EP2941327B1 - Method for the production of core sand and or molding sand for casting purposes - Google Patents

Method for the production of core sand and or molding sand for casting purposes Download PDF

Info

Publication number
EP2941327B1
EP2941327B1 EP14700045.9A EP14700045A EP2941327B1 EP 2941327 B1 EP2941327 B1 EP 2941327B1 EP 14700045 A EP14700045 A EP 14700045A EP 2941327 B1 EP2941327 B1 EP 2941327B1
Authority
EP
European Patent Office
Prior art keywords
expandable graphite
sand
casting
core
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14700045.9A
Other languages
German (de)
French (fr)
Other versions
EP2941327A1 (en
Inventor
Andreas Wolff
Bettina VENNEMANN
Dieter Genske
Peter OBERSCHELP
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imertech SAS
Original Assignee
Imerys Metalcasting Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imerys Metalcasting Germany GmbH filed Critical Imerys Metalcasting Germany GmbH
Publication of EP2941327A1 publication Critical patent/EP2941327A1/en
Application granted granted Critical
Publication of EP2941327B1 publication Critical patent/EP2941327B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/14Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for separating the pattern from the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores

Definitions

  • the invention relates to a method for producing a core and / or foundry sand for foundry purposes, after which a granular mineral and refractory molding base material is mixed with at least one inorganic binder and additionally an inorganic blowing additive.
  • Bentonite is typically used as a binder.
  • the additional added blowing additive may be perlite, vermiculite or expandable graphite.
  • the bulking additive has a Blähinger of at least 9, that is, the Blveshadditiv in question multiplies its volume at a certain temperature accordingly. This temperature is typically at 300 ° C. As a result, harmful emissions in particular are avoided and the casting quality is improved.
  • Inorganic binders such as bentonite according to EP 2 014 391 A2 are equipped with the fundamental advantage over organic binders that significantly less pollutants are released during casting.
  • bentonite as an inorganic binder for molds and cores it is also possible in principle to use molding material mixtures for the production of casting molds for metal processing, which use a glass-water-based binder, as described in US Pat DE 10 2004 042 535 A1 is described.
  • JP 58968446 A a core or foundry sand for foundry purposes has become known, which in addition to a molding material such as sand in addition on vermiculite, mica or other thermally expanding particles.
  • a molding material such as sand in addition on vermiculite, mica or other thermally expanding particles.
  • water glass and phenolic resins and other binders are addressed. This should be improved in the end, the disintegration of the mold.
  • the US 3,848,655 A deals with the production of a steel bar. This is produced in a casting mold, for the realization of which a sand mixture is used. From the sand mixture, the mold is made using a binder. As possible binders various resins such as phenolic resins or water glass, cement and clay and mixtures are listed as examples. In addition, exothermic substances are used as an additive, which may be carbonaceous materials. Possible carbonaceous materials include coal dust or expanded graphite.
  • the individual grains of the granular mineral and refractory molding base material are bonded or glued together.
  • the molding base material is typically sand or quartz sand.
  • the physical curing of the binder, for example, from the water glass is done regularly by heating by moisture is removed by drying. Drying can be done in a hot core box, by hot air blowing in the core box concerned, or by microwave heating or in a conventional oven.
  • the grains of the molding base material are connected to each other via binder bridges produced with the aid of the binder.
  • the under the EP 2 014 391 A2 or according to the US 4 505 750 A Added added Blähadditive now ensure that the coring easier becomes. Because the swelling additive ensures that, for example, the core can be separated from the casting.
  • the DD 158 090 A1 with a method for controlling the strength of inorganic molding materials based on alkali metal silicate solutions.
  • the special characteristic of water glass is described as a binder and also the unsatisfactory decay properties are presented in this context.
  • the invention is based on the technical problem of developing a method of the type described above so that a perfect and rapid disintegration of the mold is associated with a perfect surface of the casting.
  • a generic method in the context of the invention is characterized in that are used as a binder water glass and as blowing additive expandable graphite.
  • water glass is first used as the binder.
  • Water glass is known to be solidified from a melt glassy water-soluble sodium and potassium silicates or their aqueous solutions. Depending on whether predominantly sodium or potassium silicates are contained, one speaks of soda water glass or potassium water glass.
  • Such waterglasses are characterized by a high rate of setting and low emissions.
  • the use of water glass in the foundry technology for hardening molds and cores is known in principle, as the DE 10 2004 042 535 A1 exemplified, but not in combination with an additional blowing additive in the form of expandable graphite.
  • expanded graphites are special graphites which typically expand by about 50 to 600 volume percent upon heating to temperatures above 150 ° C.
  • the aforesaid expansion can be determined, for example, so that the expandable graphite in question is optionally ground and then heated in a crucible. From a comparison of the volume before and after heating can then be deduced on the volume increase.
  • a certain amount of expandable graphite (in g) is used in this process, so that not only the increase in volume can be specified, but also an expansion rate, ie the volume increase (in cm 3 ) per gram of expanded graphite used.
  • thermochemical analysis dimensional changes of expanded graphite or individual graphite particles are measured as a function of temperature and time.
  • the respective sample of expandable graphite is applied to a sample carrier and the dimensional changes of the sample are measured and recorded with the aid of a measuring probe as a function of the heating temperature and the heating time.
  • the powdery sample of expanded graphite can be introduced into a corundum crucible, which is covered with a steel crucible.
  • the steel crucible ensures the smooth transfer of the dimensional changes of the sample to the probe, which is in mechanical contact with the top of the steel crucible, as the sample expands.
  • the probe is subjected to an adjustable load.
  • thermochemical analysis TMA
  • EP 1 489 136 A1 the expanded graphite can be characterized by its rate of expansion, that is to say the volume increase (in cm 3 ) relative to the mass (in g), inter alia.
  • the expandability of expanded graphite can be attributed to the fact that between the lattice planes of the graphite impurities are embedded, which cause the expansion of the lattice plane spaces when energized.
  • These foreign constituents may be metallic groups, halogens, OH groups, acid residues or SOx and / or NOx.
  • weakly expanding expandable graphites are used which, on the one hand, considerably improve coring, and on the other hand have practically no negative influence on the surface of the casting which forms after casting.
  • an expanded graphite having an expansion rate of more than 10 cm 3 / g and in particular such having an expansion rate of 10 to 100 cm 3 / g, a maximum of 120 cm 3 / g, has proven to be particularly favorable.
  • the lower limit of 10 cm 3 / g is explained by the fact that only at such an expansion rate of expandable graphite a coring is made possible, that is, the shape without adherence to the casting properly disintegrates.
  • expansion rates of up to 350 cm 3 / g and especially those of up to 100 cm 3 / g are particularly preferred.
  • the expansion rate indicates the increase in volume of expandable graphite (in cm 3 ) relative to its mass (in g).
  • the expandable graphite In the production of the expandable graphite according to the invention generally sulfur or nitrogen compounds are incorporated into the individual layers of graphite. It is therefore SOx or NOx expandable graphite. These typically have a starting temperature for expansion that is greater than 180 ° C. In particular, a starting temperature of about 220 ° C is observed. That is, only above the specified temperatures (> 180 ° C), the previously stated volume increase is observed.
  • expandable graphite is typically used one whose particle size is more than 20 microns.
  • particles or grains are used in a diameter range from 20 .mu.m to 150 .mu.m and preferably those with a grain size between 150 .mu.m and 300 .mu.m.
  • the described grain size of the expanded graphite up to a maximum of 300 ⁇ m takes into account, among other things, the fact that usually granular mineral sand, in particular quartz sand, is used as the molding base material. This is usually in a mean grain size ⁇ 0.5 mm before, that is with a grain diameter of typically less than 500 microns. In general, its grain size ranges between 100 ⁇ m to 300 ⁇ m. As a result, the grains of on the one hand the expanded graphite and on the other hand the mold base material are approximately the same size, which favors the mixing of the molding material with the expandable graphite and its uniform distribution within the produced core and / or molding sand.
  • Expanded graphite generally has a carbon content of 85% to 99.5% by weight.
  • the maximum moisture of the expanded graphite is in the range of at most 1 wt .-%.
  • the PH value may be between 3 and 8.
  • the starting temperature is in the range between 180 ° C and 220 ° C.
  • the expandable graphite is added to the mixture in a proportion of up to about 1% by weight and preferably up to about 0.5% by weight.
  • the mixture is the mixture of the granular mineral molding base material and the at least one inorganic binder.
  • the inorganic blowing additive in the form of expandable graphite is added to this mixture.
  • Particularly preferred is a proportion of expandable graphite in the mixture in question of about 0.1 wt .-%.
  • the percentages by weight in each case relate to the molding material used.
  • the expanded graphite ensures that the surface of the casting that is formed is not or is not negatively affected. This can essentially be attributed to the fact that, on the one hand, the weak expansion of the expandable graphite does not exert excessive pressure on the grains of the basic molding material with pressure built up from the inside, but rather causes the moderate expansion rate mainly to break up the binder bridges. On the other hand, the expanding expanded graphite is in a particularly fine distribution, so that inclusions on the surface of the casting in principle can not or practically do not occur.
  • the bentonite-bonded test specimen corresponds to the state of the art, as used in the EP 2 014 391 A2 is described and used as an inorganic binder bentonite.
  • the water-glass-bonded test specimen belongs to the process according to the invention, in which water glass (in conjunction with expandable graphite as intumescent additive) is used as binder.
  • bentonite-bonded molding material 5% by weight bentonite (based on the quartz sand) + water + quartz sand was used as the bentonite-bonded molding material.
  • the bentonite-bonded molding material has 0.3 wt .-% expandable graphite (based on the quartz sand) with an expansion rate ⁇ 100 cm 3 / g. The entire production of the test specimens was carried out in the laborkorkergergang and according to the educachanurgiher ein VDG leaflet P 69.
  • the water-glass-bonded molding material according to the method of the invention from 1.6 wt .-% water glass (based on the quartz sand or the granular mineral mold base material) and the same proportion of expandable graphite as before and the rest quartz sand.
  • the test specimen was produced here in a wing mixer and the hardening of the water-glass bonded cores in a drying oven.
  • water glass bonded moldings or molding materials without stabilizing mold frame can be produced so that they can be handled freely and inexpensively and so can be used as bentonite bonded moldings also in terms of their casting technology application for a wider range of applications.
  • cores to form inner contours for example, water jacket cores in the production of molds for water-cooled engines to name, which can not be imagined with bentonite-bonded cores and handled.
  • the core and / or foundry sand produced by the process according to the invention can be used advantageously for the production of casting molds for iron-carbon alloys, aluminum alloys, copper alloys such as brass, bronze, etc. but also for magnesium alloys and castings produced therefrom.
  • the casting molds in question are typically used in the automotive industry. In fact, this makes it possible to realize casting molds which have particularly delicate structures with thin contours and in particular core contours in the range of only a few millimeters. Such narrow contours and in particular channels for cooling water in the production of cylinder heads can be realized particularly advantageously with the aid of casting molds which have been produced on the basis of the inventively producing core and / or molding sand.
  • the main advantages of the doctrine of invention are also the main advantages of the doctrine of invention.
  • Photograph shown is a casting shown in the left photo, which without expandable graphite recourse to a core and / or molding sand and water glass has been prepared as a binder.
  • the right photograph in the Fig. 1 shows the workpiece in question with added expanded graphite in an amount of 0.1 wt .-% based on the produced core or molding sand (also with water glass as a binder, in both cases the same grammages for water glass and the core or foundry sand and also the same core or molding sand was used.
  • the Fig. 2 and 3A to 3C show the basic process in the production of a mold using the core and / or molding sand according to the invention.
  • Fig. 2 one recognizes how predominantly hatched grains of sand 1, together with black inorganic binder or water glass 2, fill a water jacket core of a corresponding core shape.
  • Fig. 3A By way of example, two grains or grains of sand 1 of the basic molding material are coupled together by a bridge made of the inorganic binder or water glass 2 shown in black.
  • the Fig. 3B shows how when crossing the starting temperature, a crack in the formed by inorganic binder or the water glass 2 bridge between the sand grains 1 is formed. For this purpose, essentially the expanding graphite expanding above the starting temperature is responsible.
  • the Fig. 3C finally shows the breakage of the binder bridge 3 produced by the binder or water glass 2 in this way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Kern- und/oder Formsandes für Gießereizwecke, wonach ein granularer mineralischer sowie feuerfester Formgrundstoff mit wenigstens einem anorganischen Bindemittel und zusätzlich einem anorganischen Blähadditiv gemischt wird.The invention relates to a method for producing a core and / or foundry sand for foundry purposes, after which a granular mineral and refractory molding base material is mixed with at least one inorganic binder and additionally an inorganic blowing additive.

Bei einem Verfahren des eingangs beschriebenen Aufbaus, wie dies beispielsweise in der EP 2 014 391 A2 der Anmelderin oder auch der US 4 505 750 A beschrieben wird, kommt typischerweise Bentonit als Bindemittel zum Einsatz. Bei dem zusätzlich zugegebenen Blähadditiv kann es sich um Perlit, Vermiculit oder auch Blähgraphit handeln. Das Blähadditiv verfügt über eine Blähzahl von wenigstens 9, das heißt, das fragliche Blähadditiv vervielfacht sein Volumen bei einer bestimmten Temperatur entsprechend. Diese Temperatur liegt typischerweise bei 300 °C. Hierdurch werden insbesondere schädliche Emissionen vermieden und die Gussqualität verbessert.In a method of the structure described above, as for example in the EP 2 014 391 A2 the applicant or the US 4 505 750 A Bentonite is typically used as a binder. The additional added blowing additive may be perlite, vermiculite or expandable graphite. The bulking additive has a Blähzahl of at least 9, that is, the Blähadditiv in question multiplies its volume at a certain temperature accordingly. This temperature is typically at 300 ° C. As a result, harmful emissions in particular are avoided and the casting quality is improved.

Anorganische Bindemittel wie beispielsweise Bentonit entsprechend der EP 2 014 391 A2 sind mit dem grundsätzlichen Vorteil gegenüber organischen Bindemitteln ausgerüstet, dass beim Abgießen bedeutend weniger Schadstoffe freigesetzt werden. Neben Bentonit als anorganischem Bindemittel für Formen und Kerne können grundsätzlich auch Formstoffmischungen zur Herstellung von Gießformen für die Metallverarbeitung zum Einsatz kommen, die auf ein auf Wasserglas basierendes Bindemittel zurückgreifen, wie dies in der DE 10 2004 042 535 A1 beschrieben wird.Inorganic binders such as bentonite according to EP 2 014 391 A2 are equipped with the fundamental advantage over organic binders that significantly less pollutants are released during casting. In addition to bentonite as an inorganic binder for molds and cores it is also possible in principle to use molding material mixtures for the production of casting molds for metal processing, which use a glass-water-based binder, as described in US Pat DE 10 2004 042 535 A1 is described.

Durch die JP 58968446 A ist ein Kern- bzw. Formsand für Gießereizwecke bekannt geworden, welcher neben einem Formgrundstoff wie Sand zusätzlich auf Vermiculit, Glimmer oder andere thermisch expandierende Partikel zurückgreift. Außerdem werden Wasserglas sowie Phenolharze und andere Bindemittel angesprochen. Dadurch soll im Endeffekt der Zerfall der Gießform verbessert werden.By the JP 58968446 A a core or foundry sand for foundry purposes has become known, which in addition to a molding material such as sand in addition on vermiculite, mica or other thermally expanding particles. In addition, water glass and phenolic resins and other binders are addressed. This should be improved in the end, the disintegration of the mold.

Die US 3,848,655 A beschäftigt sich mit der Herstellung eines Stahlbarrens. Dieser wird in einer Gießform produziert, zu deren Realisierung eine Sandmischung zum Einsatz kommt. Aus der Sandmischung wird mit Hilfe eines Bindemittels die Gießform hergestellt. Als mögliche Bindemittel werden verschiedene Harze wie beispielsweise Phenolharze oder auch Wasserglas, Zement und Ton sowie Mischungen exemplarisch aufgelistet. Außerdem kommen exotherme Substanzen als Zusatz zum Einsatz, bei denen es sich um kohlenstoffhaltige Materialien handeln kann. Als denkbare kohlenstoffhaltige Materialien werden unter anderem Kohlenstaub oder auch Blähgraphit genannt.The US 3,848,655 A deals with the production of a steel bar. This is produced in a casting mold, for the realization of which a sand mixture is used. From the sand mixture, the mold is made using a binder. As possible binders various resins such as phenolic resins or water glass, cement and clay and mixtures are listed as examples. In addition, exothermic substances are used as an additive, which may be carbonaceous materials. Possible carbonaceous materials include coal dust or expanded graphite.

Generell werden mit Hilfe des anorganischen Bindemittels die einzelnen Körner des granularen mineralischen und feuerfesten Formgrundstoffes miteinander verbunden bzw. geklebt. Bei dem Formgrundstoff handelt es sich typischerweise um Sand bzw. Quarzsand. Die physikalische Aushärtung des Bindemittels, beispielsweise vom Wasserglas, erfolgt regelmäßig durch Erhitzen, indem Feuchtigkeit durch Trocknen entzogen wird. Das Trocknen kann in einer heißen Kernbüchse, durch Begasen mit heißer Luft in der betreffenden Kernbüchse oder auch mit Hilfe einer Mikrowellenheizung bzw. in einem herkömmlichen Ofen erfolgen.Generally, with the help of the inorganic binder, the individual grains of the granular mineral and refractory molding base material are bonded or glued together. The molding base material is typically sand or quartz sand. The physical curing of the binder, for example, from the water glass is done regularly by heating by moisture is removed by drying. Drying can be done in a hot core box, by hot air blowing in the core box concerned, or by microwave heating or in a conventional oven.

Nach dem Aushärten sind die Körner des Formgrundstoffes über mit Hilfe des Bindemittels erzeugte Binderbrücken miteinander verbunden. Die im Rahmen der EP 2 014 391 A2 oder auch gemäß der US 4 505 750 A zugegebenen zusätzlichen Blähadditive sorgen nun dafür, dass das Entkernen erleichtert wird. Denn das Blähadditiv stellt sicher, dass beispielsweise der Kern vom Gussteil getrennt werden kann.After curing, the grains of the molding base material are connected to each other via binder bridges produced with the aid of the binder. The under the EP 2 014 391 A2 or according to the US 4 505 750 A Added added Blähadditive now ensure that the coring easier becomes. Because the swelling additive ensures that, for example, the core can be separated from the casting.

An dieser Stelle können häufig aufgrund der speziellen Charakteristik des anorganischen Bindemittels und insbesondere von Wasserglasbindern Schwierigkeiten auftreten, so dass die Trennung des Kerns bzw. Kernsandes und/oder Formsandes vom jeweiligen Gussteil nur teilweise oder unvollständig gelingt. Beispielsweise befasst sich die DD 158 090 A1 mit einem Verfahren zur Festigkeitsregulierung anorganischer Formstoffe auf der Basis von Alkalisilikatlösungen. Hier wird die besondere Charakteristik von Wasserglas als Bindemittel beschrieben und werden auch die unbefriedigenden Zerfallseigenschaften in diesem Kontext dargestellt.Due to the special characteristics of the inorganic binder and especially of waterglass binders, difficulties may often arise at this point, so that the separation of the core or core sand and / or foundry sand from the respective casting is only partially or incompletely successful. For example, the DD 158 090 A1 with a method for controlling the strength of inorganic molding materials based on alkali metal silicate solutions. Here, the special characteristic of water glass is described as a binder and also the unsatisfactory decay properties are presented in this context.

Denn diese muss möglichst genau und fehlerfrei abgebildet werden. So können Oberflächenfehler unter anderem beim Ablösen von Partikeln bzw. Körnern entstehen. Außerdem werden ein oder mehrphasige Einschlüsse an der Gussoberfläche beobachtet, die sich auf Reaktionen des Kern- und/oder Formsandes mit der Schmelze zurückführen lassen. Solche Einschlüsse sind manchmal makroskopisch, also mit bloßem Auge, zu erkennen und beeinflussen regelmäßig die mechanischen Festigkeiten eines Gussteils. Hieraus kann im Extremfall Ausschuss resultieren.Because this must be as accurate and accurate as possible. For example, surface defects can occur during the detachment of particles or grains. In addition, single or multi-phase inclusions are observed on the casting surface, which can be attributed to reactions of the core and / or molding sand with the melt. Such inclusions can sometimes be recognized macroscopically, ie with the naked eye, and regularly influence the mechanical strengths of a casting. This can result in extreme cases committee.

Bei der Herstellung der Gussteile steht nicht nur eine einwandfreie Gussoberfläche im Fokus, sondern der gesamte Fertigungsprozess stellt an das Entkernen besonders hohe Anforderungen. Das heißt, es kommt darauf an, dass die Formen und Kerne nach der Herstellung des Gussteils einwandfrei vom Gussteil getrennt werden. Um diesen Vorgang zu unterstützen, wird oftmals mechanische Energie durch Rütteln oder Vibrieren zugeführt, welche ergänzend zu dem Blähadditiv dafür sorgt, dass die Binderbrücken zwischen den einzelnen Körnern zerstört werden und folglich der Formgrundstoff im Idealfall aus dem Gussstück frei herausrieselt.In the production of castings, not only is a perfect casting surface in focus, but the entire manufacturing process places particularly high demands on coring. That is, it is important that the molds and cores are properly separated from the casting after the casting is made. In order to support this process, mechanical energy is often supplied by shaking or vibrating, which in addition to the blowing additive ensures that the binder bridges between the individual grains are destroyed and therefore the mold base material ideally free-flowing out of the casting.

Insbesondere bei anorganisch gebundenen Kernen mit schmalen Konturen im Millimeterbereich, wie sie unter anderem bei Zylinderköpfen mit Wassermantel zur Herstellung von Automobilmotoren beobachtet werden, ergeben sich Entkernprobleme, die auch noch durch die relativ geringen Gießtemperaturen der im Allgemeinen eingesetzten Aluminiumlegierungen verstärkt werden. Das heißt, in den gebildeten dünnen Kanälen können oft Kernsandreste hängen bleiben oder die Kanäle sind sogar verschlossen. Hinzu kommt, dass anorganische Bindemittel auf Basis von Bentonit im Allgemeinen mit dem Nachteil verbunden sind, dass die hieraus hergestellten Gießformen relativ geringe Festigkeiten aufweisen. Hohe Festigkeiten sind aber besonders wichtig für die Produktion solcher komplizierter dünnwandiger Kerne (Formen) und deren sichere Handhabung.In particular, in the case of inorganic bonded cores with narrow contours in the millimeter range, as observed, inter alia, with water jacket cylinder heads for the production of automotive engines, there are Entkernprobleme, which are also reinforced by the relatively low casting temperatures of the aluminum alloys generally used. That is, in the formed thin channels often Kernsandreste get stuck or the channels are even closed. In addition, inorganic binders based on bentonite are generally associated with the disadvantage that the casting molds produced therefrom have relatively low strengths. However, high strengths are particularly important for the production of such complicated thin-walled cores (molds) and their safe handling.

Der Grund für die niedrigen Festigkeiten bentonitgebundener Formen und Kerne gegenüber beispielsweise wasserglasgebundenen Formen und Kernen lässt sich im Wesentlichen darauf zurückführen, dass die bentonitgebundenen Gießformen einen etwas anderen Bindungsmechanismus besitzen und noch Restwasser aus dem Bindemittel enthalten. - Hier setzt die Erfindung ein.The reason for the low strengths of bentonite-bonded shapes and cores compared to, for example, water-glass bonded shapes and cores can be attributed essentially to the fact that the bentonite-bonded casting molds have a slightly different bonding mechanism and still contain residual water from the binder. - This is where the invention starts.

Der Erfindung liegt das technische Problem zugrunde, ein Verfahren der eingangs beschriebenen Ausprägung so weiterzuentwickeln, dass ein einwandfreier und schneller Zerfall der Gussform mit einer einwandfreien Oberfläche des Gussteiles einhergeht.The invention is based on the technical problem of developing a method of the type described above so that a perfect and rapid disintegration of the mold is associated with a perfect surface of the casting.

Zur Lösung dieser technischen Problemstellung ist ein gattungsgemäßes Verfahren im Rahmen der Erfindung dadurch gekennzeichnet, dass als Bindemittel Wasserglas und als Blähadditiv Blähgraphit eingesetzt werden.To solve this technical problem, a generic method in the context of the invention is characterized in that are used as a binder water glass and as blowing additive expandable graphite.

Im Rahmen der Erfindung kommt als Bindemittel zunächst einmal Wasserglas zum Einsatz. Bei Wasserglas handelt es sich bekanntermaßen um aus einer Schmelze erstarrte glasartige wasserlösliche Natrium- und Kaliumsilikate oder ihre wässrigen Lösungen. Je nach dem, ob überwiegend Natrium- oder Kaliumsilikate enthalten sind, spricht man von Natronwasserglas oder von Kaliwasserglas. Solche Wasserglase zeichnen sich durch eine hohe Geschwindigkeit beim Abbinden und geringe Emissionen aus. Der Einsatz von Wasserglas in der Gießereitechnik zum Härten von Formen und Kernen ist zwar grundsätzlich bekannt, wie die DE 10 2004 042 535 A1 beispielhaft belegt, allerdings nicht in Kombination mit einem zusätzlichen Blähadditiv in Gestalt von Blähgraphit.In the context of the invention, water glass is first used as the binder. Water glass is known to be solidified from a melt glassy water-soluble sodium and potassium silicates or their aqueous solutions. Depending on whether predominantly sodium or potassium silicates are contained, one speaks of soda water glass or potassium water glass. Such waterglasses are characterized by a high rate of setting and low emissions. The use of water glass in the foundry technology for hardening molds and cores is known in principle, as the DE 10 2004 042 535 A1 exemplified, but not in combination with an additional blowing additive in the form of expandable graphite.

Tatsächlich handelt es sich bei Blähgraphiten um spezielle Graphite, die typischerweise beim Erhitzen auf Temperaturen über 150 °C um etwa 50 bis 600 Vol.-% expandieren. Die vorgenannte Expansion kann beispielsweise so bestimmt werden, dass das fragliche Blähgraphit gegebenenfalls gemahlen und dann in einem Schmelztiegel erhitzt wird. Aus einem Vergleich des Volumens vor und nach dem Erhitzen kann dann auf die Volumenzunahme rückgeschlossen werden. Üblicherweise kommt bei diesem Vorgang eine bestimmte Menge des Blähgraphites (in g) zum Einsatz, so dass nicht nur die Volumenzunahme angegeben werden kann, sondern auch eine Expansionsrate, das heißt die Volumenzunahme (in cm3) pro Gramm des eingesetzten Blähgraphits.In fact, expanded graphites are special graphites which typically expand by about 50 to 600 volume percent upon heating to temperatures above 150 ° C. The aforesaid expansion can be determined, for example, so that the expandable graphite in question is optionally ground and then heated in a crucible. From a comparison of the volume before and after heating can then be deduced on the volume increase. Usually, a certain amount of expandable graphite (in g) is used in this process, so that not only the increase in volume can be specified, but also an expansion rate, ie the volume increase (in cm 3 ) per gram of expanded graphite used.

Einzelheiten der Herstellung solcher Blähgraphite sowie der Messung der Expansionseigenschaften lassen sich unter anderem der EP 1 489 136 A1 entnehmen. Danach können die Expansionseigenschaften von Blähgraphit beispielsweise mit Hilfe der thermomechanischen Analyse (TMA) bestimmt werden.Details of the production of such expanded graphite and the measurement of the expansion properties can be, inter alia, the EP 1 489 136 A1 remove. Thereafter, the expansion properties of expanded graphite, for example determined by means of thermomechanical analysis (TMA).

Mit Hilfe dieser thermochemischen Analyse werden Dimensionsänderungen des Blähgraphits respektive einzelner Graphitpartikel als Funktion der Temperatur und der Zeit gemessen. Hierfür wird die jeweilige Probe des Blähgraphits auf einen Probenträger aufgebracht und werden die Dimensionsänderungen der Probe mit Hilfe einer Messsonde in Abhängigkeit von der Aufheiztemperatur und der Aufheizzeit gemessen und aufgezeichnet. Dazu lässt sich typischerweise die pulverförmige Probe aus dem Blähgraphit in einen Korundtiegel einbringen, der mit einem Stahltiegel abgedeckt wird. Der Stahltiegel gewährleistet bei der Ausdehnung der Probe die ruckfreie Übertragung der Dimensionsänderungen der Probe auf die Messsonde, welche mit der Oberseite des Stahltiegels in mechanischen Kontakt steht. Außerdem wird die Messsonde mit einer einstellbaren Auflast beaufschlagt.With the aid of this thermochemical analysis dimensional changes of expanded graphite or individual graphite particles are measured as a function of temperature and time. For this purpose, the respective sample of expandable graphite is applied to a sample carrier and the dimensional changes of the sample are measured and recorded with the aid of a measuring probe as a function of the heating temperature and the heating time. Typically, the powdery sample of expanded graphite can be introduced into a corundum crucible, which is covered with a steel crucible. The steel crucible ensures the smooth transfer of the dimensional changes of the sample to the probe, which is in mechanical contact with the top of the steel crucible, as the sample expands. In addition, the probe is subjected to an adjustable load.

Weitere Einzelheiten dieser thermochemischen Analyse (TMA) und auch die Berechnung der Ausdehnung der Substanz in % bzw. in cm3 werden in der zuvor bereits genannten EP 1 489 136 A1 im Detail beschrieben. Als Folge hiervon lässt sich der Blähgraphit über seine Expansionsrate, das heißt die Volumenzunahme (in cm3) bezogen auf die Masse (in g) unter anderem charakterisieren.Further details of this thermochemical analysis (TMA) and also the calculation of the expansion of the substance in% or in cm 3 are in the previously mentioned EP 1 489 136 A1 described in detail. As a consequence of this, the expanded graphite can be characterized by its rate of expansion, that is to say the volume increase (in cm 3 ) relative to the mass (in g), inter alia.

Die Blähfähigkeit des Blähgraphits lässt sich darauf zurückführen, dass zwischen den Gitterebenen des Graphits Fremdbestandteile eingelagert sind, die bei Energiezufuhr die Aufweitung der Gitterebenen-Zwischenräume bewirken. Bei diesen Fremdbestandteilen kann es sich um metallische Gruppen, Halogene, OH-Gruppen, Säurereste oder auch SOx und/ oder NOx handeln.The expandability of expanded graphite can be attributed to the fact that between the lattice planes of the graphite impurities are embedded, which cause the expansion of the lattice plane spaces when energized. These foreign constituents may be metallic groups, halogens, OH groups, acid residues or SOx and / or NOx.

Im Rahmen der Erfindung kommen schwach expandierende Blähgraphite zum Einsatz, welche einerseits das Entkernen erheblich verbessern, andererseits die sich nach dem Gießen bildende Oberfläche des Gussteiles praktisch nicht negativ beeinflussen.In the context of the invention, weakly expanding expandable graphites are used which, on the one hand, considerably improve coring, and on the other hand have practically no negative influence on the surface of the casting which forms after casting.

Um diesen Sachverhalt insbesondere quantitativ aufzuzeigen, wurden in diesem Zusammenhang Abgießversuche mit wasserglasgebundenen Prüfkörpern und Zusätzen von Blähgraphiten unterschiedlicher Expansionsraten unternommen.In particular, in order to demonstrate this fact quantitatively, pouring tests with waterglass-bound test specimens and additions of expandable graphites with different expansion rates were undertaken in this connection.

Dazu wurde für den Gießversuch ein granularer mineralischer Formgrundstoff (Quarzsand) sowie als Bindemittel Wasserglas mit 1,6 Gew.-% und 0,3 Gew.-% Blähgraphit, jeweils bezogen auf den Formgrundstoff, mit zwei verschiedenen Expansionsraten verwendet:

  1. 1. Expansionsrate < 120 cm3/g (Blähgraphit) Probe Nummer 1
  2. 2. Expansionsrate > 350 cm3/g (Blähgraphit) Probe Nummer 2
For this purpose, a granular mineral molding base material (quartz sand) was used for the casting test, as well as waterglass with 1.6% by weight and 0.3% by weight expandable graphite, in each case based on the molding base material, with two different expansion rates:
  1. 1. Expansion rate <120 cm 3 / g (expanded graphite) Sample number 1
  2. 2. Expansion rate> 350 cm 3 / g (expanded graphite) Sample number 2

Im weiteren Verlauf des Versuches wurden die Formlinge als Innenkerne in eine gemeinsame Form eingebracht und abgegossen. Nach dem Erkalten war bei beiden ein einfaches Entkernen sichtbar, das heißt ein einfaches Herausrieseln des Quarzsandes aus dem Gusskörper war erkennbar. Beim Aufsägen beider Gusskörper wurde aber zusätzlich sichtbar, dass der Blähgraphit mit der hohen Expansionsrate (> 350 cm3/g) die Bildung der Gussoberfläche des Probekörpers so stark beeinflusst hatte (vgl. Fig. 4, Probe Nummer 2), dass man als Ergebnis Reste des Blähgraphits makroskopisch auf der Gussoberfläche erkennen konnte.In the further course of the experiment, the moldings were introduced as inner cores in a common mold and poured. After cooling, a simple coring was visible in both, that is, a simple trickling out of the quartz sand from the casting was visible. When sawing both cast bodies, however, it was also apparent that the expanded graphite with the high expansion rate (> 350 cm 3 / g) had influenced the formation of the casting surface of the test specimen so strongly (cf. Fig. 4 , Sample No. 2) that, as a result, residues of the expandable graphite macroscopically on the casting surface could be detected.

Im Vergleich zum Probekörper Nummer 1 bzw. Probe Nummer 1 in Fig. 4, der mit schwach expandierendem Blähgraphit behandelt worden war, wurden diese starken Einflüsse auf die Oberfläche nicht oder nur kaum sichtbar, so dass hinsichtlich der Oberflächenqualität bei dem Abgießversuch keine oder kaum Einschränkungen festgestellt werden konnten.Compared to sample number 1 or sample number 1 in Fig. 4 , who had been treated with weak expanding expandable graphite, these strong influences on the surface were not or only barely visible, so that with regard to the surface quality in the casting test little or no restrictions could be found.

Aus den oben geschilderten Abgießversuchen hat sich also ein Blähgraphit mit einer Expansionsrate von mehr als 10 cm3/g und insbesondere ein solcher mit einer Expansionsrate von 10 bis 100 cm3/g, maximal 120 cm3/g, als besonders günstig erwiesen. Die Untergrenze von 10 cm3/g erklärt sich dadurch, dass erst bei einer solchen Expansionsrate des Blähgraphits ein Entkernen ermöglicht wird, das heißt, die Form ohne Anhaftungen am Gusskörper einwandfrei zerfällt.From the pouring experiments described above, therefore, an expanded graphite having an expansion rate of more than 10 cm 3 / g and in particular such having an expansion rate of 10 to 100 cm 3 / g, a maximum of 120 cm 3 / g, has proven to be particularly favorable. The lower limit of 10 cm 3 / g is explained by the fact that only at such an expansion rate of expandable graphite a coring is made possible, that is, the shape without adherence to the casting properly disintegrates.

Im Allgemeinen sind damit Expansionsraten bis maximal 350 cm3/g und insbesondere solche bis 100 cm3/g besonders bevorzugt. Die Expansionsrate gibt die Volumenzunahme des Blähgraphits (in cm3) bezogen auf dessen Masse (in g) an.In general, therefore, expansion rates of up to 350 cm 3 / g and especially those of up to 100 cm 3 / g are particularly preferred. The expansion rate indicates the increase in volume of expandable graphite (in cm 3 ) relative to its mass (in g).

Bei der Herstellung des erfindungsgemäßen Blähgraphits werden in die einzelnen Schichten des Graphits allgemein Schwefel- oder Stickstoffverbindungen mit eingebaut. Es handelt sich folglich um SOx oder NOx- Blähgraphite. Diese verfügen typischerweise über eine Starttemperatur zur Expansion, die bei mehr als 180 °C liegt. Insbesondere wird eine Starttemperatur von ca. 220 °C beobachtet. Das heißt, erst oberhalb der angegebenen Temperaturen (> 180 °C) wird die zuvor angegebenen Volumenzunahme beobachtet.In the production of the expandable graphite according to the invention generally sulfur or nitrogen compounds are incorporated into the individual layers of graphite. It is therefore SOx or NOx expandable graphite. These typically have a starting temperature for expansion that is greater than 180 ° C. In particular, a starting temperature of about 220 ° C is observed. That is, only above the specified temperatures (> 180 ° C), the previously stated volume increase is observed.

Als Blähgraphit kommt typischerweise ein solcher zum Einsatz, dessen Teilchengröße mehr als 20 µm beträgt. Insbesondere werden Teilchen bzw. Körner in einem Durchmesserbereich von 20 µm bis 150 µm eingesetzt und bevorzugt solche mit einer Körnung zwischen 150 µm und 300 µm.As expandable graphite is typically used one whose particle size is more than 20 microns. In particular, particles or grains are used in a diameter range from 20 .mu.m to 150 .mu.m and preferably those with a grain size between 150 .mu.m and 300 .mu.m.

Die beschriebene Körnung des Blähgraphits bis maximal 300 µm trägt unter anderem dem Umstand Rechnung, dass als Formgrundstoff üblicherweise granularer mineralischer Sand, wie insbesondere Quarzsand, zum Einsatz kommt. Dieser liegt meistens in einer mittleren Körnung ≤ 0,5 mm vor, das heißt mit einem Korndurchmesser von typischerweise weniger als 500 µm. Im Allgemeinen bewegt sich seine Körnung im Bereich zwischen 100 µm bis 300 µm. Dadurch sind die Körner von einerseits dem Blähgraphit und andererseits dem Formgrundstoff in etwa gleich groß bemessen, was die Durchmischung des Formgrundstoffes mit dem Blähgraphit und dessen gleichmäßige Verteilung innerhalb des hergestellten Kern- und/oder Formsandes begünstigt.The described grain size of the expanded graphite up to a maximum of 300 μm takes into account, among other things, the fact that usually granular mineral sand, in particular quartz sand, is used as the molding base material. This is usually in a mean grain size ≤ 0.5 mm before, that is with a grain diameter of typically less than 500 microns. In general, its grain size ranges between 100 μm to 300 μm. As a result, the grains of on the one hand the expanded graphite and on the other hand the mold base material are approximately the same size, which favors the mixing of the molding material with the expandable graphite and its uniform distribution within the produced core and / or molding sand.

Der Blähgraphit verfügt im Allgemeinen über einen Kohlenstoffgehalt von 85 Gew.-% bis 99,5 Gew.-%. Die maximale Feuchte des Blähgraphits liegt im Bereich von maximal 1 Gew.-%. Der PH-Wert mag zwischen 3 und 8 angesiedelt sein. Die Starttemperatur liegt im Bereich zwischen 180 °C und 220 °C.Expanded graphite generally has a carbon content of 85% to 99.5% by weight. The maximum moisture of the expanded graphite is in the range of at most 1 wt .-%. The PH value may be between 3 and 8. The starting temperature is in the range between 180 ° C and 220 ° C.

Meistens wird der Blähgraphit der Mischung mit einem Anteil von bis zu ca. 1 Gew.-% und vorzugsweise bis zu ca. 0,5 Gew.-% zugegeben. Bei der Mischung handelt es sich um die Mischung aus dem granularen mineralischen Formgrundstoff und dem wenigstens einen anorganischen Bindemittel. Zu dieser Mischung wird erfindungsgemäß das anorganische Blähadditiv in Gestalt des Blähgraphits hinzugegeben. Besonders bevorzugt ist ein Anteil des Blähgraphits in der fraglichen Mischung von ca. 0,1 Gew.-%. Die Gewichtsprozentangaben beziehen sich dabei jeweils auf den eingesetzten Formgrundstoff.In most cases, the expandable graphite is added to the mixture in a proportion of up to about 1% by weight and preferably up to about 0.5% by weight. The mixture is the mixture of the granular mineral molding base material and the at least one inorganic binder. According to the invention, the inorganic blowing additive in the form of expandable graphite is added to this mixture. Particularly preferred is a proportion of expandable graphite in the mixture in question of about 0.1 wt .-%. The percentages by weight in each case relate to the molding material used.

Dennoch reichen die eingebrachten und aufgrund der Anpassung der jeweiligen Korndurchmesser von einerseits dem Formgrundstoff und andererseits dem Blähgraphit gleichmäßig verteilten Blähgraphitbestandteile in der Mischung aus, um ab der Starttemperatur das Entkernen zu vereinfachen. Denn durch den eingebrachten Blähgraphit werden praktisch sämtliche Bindungen zwischen den einzelnen Körnern des Formgrundstoffes aufgehoben.Nevertheless, the introduced and due to the adaptation of the respective grain diameter of on the one hand the mold base and on the other hand, the expandable graphite evenly distributed Blähgraphitbestandteile in the mixture to simplify from the starting temperature, the coring. Because of the introduced expanded graphite virtually all bonds between the individual grains of the molding material are repealed.

Zugleich sorgt der Blähgraphit mit seiner relativ geringen Expansionsrate von typischerweise nicht mehr als 100 cm3/g bzw. nicht mehr als 350 cm3/g dafür, dass die Oberfläche des sich bildenden Gussteils nicht oder praktisch nicht negativ beeinflusst wird. Das lässt sich im Kern darauf zurückführen, dass einerseits die schwache Expansion des Blähgraphits die Körner des Formgrundstoffes nicht übermäßig mit von innen her aufgebautem Druck beaufschlagt, sondern vielmehr die moderate Expansionsrate hauptsächlich dazu führt, dass die Binderbrücken aufgesprengt werden. Andererseits liegt der expandierende Blähgraphit in besonders feiner Verteilung vor, so dass Einschlüsse an der Oberfläche des Gussteils prinzipiell nicht oder praktisch nicht auftreten können.At the same time, the expanded graphite, with its relatively low expansion rate of typically not more than 100 cm 3 / g or not more than 350 cm 3 / g, ensures that the surface of the casting that is formed is not or is not negatively affected. This can essentially be attributed to the fact that, on the one hand, the weak expansion of the expandable graphite does not exert excessive pressure on the grains of the basic molding material with pressure built up from the inside, but rather causes the moderate expansion rate mainly to break up the binder bridges. On the other hand, the expanding expanded graphite is in a particularly fine distribution, so that inclusions on the surface of the casting in principle can not or practically do not occur.

Von besonderer Bedeutung ist darüber hinaus, dass hohe Biegefestigkeiten beobachtet werden, die deutlich oberhalb von 100 N/cm2 angesiedelt sind, folglich die beispielsweise in der EP 2 014 391 A2 angegebenen Trockendruckfestigkeiten im Bereich von ca. 40 N/cm2 weit übertreffen. Dies schon deshalb, weil nach dem erfindungsgemäßen Verfahren überhaupt und generell Biegeriegel zur Bestimmung der zuvor angegebenen Biegefestigkeit hergestellt werden können, wohingegen nach dem Verfahren entsprechend der EP 2 014 391 A2 solche Biegeriegel überhaupt nicht darstellbar sind. Jedenfalls ist die Festigkeit gegenüber der Lehre nach EP 2 014 391 A2 deutlich gesteigert.Of particular importance beyond that high bending strengths are observed, which are located well above 100 N / cm 2 , therefore, for example, in the EP 2 014 391 A2 far exceed specified dry compressive strengths in the range of about 40 N / cm 2 . This is because, according to the method of the invention, generally and generally bending bars can be produced for determining the bending strength given above, whereas according to the method according to FIG EP 2 014 391 A2 Such bending bars are not displayed at all. In any case, the resistance to the teaching after EP 2 014 391 A2 significantly increased.

Diesen Sachverhalt untermauern vor allem die Vergleichsprüfwerte der Biegefestigkeit von bentonitgebundenen und wasserglasgebundenen Prüfkörpern, wie aus Tabelle 1 zu entnehmen ist. Der bentonitgebundene Prüfkörper entspricht dabei dem Stand der Technik, wie er beispielsweise in der EP 2 014 391 A2 beschrieben wird und als anorganisches Bindemittel Bentonit einsetzt. Demgegenüber gehört der wasserglasgebundene Prüfkörper zum erfindungsgemäßen Verfahren, bei dem als Bindemittel Wasserglas (in Verbindung mit Blähgraphit als Blähadditiv) eingesetzt wird.This fact is supported in particular by the comparative test values of the flexural strength of bentonite-bonded and water-glass bonded specimens, as can be seen from Table 1. The bentonite-bonded test specimen corresponds to the state of the art, as used in the EP 2 014 391 A2 is described and used as an inorganic binder bentonite. In contrast, the water-glass-bonded test specimen belongs to the process according to the invention, in which water glass (in conjunction with expandable graphite as intumescent additive) is used as binder.

Dabei wurde als bentonitgebundener Formstoff 5 Gew.-% Bentonit (bezogen auf den Quarzsand) + Wasser + Quarzsand verwendet. Außerdem weist der bentonitgebundene Formstoff 0,3 Gew.-% Blähgraphit (bezogen auf den Quarzsand) mit einer Expansionsrate < 100 cm3/g auf. Die gesamte Herstellung der Prüfkörper erfolgte im Laborkollergang und gemäß der Prüfkörperherstellung VDG Merkblatt P 69.In this case, 5% by weight bentonite (based on the quartz sand) + water + quartz sand was used as the bentonite-bonded molding material. In addition, the bentonite-bonded molding material has 0.3 wt .-% expandable graphite (based on the quartz sand) with an expansion rate <100 cm 3 / g. The entire production of the test specimens was carried out in the laborkorkergergang and according to the Prüfkörperherstellung VDG leaflet P 69.

Zum Vergleich dazu bestand der wasserglasgebundene Formstoff entsprechend dem erfindungsgemäßen Verfahren aus 1,6 Gew.-% Wasserglas (bezogen auf den Quarzsand bzw. den granularen mineralischen Formgrundstoff) sowie dem gleichen Anteil Blähgraphit wie zuvor und dem Rest Quarzsand. Die Herstellung des Prüfkörpers erfolgte hier in einem Flügelmischer und die Aushärtung der wasserglasgebundenen Kerne in einem Trockenschrank.For comparison, the water-glass-bonded molding material according to the method of the invention from 1.6 wt .-% water glass (based on the quartz sand or the granular mineral mold base material) and the same proportion of expandable graphite as before and the rest quartz sand. The test specimen was produced here in a wing mixer and the hardening of the water-glass bonded cores in a drying oven.

Bei der Prüfung der bentonit- und wasserglasgebundenen Probekörper wurden folgende Biegefestigkeiten festgestellt, die die großen und bereits bekannten Unterschiede hinsichtlich der Biegefestigkeit, insbesondere die praktisch nicht messbaren Biegefestigkeiten bei bentonitgebundenen Formstoffen, wiedergeben (die Messungen 1 bis 3 beziehen sich auf jeweils drei Prüfkörper gleicher Grammatur und Herstellung, die zu statistischen Zwecken untersucht wurden): Tabelle 1. Messreihe zur Prüfung der bentonit- und wasserglasgebundenen Prüfkörper Messung Biegefestigkeit der bentonitgebundenen Prüfkörper Biegefestigkeit der wasserglasgebundenen Prüfkörper 1 unter 20 N/ cm2 350 N/ cm2 2 unter 20 N/ cm2 360 N/cm2 3 unter 20 N/ cm2 350 N/cm2 When testing the bentonite- and waterglass-bonded specimens, the following bending strengths were determined, which reflect the large and already known differences in flexural strength, in particular the virtually non-measurable flexural strengths of bentonite-bonded molding materials (Measurements 1 to 3 refer to three test pieces of the same grammage and production, which were examined for statistical purposes): Table 1. Series of tests for testing the bentonite and waterglass bonded specimens Measurement Bending strength of the bentonite-bonded test specimens Bending strength of the waterglass-bonded specimens 1 below 20 N / cm 2 350 N / cm 2 2 below 20 N / cm 2 360 N / cm 2 3 below 20 N / cm 2 350 N / cm 2

Damit ist die Anwendung eines bentonitgebundenen Formstoffs auf Formen beschränkt, die meist nur zur Bildung der Außenkontur von Gussformen Anwendung finden, was insgesamt einen Nachteil darstellt. Denn beispielsweise Innenkerne respektive Innenkonturen lassen sich hiermit praktisch nicht realisieren.Thus, the application of a bentonite-bonded molding material is limited to forms that are usually used only for forming the outer contour of molds, which represents a disadvantage overall. Because, for example, inner cores respectively inner contours can be hereby practically not realized.

Hinzu kommt, dass sich zu einer möglichen Stabilisierung und zur Bildung der nötigen Festigkeiten solche bentonitgebundenen Formstoffe stets in einem Formrahmen befinden müssen, auch Formkasten genannt, der diesen Festigkeitsnachteil des Bindemittels ausgleicht.In addition, for a possible stabilization and for the formation of the necessary strengths, such bentonite-bonded molding materials must always be located in a molding frame, also called a molding box, which compensates for this strength disadvantage of the binder.

Dies ist ebenfalls als ein weiterer Nachteil anzusehen, da hier zum einen zusätzliche Materialkosten für die Formkästen entstehen und zum anderen nach jeweiligen Gebrauch eine Reinigung bzw. Wiederaufbereitung der Formkästen notwendig ist, was auch hier zusätzliche Kosten entstehen lässt.This is also to be regarded as a further disadvantage, since on the one hand additional material costs for the molding boxes arise and, on the other hand, a cleaning or reprocessing of the molding boxes is necessary after each use, which also causes additional costs.

Zum Vergleich können wasserglasgebundene Formlinge bzw. Formstoffe ohne stabilisierenden Formrahmen (Formkasten) hergestellt werden, so dass sie frei und kostengünstig gehandhabt werden können und so auch hinsichtlich ihrer gießereitechnischen Anwendung für einen weiteren Anwendungsbereich als bentonitgebundene Formlinge verwendet werden können. Hier sind insbesondere die Herstellung von Kernen zur Ausbildung von Innenkonturen beispielsweise Wassermantelkernen bei der Herstellung von Gussformen für wassergekühlte Motoren zu nennen, die unmöglich mit bentonitgebundenen Kernen abzubilden und gehandhabt werden können. Hierin sind die wesentlichen Vorteile zu sehen.For comparison, water glass bonded moldings or molding materials without stabilizing mold frame (molding box) can be produced so that they can be handled freely and inexpensively and so can be used as bentonite bonded moldings also in terms of their casting technology application for a wider range of applications. Here, in particular, the production of cores to form inner contours, for example, water jacket cores in the production of molds for water-cooled engines to name, which can not be imagined with bentonite-bonded cores and handled. Here are the main benefits.

Auch kann der nach dem erfindungsgemäßen Verfahren hergestellte Kern- und/ oder Formsand vorteilhaft zur Produktion von Gießformen für Eisen-Kohlenstoff-Legierungen, Aluminiumlegierungen, Kupferlegierungen wie Messing, Bronze etc. aber auch für Magnesiumlegierungen und daraus hergestellte Gussteile zum Einsatz kommen. Dabei werden die fraglichen Gießformen typischerweise in der Automobilindustrie eingesetzt. Tatsächlich lassen sich hiermit Gießformen realisieren, die über besonders filigrane Strukturen mit dünnen Konturen und insbesondere Kernkonturen im Bereich von nur wenigen Millimetern verfügen. Solche schmalen Konturen und insbesondere Kanäle für Kühlwasser bei der Herstellung von Zylinderköpfen lassen sich besonders vorteilhaft mit Hilfe von Gießformen realisieren, die auf Basis des erfindungsgemäß herstellenden Kern- und/oder Formsandes produziert worden sind. Hier sind ebenfalls die wesentlichen Vorteile der Erfindungslehre zu sehen.Also, the core and / or foundry sand produced by the process according to the invention can be used advantageously for the production of casting molds for iron-carbon alloys, aluminum alloys, copper alloys such as brass, bronze, etc. but also for magnesium alloys and castings produced therefrom. The casting molds in question are typically used in the automotive industry. In fact, this makes it possible to realize casting molds which have particularly delicate structures with thin contours and in particular core contours in the range of only a few millimeters. Such narrow contours and in particular channels for cooling water in the production of cylinder heads can be realized particularly advantageously with the aid of casting molds which have been produced on the basis of the inventively producing core and / or molding sand. Here are also the main advantages of the doctrine of invention.

Vergleichsbeispiel 1Comparative Example 1

In der in Fig. 1 dargestellten Fotografie ist ein Gussstück im linken Foto gezeigt, welches ohne Blähgraphit unter Rückgriff auf einen Kern- und/oder Formsand sowie Wasserglas als Binder hergestellt worden ist. Die rechte Fotografie in der Fig. 1 zeigt das betreffende Werkstück mit zugesetztem Blähgraphit in einer Menge von 0,1 Gew.-% bezogen auf den hergestellten Kern- bzw. Formsand (ebenfalls mit Wasserglas als Binder, wobei in beiden Fällen gleiche Grammaturen für Wasserglas und den Kern- oder Formsand sowie auch der gleiche Kern- oder Formsand eingesetzt wurde.In the in Fig. 1 Photograph shown is a casting shown in the left photo, which without expandable graphite recourse to a core and / or molding sand and water glass has been prepared as a binder. The right photograph in the Fig. 1 shows the workpiece in question with added expanded graphite in an amount of 0.1 wt .-% based on the produced core or molding sand (also with water glass as a binder, in both cases the same grammages for water glass and the core or foundry sand and also the same core or molding sand was used.

Anhand der Fotografien in der Fig. 1 wird deutlich, dass die Gussoberfläche durch Zusatz von Blähgraphit selbst in der angegebenen Menge deutlich verbessert wird, wie die rechte Fotografie in der Fig. 1 zeigt. Demgegenüber ist bei einem Verzicht auf Blähgraphit mit deutlichen Fehlern an der Gussoberfläche zu rechnen, wie die linke Fotografie in der Fig. 1 deutlich macht.Based on the photographs in the Fig. 1 It becomes clear that the addition of expanded graphite significantly improves the surface of the casting, even in the stated quantity, as the right - hand photograph in Fig. 1 shows. On the other hand, in the absence of expanded graphite, significant defects in the casting surface are to be expected, such as the left photograph in the Fig. 1 makes it clear.

Theoretische ÜberlegungenTheoretical considerations

Die Fig. 2 und 3A bis 3C zeigen den prinzipiellen Vorgang bei der Herstellung einer Form mit Hilfe des erfindungsgemäßen Kern- und/oder Formsandes. In der Fig. 2 erkennt man, wie überwiegend schraffiert dargestellte Sandkörner 1 zusammen mit schwarz dargestelltem anorganischen Binder bzw. Wasserglas 2 einen Wassermantelkern einer entsprechenden Kernform ausfüllen. In der Fig. 3A sind beispielhaft zwei Körner bzw. Sandkörner 1 des Formgrundstoffes durch eine schwarz dargestellte Brücke aus dem anorganischen Binder bzw. Wasserglas 2 miteinander gekoppelt. Die Fig. 3B zeigt, wie beim Überschreiten der Starttemperatur ein Riss in der durch anorganischen Binder bzw. das Wasserglas 2 gebildeten Brücke zwischen den Sandkörnern 1 entsteht. Hierfür ist im Wesentlichen das oberhalb der Starttemperatur expandierende Blähgraphit verantwortlich. Die Fig. 3C zeigt schließlich den auf diese Weise hergestellten Bruch der durch das Bindemittel bzw. Wasserglas 2 erzeugten Binderbrücke 3.The Fig. 2 and 3A to 3C show the basic process in the production of a mold using the core and / or molding sand according to the invention. In the Fig. 2 one recognizes how predominantly hatched grains of sand 1, together with black inorganic binder or water glass 2, fill a water jacket core of a corresponding core shape. In the Fig. 3A By way of example, two grains or grains of sand 1 of the basic molding material are coupled together by a bridge made of the inorganic binder or water glass 2 shown in black. The Fig. 3B shows how when crossing the starting temperature, a crack in the formed by inorganic binder or the water glass 2 bridge between the sand grains 1 is formed. For this purpose, essentially the expanding graphite expanding above the starting temperature is responsible. The Fig. 3C finally shows the breakage of the binder bridge 3 produced by the binder or water glass 2 in this way.

Claims (10)

  1. A method for producing a core and/or moulding sand for foundry purposes, according to which a granular mineral base moulding material is mixed with at least one inorganic binding agent and additionally an inorganic aerated additive, characterized in that sodium silicate is used as binding agent and expandable graphite is used as aerated additive, wherein the expandable graphite has a rate of expansion of at most 350 cm3/g.
  2. The method according to Claim 1, characterized in that the expandable graphite has a rate of expansion of 10 to 100 cm3/g.
  3. The method according to Claim 1 or 2, characterized in that the start temperature for the expansion of the expandable graphite is settled at more than 180°C, particularly lies in the range between approx. 180°C and 220°C.
  4. The method according to one of Claims 1 to 3, characterized in that the expandable graphite is added at a particle size of more than 20 µm, particularly in the range from 20 to 150 µm and preferably between approx. 150 µm and 300 µm.
  5. The method according to one of Claims 1 to 4, characterized in that SOx or NOx expandable graphite is used as expandable graphite.
  6. The method according to one of Claims 1 to 5, characterized in that the expandable graphite has a carbon content of 85% by weight to 99.5% by weight.
  7. The method according to one of Claims 1 to 6, characterized in that the expandable graphite is added to the mixture made up of the base moulding material and the sodium silicate with a proportion of up to approx. 1% by weight, preferably with a proportion of up to approx. 0.5% by weight and particularly preferably with a proportion of up to approx. 0.1% by weight, in each case with respect to the base moulding material.
  8. The method according to one of Claims 1 to 7, characterized in that the expandable graphite is added to the sodium silicate and then mixed with the base moulding material or added as separate additive to the base moulding material including sodium silicate.
  9. The use of a core and/or moulding sand produced according to the method according to Claims 1 to 8 for producing casting moulds for cast aluminium alloys , iron-carbon alloys, copper alloys and/or magnesium alloys.
  10. The use according to Claim 9, characterized in that the casting mould is used in the automotive industry.
EP14700045.9A 2013-01-04 2014-01-03 Method for the production of core sand and or molding sand for casting purposes Not-in-force EP2941327B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013100060 2013-01-04
PCT/EP2014/050055 WO2014106646A1 (en) 2013-01-04 2014-01-03 Method for the production of core sand and/or molding sand for casting purposes

Publications (2)

Publication Number Publication Date
EP2941327A1 EP2941327A1 (en) 2015-11-11
EP2941327B1 true EP2941327B1 (en) 2018-07-25

Family

ID=49920344

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14700045.9A Not-in-force EP2941327B1 (en) 2013-01-04 2014-01-03 Method for the production of core sand and or molding sand for casting purposes

Country Status (6)

Country Link
US (2) US20150367406A1 (en)
EP (1) EP2941327B1 (en)
CN (1) CN105073298A (en)
BR (1) BR112015015966A2 (en)
MX (1) MX2015008691A (en)
WO (1) WO2014106646A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150367406A1 (en) * 2013-01-04 2015-12-24 S & B Industrial Minerals Gmbh Method for the production of core sand and/or molding sand for casting purposes
DE102018006415A1 (en) * 2018-08-15 2020-02-20 Goldschmidt Thermit Gmbh Process for sealing a casting mold for aluminothermic rail welding

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB461104A (en) * 1935-05-25 1937-02-10 Victor Krosta Process for the manufacture of precision castings from metals and alloys of high melting point
DD158090A1 (en) 1981-04-10 1982-12-29 Eckart Flemming METHOD FOR STRENGTH CONTROL OF INORGANIC MATERIALS BASED ON ALKALISILICATE SOLUTIONS
NZ200714A (en) 1981-06-24 1984-12-14 May & Baker Ltd Bolus comprising active material on bobbin for delivery to rumen
JPS5868446A (en) * 1981-10-20 1983-04-23 Toyota Central Res & Dev Lab Inc Composition for easily collapsible mold
JPS6045976B2 (en) * 1983-05-25 1985-10-14 岩谷産業株式会社 Self-hardening mold material for titanium or titanium alloy casting
US4505750A (en) * 1983-11-25 1985-03-19 Venture Chemicals, Inc. Foundry mold and core sands
JPH04319039A (en) * 1991-04-15 1992-11-10 Ohara:Kk Molding material for casting pure titanium or titanium alloy
US5769933A (en) * 1996-06-21 1998-06-23 Amcol International Corporation Activated carbon foundry sand additives and method of casting metal for reduced VOC emissions
CN1137793C (en) * 2000-08-17 2004-02-11 上海交通大学 Expanding gypsum casting powder and its paste-making method by using water
CA2469534A1 (en) 2003-06-18 2004-12-18 Hilti Aktiengesellschaft The use of thermally expandable graphite intercalation compounds for producing fire-protection seals and method for their production
DE102004042535B4 (en) * 2004-09-02 2019-05-29 Ask Chemicals Gmbh Molding material mixture for the production of casting molds for metal processing, process and use
DE102007027621A1 (en) * 2007-06-12 2008-12-18 S&B Industrial Minerals Gmbh Process for producing a core and / or foundry sand for foundry purposes
CN102773403B (en) * 2012-07-07 2014-02-12 山西宇清环保有限公司 Method for producing overturning plate valve cover by resin sand
US20150367406A1 (en) * 2013-01-04 2015-12-24 S & B Industrial Minerals Gmbh Method for the production of core sand and/or molding sand for casting purposes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20160346830A1 (en) 2016-12-01
MX2015008691A (en) 2016-03-04
BR112015015966A2 (en) 2017-07-11
WO2014106646A1 (en) 2014-07-10
US9764377B2 (en) 2017-09-19
EP2941327A1 (en) 2015-11-11
US20150367406A1 (en) 2015-12-24
CN105073298A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
DE102007045649B4 (en) A method of making a mold and / or a core using comminuted natural particulate amorphous silicic materials in the foundry area and binder composition
EP3606690B1 (en) Method for producing casting molds, cores and basic mold materials regenerated therefrom
EP3010669B1 (en) Method for producing a lithium-containing molding material mixture based on an inorganic binder for producing molds and cores for metal casting
EP1934001B1 (en) Borosilicate glass-containing molding material mixtures
EP2916976B1 (en) Method for producing lost cores or molded parts for the production of cast parts
DE102012020511A1 (en) Forming substance mixtures based on inorganic binders and process for producing molds and cores for metal casting
WO2011151420A1 (en) Infiltrate-stabilized salt cores
DE102010043451A1 (en) Salt-based cores, process for their preparation and their use
WO2013152851A2 (en) Salt-based cores, method for the production thereof and use thereof
EP2308614B1 (en) Green aerosand
EP2941327B1 (en) Method for the production of core sand and or molding sand for casting purposes
DE102008056842A1 (en) Foundry cores with improved gutting properties II
DE102009024182B3 (en) Forming and removing mold or core during casting, e.g. of filigree structures, by forming mold or core containing hollow particles, to be collapsed under pressure after casting
DE2708265C3 (en) Process for the production of a self-hardening and water-soluble form
DE102020119013A1 (en) Process for the manufacture of an article for use in the foundry industry, corresponding mould, core, feeder element or mold material mixture, as well as devices and uses
EP1064112A1 (en) Use of iron mica in the production of moulds
EP1832357B1 (en) Mould or blank, casting moulding material mix and method for its manufacture
DE102017131255A1 (en) A method of making a metallic casting or a cured molding using aliphatic polymers comprising hydroxy groups
EP2204246B1 (en) Foundry core with improved gutting properties I
DE102016221033A1 (en) Salt cores and process for the production of salt cores
AT389249B (en) Additive for regulating the strength remaining after casting of water-glass-bound casting moulds and/or cores
DE2649601C3 (en) Process for the production of casting cores and casting molds
DE102008041217A1 (en) Molding material binder, useful for pourable molding material, preferably molding core inserts for casting mold, where the molding material binder is present in inorganic form

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OBERSCHELP, PETER

Inventor name: VENNEMANN, BETTINA

Inventor name: WOLFF, ANDREAS

Inventor name: GENSKE, DIETER

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMERYS METALCASTING GERMANY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 1/02 20060101AFI20180409BHEP

Ipc: B22C 1/14 20060101ALI20180409BHEP

Ipc: B22C 1/18 20060101ALI20180409BHEP

Ipc: B22C 9/10 20060101ALI20180409BHEP

INTG Intention to grant announced

Effective date: 20180504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1021217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014008952

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014008952

Country of ref document: DE

Owner name: IMERTECH SAS, FR

Free format text: FORMER OWNER: IMERYS METALCASTING GERMANY GMBH, 46049 OBERHAUSEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014008952

Country of ref document: DE

Representative=s name: HASELTINE LAKE KEMPNER LLP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014008952

Country of ref document: DE

Representative=s name: HASELTINE LAKE LLP, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IMERTECH SAS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014008952

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190129

Year of fee payment: 6

Ref country code: FR

Payment date: 20190125

Year of fee payment: 6

Ref country code: IT

Payment date: 20190123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190103

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1021217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014008952

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725