced takes place.
die Pulverpartikel durch die Temperaturbehandlung plastisch verformt werden.Method according to one of the preceding claims, characterized in that
the powder particles are plastically deformed by the temperature treatment.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES14168461T ES2727507T3 (en) | 2014-05-15 | 2014-05-15 | Procedure for the production of a component from a metallic alloy with amorphous phase |
PL14168461T PL2944401T3 (en) | 2014-05-15 | 2014-05-15 | Method for producing a component from a metallic alloy containing an amorphous phase |
EP14168461.3A EP2944401B1 (en) | 2014-05-15 | 2014-05-15 | Method for producing a component from a metallic alloy containing an amorphous phase |
KR1020167031362A KR20160143798A (en) | 2014-05-15 | 2015-05-12 | Method for producing a component from an amorphous-phase metal alloy |
PCT/EP2015/060410 WO2015173211A1 (en) | 2014-05-15 | 2015-05-12 | Method for producing a component from an amorphous-phase metal alloy |
US15/310,263 US20170151609A1 (en) | 2014-05-15 | 2015-05-12 | Method for producing a component from an amorphous-phase metal alloy |
JP2016567346A JP6370925B2 (en) | 2014-05-15 | 2015-05-12 | Method for manufacturing a part made of a metal alloy having an amorphous phase |
CN201580027018.3A CN106413948B (en) | 2014-05-15 | 2015-05-12 | For the method by amorphous phase metal alloy manufacture component |
TW104115379A TWI557242B (en) | 2014-05-15 | 2015-05-14 | Process for producing a component of a metal alloy with an amorphous phase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14168461.3A EP2944401B1 (en) | 2014-05-15 | 2014-05-15 | Method for producing a component from a metallic alloy containing an amorphous phase |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2944401A1 true EP2944401A1 (en) | 2015-11-18 |
EP2944401B1 EP2944401B1 (en) | 2019-03-13 |
Family
ID=50771069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14168461.3A Active EP2944401B1 (en) | 2014-05-15 | 2014-05-15 | Method for producing a component from a metallic alloy containing an amorphous phase |
Country Status (9)
Country | Link |
---|---|
US (1) | US20170151609A1 (en) |
EP (1) | EP2944401B1 (en) |
JP (1) | JP6370925B2 (en) |
KR (1) | KR20160143798A (en) |
CN (1) | CN106413948B (en) |
ES (1) | ES2727507T3 (en) |
PL (1) | PL2944401T3 (en) |
TW (1) | TWI557242B (en) |
WO (1) | WO2015173211A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113737111A (en) * | 2021-09-07 | 2021-12-03 | 东莞市无疆科技投资有限公司 | High-density amorphous composite material and preparation method thereof |
CN114284055A (en) * | 2021-12-28 | 2022-04-05 | 江西大有科技有限公司 | Amorphous powder and preparation method thereof |
SE2051446A1 (en) * | 2020-12-11 | 2022-06-12 | Adrian Robert Rennie | A beam path component for use in neutron scattering equipment and method of producing such |
EP4082695A1 (en) * | 2021-04-30 | 2022-11-02 | Haimer GmbH | Machine tool component and method for producing such a machine tool component comprising at least a part from an amorphous metal |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10987735B2 (en) | 2015-12-16 | 2021-04-27 | 6K Inc. | Spheroidal titanium metallic powders with custom microstructures |
HUE065423T2 (en) | 2015-12-16 | 2024-05-28 | 6K Inc | Method of producing spheroidal dehydrogenated titanium alloy particles |
GB201609141D0 (en) * | 2016-05-24 | 2016-07-06 | Metalysis Ltd | Manufacturing apparatus and method |
CN108607998B (en) * | 2018-05-04 | 2020-09-25 | 西迪技术股份有限公司 | Metal sintering friction material and friction plate |
AU2019290663B2 (en) | 2018-06-19 | 2023-05-04 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
DE102018115815A1 (en) * | 2018-06-29 | 2020-01-02 | Universität des Saarlandes | Device and method for producing a cast part formed from an amorphous or partially amorphous metal, and cast part |
JP2022530648A (en) | 2019-04-30 | 2022-06-30 | シックスケー インコーポレイテッド | Mechanically alloyed powder raw material |
WO2020223374A1 (en) | 2019-04-30 | 2020-11-05 | 6K Inc. | Lithium lanthanum zirconium oxide (llzo) powder |
EP3804885A1 (en) * | 2019-10-11 | 2021-04-14 | Heraeus Additive Manufacturing GmbH | Method for producing a metallic component having a section with a high aspect ratio |
WO2021118762A1 (en) | 2019-11-18 | 2021-06-17 | 6K Inc. | Unique feedstocks for spherical powders and methods of manufacturing |
US11590568B2 (en) | 2019-12-19 | 2023-02-28 | 6K Inc. | Process for producing spheroidized powder from feedstock materials |
EP3915701A1 (en) * | 2020-05-28 | 2021-12-01 | Heraeus Amloy Technologies GmbH | Simulation system for selecting an alloy and manufacturing method for a workpiece to be manufactured with amorphous properties |
JP2023532457A (en) | 2020-06-25 | 2023-07-28 | シックスケー インコーポレイテッド | Fine composite alloy structure |
CN116547068A (en) | 2020-09-24 | 2023-08-04 | 6K有限公司 | System, apparatus and method for starting plasma |
AU2021371051A1 (en) | 2020-10-30 | 2023-03-30 | 6K Inc. | Systems and methods for synthesis of spheroidized metal powders |
JP2024515034A (en) | 2021-03-31 | 2024-04-04 | シックスケー インコーポレイテッド | Systems and methods for additive manufacturing of metal nitride ceramics |
CN113249661A (en) * | 2021-06-11 | 2021-08-13 | 北京大学口腔医学院 | Biomedical amorphous alloy and application thereof |
US12040162B2 (en) | 2022-06-09 | 2024-07-16 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows |
US12094688B2 (en) | 2022-08-25 | 2024-09-17 | 6K Inc. | Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (PIP) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3524018A1 (en) | 1985-07-02 | 1987-01-15 | Mannesmann Ag | Process and device for producing metal glass |
US5306463A (en) * | 1990-04-19 | 1994-04-26 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing structural member of amorphous alloy |
WO1999030858A1 (en) | 1997-12-17 | 1999-06-24 | Gunther Schulz | Method and device for producing fine powder by atomizing molten materials with gases |
EP1593749A1 (en) * | 2002-12-25 | 2005-11-09 | Japan Science and Technology Corporation | SPHERICAL PARTICLES OF Fe BASE METALLIC GLASS ALLOY, Fe BASE SINTERED ALLOY SOFT MAGNETIC MATERIAL IN BULK FORM PRODUCED BY SINTERING THE SAME, AND METHOD FOR THEIR PRODUCTION |
EP1813694A1 (en) * | 2004-11-15 | 2007-08-01 | Nikko Materials Co., Ltd. | Sputtering target for production of metallic glass film and process for producing the same |
WO2008039134A1 (en) | 2006-09-26 | 2008-04-03 | Foersvarets Materielverk | Method of producing products of amorphous metal |
US20120247948A1 (en) * | 2009-11-19 | 2012-10-04 | Seung Yong Shin | Sputtering target of multi-component single body and method for preparation thereof, and method for producing multi-component alloy-based nanostructured thin films using same |
EP2597166A1 (en) * | 2011-11-24 | 2013-05-29 | Universität des Saarlandes | Bulk metallic glass forming alloy |
EP2430205B1 (en) | 2009-05-14 | 2014-04-02 | BYD Company Limited | Amorphous alloy composite material and method of preparing the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6022424A (en) * | 1996-04-09 | 2000-02-08 | Lockheed Martin Idaho Technologies Company | Atomization methods for forming magnet powders |
CN1074466C (en) * | 1997-02-25 | 2001-11-07 | 中国科学院金属研究所 | Preparation of lumpy non-crystalline and nanometer crystalline alloy |
JP3852809B2 (en) * | 1998-10-30 | 2006-12-06 | 独立行政法人科学技術振興機構 | High strength and toughness Zr amorphous alloy |
TW200722532A (en) * | 2005-12-14 | 2007-06-16 | Jin P Chu | Annealing-induced solid-state amorphization in a metallic film |
JP2009097084A (en) * | 2007-09-25 | 2009-05-07 | Sanyo Special Steel Co Ltd | Method for producing precise metal member having fine shape and fine surface property |
JP5515539B2 (en) * | 2009-09-09 | 2014-06-11 | 日産自動車株式会社 | Magnet molded body and method for producing the same |
CN102383067A (en) * | 2010-08-27 | 2012-03-21 | 比亚迪股份有限公司 | Amorphous alloy powder and preparation method thereof, and amorphous alloy coating and preparation method thereof |
CN105209214A (en) * | 2013-04-10 | 2015-12-30 | 斯凯孚公司 | Method of joining two materials by diffusion welding |
-
2014
- 2014-05-15 EP EP14168461.3A patent/EP2944401B1/en active Active
- 2014-05-15 ES ES14168461T patent/ES2727507T3/en active Active
- 2014-05-15 PL PL14168461T patent/PL2944401T3/en unknown
-
2015
- 2015-05-12 JP JP2016567346A patent/JP6370925B2/en active Active
- 2015-05-12 US US15/310,263 patent/US20170151609A1/en not_active Abandoned
- 2015-05-12 KR KR1020167031362A patent/KR20160143798A/en active Search and Examination
- 2015-05-12 WO PCT/EP2015/060410 patent/WO2015173211A1/en active Application Filing
- 2015-05-12 CN CN201580027018.3A patent/CN106413948B/en active Active
- 2015-05-14 TW TW104115379A patent/TWI557242B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3524018A1 (en) | 1985-07-02 | 1987-01-15 | Mannesmann Ag | Process and device for producing metal glass |
US5306463A (en) * | 1990-04-19 | 1994-04-26 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing structural member of amorphous alloy |
WO1999030858A1 (en) | 1997-12-17 | 1999-06-24 | Gunther Schulz | Method and device for producing fine powder by atomizing molten materials with gases |
EP1593749A1 (en) * | 2002-12-25 | 2005-11-09 | Japan Science and Technology Corporation | SPHERICAL PARTICLES OF Fe BASE METALLIC GLASS ALLOY, Fe BASE SINTERED ALLOY SOFT MAGNETIC MATERIAL IN BULK FORM PRODUCED BY SINTERING THE SAME, AND METHOD FOR THEIR PRODUCTION |
EP1813694A1 (en) * | 2004-11-15 | 2007-08-01 | Nikko Materials Co., Ltd. | Sputtering target for production of metallic glass film and process for producing the same |
WO2008039134A1 (en) | 2006-09-26 | 2008-04-03 | Foersvarets Materielverk | Method of producing products of amorphous metal |
EP2430205B1 (en) | 2009-05-14 | 2014-04-02 | BYD Company Limited | Amorphous alloy composite material and method of preparing the same |
US20120247948A1 (en) * | 2009-11-19 | 2012-10-04 | Seung Yong Shin | Sputtering target of multi-component single body and method for preparation thereof, and method for producing multi-component alloy-based nanostructured thin films using same |
EP2597166A1 (en) * | 2011-11-24 | 2013-05-29 | Universität des Saarlandes | Bulk metallic glass forming alloy |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE2051446A1 (en) * | 2020-12-11 | 2022-06-12 | Adrian Robert Rennie | A beam path component for use in neutron scattering equipment and method of producing such |
SE544674C2 (en) * | 2020-12-11 | 2022-10-11 | Adrian Robert Rennie | A beam path component for use in neutron scattering equipment and method of producing such |
EP4082695A1 (en) * | 2021-04-30 | 2022-11-02 | Haimer GmbH | Machine tool component and method for producing such a machine tool component comprising at least a part from an amorphous metal |
CN113737111A (en) * | 2021-09-07 | 2021-12-03 | 东莞市无疆科技投资有限公司 | High-density amorphous composite material and preparation method thereof |
CN114284055A (en) * | 2021-12-28 | 2022-04-05 | 江西大有科技有限公司 | Amorphous powder and preparation method thereof |
CN114284055B (en) * | 2021-12-28 | 2024-02-23 | 江西大有科技有限公司 | Amorphous powder and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20160143798A (en) | 2016-12-14 |
PL2944401T3 (en) | 2019-08-30 |
TWI557242B (en) | 2016-11-11 |
WO2015173211A1 (en) | 2015-11-19 |
US20170151609A1 (en) | 2017-06-01 |
TW201610187A (en) | 2016-03-16 |
EP2944401B1 (en) | 2019-03-13 |
CN106413948A (en) | 2017-02-15 |
CN106413948B (en) | 2019-08-02 |
JP6370925B2 (en) | 2018-08-08 |
JP2017520677A (en) | 2017-07-27 |
ES2727507T3 (en) | 2019-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2944401B1 (en) | Method for producing a component from a metallic alloy containing an amorphous phase | |
EP2974812B1 (en) | Method for the manufacture of a component from a metal alloy with an amorphous phase | |
DE3780136T2 (en) | Sintered composite body with great hardness. | |
EP1718777B1 (en) | Method for the production of a molybdenum alloy | |
DE68906837T2 (en) | SINTERED WORKPIECES AND METHOD FOR THEIR PRODUCTION. | |
EP3360627B1 (en) | Powder for use in an additive manufacturing method | |
EP3166741B1 (en) | Method for producing a component | |
WO2019068117A1 (en) | Additively manufactured component and production method for same | |
DE102013103896B4 (en) | A method of manufacturing a thermoelectric article for a thermoelectric conversion device | |
EP2200768B1 (en) | Method for producing semi-finished products from niti shape memory alloys | |
WO2019179680A1 (en) | Production of a bulk metallic glass composite material using a powder-based additive manufacture | |
DE3011152A1 (en) | BOROUS ALLOYS, METHOD FOR THE PRODUCTION AND USE THEREOF | |
EP2736431B1 (en) | Implant | |
EP3444370B1 (en) | Copper based alloy for the production of metallic solid glasses | |
DE102014114830A1 (en) | A method of making a thermoelectric article for a thermoelectric conversion device | |
DE60317582T2 (en) | METHOD FOR SINTERING ALUMINUM AND ALUMINUM ALLOY PARTS | |
WO2021094560A1 (en) | Spherical powder for making 3d objects | |
DE102019104492B4 (en) | METHOD FOR PRODUCING A CRYSTALLINE ALUMINUM-IRON-SILICON ALLOY | |
EP3231536B1 (en) | Method for producing components from titanium or titanium alloys with powder metallurgy | |
DE69225469T2 (en) | METHOD FOR DEGASSING AND FIXING ALUMINUM ALLOY POWDER | |
AT10479U1 (en) | FLUID-DENSITY SINTERED METAL PARTS AND METHOD FOR THE PRODUCTION THEREOF | |
WO2015042622A1 (en) | Copper-gallium sputtering target | |
WO2021180777A1 (en) | Isotropic, crack-free steel design using an additive manufacturing method | |
EP3892403A1 (en) | Additive fabrication of refractory metals with reduced degree of contamination | |
EP3708270A1 (en) | Mouldings with uniform mechanical properties comprising a metallic solid glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160518 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 1/04 20060101ALI20181002BHEP Ipc: B22F 9/08 20060101ALI20181002BHEP Ipc: B22F 1/00 20060101AFI20181002BHEP Ipc: C22C 45/10 20060101ALI20181002BHEP Ipc: B22F 3/24 20060101ALI20181002BHEP Ipc: C22F 1/00 20060101ALI20181002BHEP Ipc: B22F 3/00 20060101ALI20181002BHEP Ipc: B22F 3/16 20060101ALI20181002BHEP Ipc: C22F 1/18 20060101ALI20181002BHEP Ipc: B22F 9/00 20060101ALI20181002BHEP Ipc: B22F 3/15 20060101ALI20181002BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22F 1/00 20060101ALI20181010BHEP Ipc: B22F 3/00 20060101AFI20181010BHEP Ipc: C22F 1/18 20060101ALI20181010BHEP Ipc: B22F 1/00 20060101ALN20181010BHEP Ipc: B22F 9/00 20060101ALI20181010BHEP Ipc: C22C 1/04 20060101ALI20181010BHEP Ipc: C22C 45/10 20060101ALI20181010BHEP |
|
INTG | Intention to grant announced |
Effective date: 20181114 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1107019 Country of ref document: AT Kind code of ref document: T Effective date: 20190315 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014011082 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DENNEMEYER AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190313 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190614 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190613 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2727507 Country of ref document: ES Kind code of ref document: T3 Effective date: 20191016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190713 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502014011082 Country of ref document: DE Representative=s name: BRAND, NORMEN, DR. RER. NAT., DE Ref country code: DE Ref legal event code: R082 Ref document number: 502014011082 Country of ref document: DE Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014011082 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190713 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190531 |
|
26N | No opposition filed |
Effective date: 20191216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190515 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1107019 Country of ref document: AT Kind code of ref document: T Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140515 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210527 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20210506 Year of fee payment: 8 Ref country code: IE Payment date: 20210519 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210721 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220515 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230705 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220515 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220515 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240521 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240521 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240602 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240528 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240521 Year of fee payment: 11 |