JPS6045976B2 - Self-hardening mold material for titanium or titanium alloy casting - Google Patents

Self-hardening mold material for titanium or titanium alloy casting

Info

Publication number
JPS6045976B2
JPS6045976B2 JP9326983A JP9326983A JPS6045976B2 JP S6045976 B2 JPS6045976 B2 JP S6045976B2 JP 9326983 A JP9326983 A JP 9326983A JP 9326983 A JP9326983 A JP 9326983A JP S6045976 B2 JPS6045976 B2 JP S6045976B2
Authority
JP
Japan
Prior art keywords
titanium
mold
mold material
hardening
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9326983A
Other languages
Japanese (ja)
Other versions
JPS59218237A (en
Inventor
建治 都賀谷
祥雅 木戸脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP9326983A priority Critical patent/JPS6045976B2/en
Publication of JPS59218237A publication Critical patent/JPS59218237A/en
Publication of JPS6045976B2 publication Critical patent/JPS6045976B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/20Methods or devices for soldering, casting, moulding or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds

Description

【発明の詳細な説明】 本発明は、チタン又はチタン合金鋳造用のマグネシアを
主成分とする自硬性鋳型材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-hardening mold material containing magnesia as a main component for casting titanium or titanium alloys.

チタン又はチタン合金は、生体適合性、耐蝕性、耐摩耗
性及び耐熱性に優れ、比重も小さいことなど機械的・化
学的性質に優れているので、近年歯科鋳造用金属材料又
は各種機械部品用の材料として注目されつつある。しか
し、チタン材料は、活性度が高く、冷間鍛造時や鋳造時
に於いても急速に酸化してしまうことから、その加工が
難しく、真空雰囲気中で冷間鍛造により、細々と生産さ
れる程度にとどまつている。
Titanium or titanium alloys have excellent mechanical and chemical properties such as biocompatibility, corrosion resistance, abrasion resistance, and heat resistance, and low specific gravity, so in recent years they have been used as metal materials for dental castings or for various mechanical parts. It is attracting attention as a material for However, titanium material has high activity and oxidizes rapidly even during cold forging and casting, making it difficult to process and only produced in small quantities by cold forging in a vacuum atmosphere. remains.

そこで、本出願人は先に「純チタン又はチタンを主成分
とする合金からなるチタン鋳造品の鋳造方法」(特公昭
58−574号)に於いて、マグネシア鋳型材料製のチ
タン鋳造用鋳型によりチタン又はチタン合金を鋳造する
方法を開示し、次に、本願に先行する出願「チタン又は
チタン合金鋳造用の自硬性鋳型材料」において、マグネ
シア(MgO)を主成分とする骨材に各種硬化促進剤を
添加した鋳型材料を開示したが、本願は後者の自硬性鋳
型材料を更に発展させたものである。
Therefore, the present applicant previously developed a method for casting titanium castings made of pure titanium or an alloy containing titanium as the main component (Japanese Patent Publication No. 58-574) using a titanium casting mold made of magnesia molding material. Discloses a method for casting titanium or titanium alloy, and then discloses various methods of hardening acceleration in aggregate mainly composed of magnesia (MgO) in the application "Self-hardening mold material for casting titanium or titanium alloy" which precedes the present application. Although a mold material to which an agent is added has been disclosed, the present application is a further development of the latter self-hardening mold material.

上記の精密鋳造品の口ストワックス鋳型の場合、硬化時
間、圧縮強度及び熱膨張率などの物性”パラメータが実
用上重要であり、歯科鋳造用埋没材(鋳型材料)につい
てはJIST6601−1979に詳細に規格化されて
いる。即ち、石英埋没材の場合、上記規格において、そ
の試験方法に基いて凝固時間(硬化時間)が5分〜3吟
、熱膨張率が700℃加熱状態で0.5%以上、破壊抗
力(圧縮破壊強度)が10に9fld以上と定められて
いる。
In the case of the above-mentioned stowage wax molds for precision casting products, parameters such as hardening time, compressive strength, and coefficient of thermal expansion are practically important, and JIST 6601-1979 provides details regarding investment materials (mold materials) for dental castings. In other words, in the case of quartz investment materials, in the above standard, based on the test method, the solidification time (hardening time) is 5 minutes to 3 gin, and the coefficient of thermal expansion is 0.5 when heated at 700°C. % or more, and the fracture resistance (compressive fracture strength) is determined to be 9fld or more in 10.

本願のマグネシア系の鋳型材料についても、上記石英埋
没材に準じて、少なくとも上記の要求値を満足すべきも
のと考える。公知のマグネシア系の鋳型材料の楊合、次
の諸欠点がある。
It is believed that the magnesia-based mold material of the present application should also satisfy at least the above-mentioned required values, similar to the above-mentioned quartz investment material. The known magnesia-based mold materials have the following drawbacks.

(イ)鋳型製造時の凝固速度が遅いために、硬化時間が
6紛にもなるので、鋳型製造及び鋳造の作業を能率よく
進めることが出来ない。
(a) Since the solidification rate during mold manufacturing is slow, the curing time is as long as 60 minutes, making it impossible to proceed efficiently with mold manufacturing and casting operations.

(ロ)鋳型の膨張率が小さいため、チタン鋳造の収縮率
1.5%を補償できないことから、鋳造品の精度が悪く
、特に義歯などの精密鋳造品の鋳造に問題が残る。
(b) Since the expansion rate of the mold is small, the shrinkage rate of 1.5% in titanium casting cannot be compensated for, resulting in poor precision of the cast product, which remains a problem, especially in the casting of precision cast products such as dentures.

(ハ)鋳造用鋳型の生型の圧縮強さがJIS規定値を満
足しない。
(c) The compressive strength of the green mold for casting does not satisfy the JIS specified value.

本発明は、上記の諸問題を解消するため、マグネシアセ
メントに硬化促進剤及び結合剤として、アルカリ金属の
炭酸水素塩とアルカリ金属のリン酸塩の少なくとも一つ
を添加するとともに、膨張促進剤としてアルミニウム微
粉末を添加したものである。
In order to solve the above-mentioned problems, the present invention adds at least one of an alkali metal hydrogen carbonate and an alkali metal phosphate to magnesia cement as a hardening accelerator and a binder, and also as an expansion accelerator. Added fine aluminum powder.

上記の自硬性鋳型材料では、MgO(5H20との反応
て生じたMg(0H)2に対する硬化促進剤及び結合剤
の可溶性塩類の作用で凝固速度が速くなるとともに、不
溶性塩類の生成により圧縮強度が高くなり、これと同時
にアルミニウム微粉末の添加により、の反応で生成する
水素ガスの作用で鋳型の膨張が著しく促進されるものと
考えられる。
In the above self-hardening mold material, the solidification rate increases due to the action of soluble salts as a hardening accelerator and binder on Mg(0H)2 generated by the reaction with MgO(5H20), and the compressive strength increases due to the formation of insoluble salts. At the same time, it is thought that the expansion of the mold is significantly promoted by the action of hydrogen gas generated by the reaction of adding fine aluminum powder.

以下、本発明の鋳型材料に関する実験及び実験結果につ
いて説明する。
Hereinafter, experiments and experimental results regarding the mold material of the present invention will be explained.

以下の実験では、マグネシアセメントとして、日本化学
陶業社製のマグネシアセメントM4を用い、その成分表
を第1表に示す。
In the following experiments, magnesia cement M4 manufactured by Nihon Kagaku Togyo Co., Ltd. was used as the magnesia cement, and its ingredient list is shown in Table 1.

上記マグネシアセメントM4の粒度の影響を調べるため
に、未粉砕のもの(以下マグネシアセメ,ント0M4と
する)及びボールミルで4時間粉砕したもの(以下マグ
ネシアセメント4M4とする)を用いた。
In order to investigate the influence of the particle size of the magnesia cement M4, an unpulverized one (hereinafter referred to as magnesia cement 0M4) and one ground for 4 hours in a ball mill (hereinafter referred to as magnesia cement 4M4) were used.

上記両マグネシアセメントの粒度分布を第1図に示す。
以下、各種実験及びその実験結果について説明するが、
W/Pはマグネシアセメントに対する練和用の水の重量
比率を示す。
The particle size distribution of both of the above magnesia cements is shown in FIG.
Below, various experiments and their experimental results will be explained.
W/P indicates the weight ratio of mixing water to magnesia cement.

実験1 マグネシアセメント0M4のみで鋳型を製作すると、硬
化速度が遅く、生型の圧縮強度も十分でないので、硬化
促進剤及び結合剤として、炭酸水素ナトリウム(NaH
CO3)及び第一リン酸カリウム(KH2PO4)を添
加して、JISTl66Ol−1979の規格に基いて
行なつた実験の結果を第2図〜第9図に示す。
Experiment 1 If a mold is made using only magnesia cement 0M4, the hardening speed will be slow and the compressive strength of the green mold will not be sufficient, so sodium hydrogen carbonate (NaH) was used as a hardening accelerator and binder.
The results of experiments conducted based on the JIST 166Ol-1979 standard by adding monobasic potassium phosphate (KH2PO4) are shown in FIGS. 2 to 9.

この実験結果から判るように、炭酸水素ナトリウムや第
一リン酸カリウムなどを添加することによつて、これら
添加物により硬化速度を大幅に速めることができる。
As can be seen from the results of this experiment, by adding sodium bicarbonate, monobasic potassium phosphate, etc., the curing speed can be greatly increased by these additives.

添加量を増すことにより硬化速度を速め、反対にW/P
を増すことにより硬化速度を遅くすることができる。尚
、斜線内はJIS要求値である(第2図・第3図)。ま
た、上記添加物を添加しても、熱膨張率に悪影響が現わ
れず、却つて若干改善されるが、JIS要求値700℃
0。
By increasing the amount added, the curing speed is increased, and on the contrary, W/P
By increasing the curing rate, the curing speed can be slowed down. Note that the values within the diagonal lines are the JIS required values (Figures 2 and 3). Furthermore, even if the above additives are added, there is no adverse effect on the coefficient of thermal expansion, and on the contrary it is slightly improved;
0.

5%以上を満足する(第4図・第5図)。Satisfy 5% or more (Figures 4 and 5).

更に、上記添加物を添加することにより、鋳造用鋳型の
生型の圧縮強度を大幅に強化して、JIS要求値10k
9fIcr1を満足することができる(第6図〜第9図
)。
Furthermore, by adding the above additives, the compressive strength of the green mold for casting is significantly strengthened, reaching the JIS required value of 10k.
9fIcr1 can be satisfied (FIGS. 6 to 9).

これは、添加物による不溶性塩の生成によるものと考え
られる。実験 ■ 実験1の結果から、炭酸水素ナトリウムや第一リン酸カ
リウムなどを添加することにより、硬化速度、熱膨張率
及び生型の圧縮強度につい一ζはJIS規定値を満すこ
とが出来ることが判つたので、本実験では硬化促進剤及
び結合剤として炭酸水素ナトリウムを添加するとともに
、膨張促進剤としてアルミニウム微粉末を添加して実験
し、生型の寸法変化率、熱膨張率及び臨床パターンによ
る鋳造品の寸法精度について調べた。
This is thought to be due to the formation of insoluble salts due to the additives. Experiment ■ From the results of Experiment 1, it was found that by adding sodium bicarbonate, monobasic potassium phosphate, etc., the curing rate, coefficient of thermal expansion, and compressive strength of the green mold could meet the JIS specified values. In this experiment, we added sodium bicarbonate as a curing accelerator and binder, and fine aluminum powder as an expansion accelerator, and investigated the dimensional change rate, thermal expansion rate, and clinical pattern of the green mold. The dimensional accuracy of cast products was investigated.

(1)生型の凝縮時の寸法変化率についてトレシングペ
ーパー製の直径×高さが25=φ×30Tf$Lの円筒
体の内面に鋳型膨張用のスポンジシートを内張りして、
その内部に水て練和した鋳型材料を充填し、差動トラン
スにより該鋳型の高さ方向の寸法変化を測定し、その結
果を第10図〜第12図に示す。
(1) Regarding the dimensional change rate during condensation of the green mold, the inner surface of a cylindrical body made of tracing paper with a diameter x height of 25 = φ x 30Tf$L is lined with a sponge sheet for mold expansion.
The inside of the mold was filled with mold material kneaded with water, and the dimensional change in the height direction of the mold was measured using a differential transformer, and the results are shown in FIGS. 10 to 12.

第10図から判るように、炭酸水素ナトリウムの添加量
を増すと、生型の寸法変化率は改善されるけれども、0
.5%以上添加する場合、硬化速度が速すぎて作業性の
面で好ましくないので、炭酸水素ナトリウムを加えると
きのその添加量を0.3%程にするのが望ましい。第1
1図及び第12図から判るように、アルミニウム微粉末
を添加することにより、生型硬化時に大幅に膨張させる
ことが出来、無添加の場合に0.6%収縮するのを、逆
に0.7〜0.8%も膨張させることが出来る。
As can be seen from Fig. 10, increasing the amount of sodium bicarbonate added improves the dimensional change rate of the green mold;
.. If it is added in an amount of 5% or more, the curing speed will be too fast, which is unfavorable in terms of workability. Therefore, it is desirable that the amount of sodium bicarbonate added should be about 0.3%. 1st
As can be seen from Figures 1 and 12, by adding fine aluminum powder, it is possible to significantly expand the green mold during hardening, and the shrinkage of 0.6% in the case without the addition is reduced by 0.6%. It can be expanded by as much as 7-0.8%.

アルミニウム微粉末の添加によつて膨張するのは、次式
のようにアルミニウムが水と反応して発生する水素ガス
によるものと考えられる。
The expansion caused by the addition of fine aluminum powder is thought to be due to hydrogen gas generated when aluminum reacts with water, as shown in the following equation.

N+2H20−+Al(0H)2H2↑ (2)生型加熱時の熱膨張率について 生型加熱時の熱膨張率の測定用試験片は、厚肉のシリコ
ンゴム製割型の中央部に設けた、直径×高さ=5T!R
mφ×20TEftの円柱孔に練和した鋳型材料を振動
充填して、3時間後に取出して製作し、温度上昇率10
てC/Minで3000Cまで加熱しながら熱膨張分析
装置で測定した結果を第13図及び第14図に示す。
N+2H20-+Al(0H)2H2↑ (2) Regarding the coefficient of thermal expansion during heating of the green mold A test piece for measuring the coefficient of thermal expansion during heating of the green mold was provided in the center of a thick silicone rubber split mold. Diameter x height = 5T! R
A cylindrical hole of mφ x 20 TEft was filled with kneaded mold material by vibration, and after 3 hours, it was taken out and manufactured, and the temperature rise rate was 10.
The results of measurement using a thermal expansion analyzer while heating to 3000C at C/Min are shown in FIGS. 13 and 14.

第13図及び第14図から判るように、アルミニウム微
粉末を添加することにより、熱膨張率が全体として悪影
響を受けない。
As can be seen from FIGS. 13 and 14, by adding fine aluminum powder, the coefficient of thermal expansion is not adversely affected as a whole.

但し、第14図に示すように、マグネシアセメント4M
4に0.1%アルミニウム微粉末を添加する場合には若
干の悪影響が見られるが、その影響は微々たるものであ
る。(3)臨床パターンによる鋳造品の寸法精度エポキ
シ樹脂製の臨床用支台歯を用いてクラウンのワックスパ
ターンを製作し、このワックスパターンによりチタン鋳
造品を鋳造し、この鋳造品を上記支台歯に嵌め合せて、
浮き上り量を測定した。
However, as shown in Figure 14, magnesia cement 4M
When adding 0.1% aluminum fine powder to No. 4, some adverse effects are seen, but the effects are insignificant. (3) Dimensional accuracy of cast product based on clinical pattern A wax pattern for the crown is manufactured using a clinical abutment tooth made of epoxy resin, a titanium cast product is cast using this wax pattern, and this cast product is attached to the above-mentioned abutment tooth. Fit it into
The amount of lift was measured.

この実験において、鋳造用金属としては、純度99.8
%以上の純チタン(神戸製鋼株式会社製KS−50)を
用い、鋳型としては、トレシングペーパー製円筒体の内
面にスポンジを内張りして鋳型の膨張を可能とし、そこ
にクラウンのワツクスパタ8ーンを収容して水で練和し
た鋳型材料を充填し、2ff間室温乾燥後800゜Cま
で加熱し、その後30分間保留したものを用い、鋳造機
としてはアルコンアーク融解式鋳造機(岩谷産業株式会
社製CASTMATIC)を用いた。
In this experiment, the purity of the casting metal was 99.8.
% or more of pure titanium (KS-50 manufactured by Kobe Steel Corporation), the mold is made of tracing paper and is lined with sponge on the inner surface to allow the mold to expand. The casting machine used was an Alcon arc melting casting machine (Iwatani Sangyo Co., Ltd.), which was filled with mold material kneaded with water, dried at room temperature for 2ff, heated to 800°C, and then held for 30 minutes. CASTMATIC) manufactured by Co., Ltd. was used.

上記実験の鋳型材料の諸パラメータを次の第2表に、実
験結果を第3表に、支台歯に嵌合させた鋳造品のクラウ
ンの断面写真を精密にトレースしたものを第15図〜第
18図に示す。
The various parameters of the mold material used in the above experiment are shown in Table 2 below, the experimental results are shown in Table 3, and the cross-sectional photographs of the cast crown fitted to the abutment tooth are precisely traced in Figures 15-15. It is shown in FIG.

(但し、上記1と2とは同一条件て作製した鋳造品であ
る。
(However, 1 and 2 above are cast products manufactured under the same conditions.

)上記第3表及び第15図〜第18図から判るように、
アルミニウム微粉末を添加した場合には、クラウンのチ
タン鋳造品の支台歯からの浮き上り量を1.0?以上も
改善して略理想的な値にまて下げることができる。
) As can be seen from Table 3 and Figures 15 to 18 above,
When fine aluminum powder is added, the amount of lift from the abutment tooth of the titanium cast crown is 1.0? The above can also be improved and lowered to approximately ideal values.

(4)金型モデルによる表面粗さについてアルミニウム
微粉末混入に伴う水素ガスによる鋳造品の表面粗さを調
べる為に、臨床用支台歯の代りに第19図に示すような
金型支台mを用いてカップ状鋳造品cを鋳造し、このカ
ップ状鋳造品cの円筒内周面の表面粗さを表面粗さ形状
測定機(商品名 サーフコム300B東京精密社製)に
より測定した。
(4) Regarding surface roughness using a mold model In order to investigate the surface roughness of a cast product due to hydrogen gas mixed with fine aluminum powder, a mold abutment as shown in Figure 19 was used instead of a clinical abutment tooth. A cup-shaped cast product c was cast using m, and the surface roughness of the cylindrical inner peripheral surface of the cup-shaped cast product c was measured using a surface roughness profile measuring machine (trade name: Surfcom 300B, manufactured by Tokyo Seimitsu Co., Ltd.).

上記実験の鋳型材料の諸パラメータを次の第4表に、そ
の測定結果を第20図に示す。上記の測定結果から判る
ように、アルミニウム微粉末の添加により、鋳造品の表
面粗さに悪影響を及ぼすことは殆んどなく、却つて鋳型
材料の条件次第では改善される。
The various parameters of the mold material in the above experiment are shown in Table 4 below, and the measurement results are shown in FIG. As can be seen from the above measurement results, the addition of fine aluminum powder has almost no adverse effect on the surface roughness of the cast product, and on the contrary, it can be improved depending on the conditions of the mold material.

上記実験では、硬化促進剤及び結合剤として炭酸水素ナ
トリウム又は第一リン酸カリウムを添加したけれども、
その他のアルカリ金属の炭酸水素塩、炭酸塩若しくはリ
ン酸塩も硬化促進剤及び結合剤となり得るだけでなく、
これらと類似の化学的性質を有するアルカリ土類金属の
炭酸水素塩、;炭酸塩若しくはリン酸塩なども硬化促進
剤及び結合剤となり得るものと考えられる。
In the above experiment, sodium hydrogen carbonate or monobasic potassium phosphate was added as a curing accelerator and binder.
Other alkali metal bicarbonates, carbonates or phosphates can also serve as accelerators and binders, as well as
It is believed that alkaline earth metal bicarbonates, carbonates or phosphates having chemical properties similar to these can also serve as curing accelerators and binders.

また、膨張促進剤としては、アルミニウム微粉末を用い
たけれども、その他にマグネシウム、鉄又は亜鉛などの
微粉末も膨張促進剤として用い得5る可能性もある。
Further, although fine aluminum powder was used as the expansion promoter, fine powders of magnesium, iron, or zinc may also be used as the expansion promoter.

以下、上記の鋳型材料を用いて製作した鋳型により、チ
タン又はチタン合金を酸化させることなく鋳造する方法
について、簡単に説明する。
Hereinafter, a method for casting titanium or a titanium alloy without oxidizing it using a mold manufactured using the above-mentioned mold material will be briefly described.

第21図に示すように、約1700℃以下の温度で.は
、チタンの酸化物生成エネルギーよりも、マグネシアの
酸化物生成エネルギーの方が小さいから、マグネシアを
主成分とする鋳型の温度を上記約1700′C以下に維
持しつつチタン又はチタン合金を無酸素雰囲気中で鋳込
むことにより、鋳型から溶湯への酸素原子の侵入を防ぎ
、チタン又はチタン合金の酸化されてない鋳造品をつく
ることが出来るのである。本発明に係るチタン又はチタ
ン合金鋳造用の自硬性鋳型材料は、実験結果からも判る
ように、次の効果を奏する。(1)この鋳型材料を水で
練和してなる鋳型は、硬化促進剤により、その凝固が促
進され、硬化時間が適正な値にまで短縮し、JIS規定
値を充足するものとなり、鋳型の製造及び鋳込みの作業
工程を能率よく進行させることができる。
As shown in Figure 21, at temperatures below about 1700°C. Since the oxide formation energy of magnesia is smaller than the oxide formation energy of titanium, titanium or titanium alloy is heated in an oxygen-free manner while maintaining the temperature of the magnesia-based mold below about 1700'C. Casting in an atmosphere prevents oxygen atoms from entering the molten metal from the mold, making it possible to produce unoxidized casts of titanium or titanium alloys. The self-hardening mold material for casting titanium or titanium alloy according to the present invention has the following effects, as can be seen from experimental results. (1) A mold made by kneading this mold material with water has a hardening accelerator that accelerates its solidification, shortens the hardening time to an appropriate value, and satisfies the JIS specified values. Manufacturing and casting work processes can proceed efficiently.

(2)この鋳型材料を水で練和してなる鋳型は、膨張促
進剤としてのアルミニウム微粉末の作用て水素ガスを発
生させ、鋳型の収縮を抑えて、アルミニウム微粉末の添
加量にもよるが少なくとも約0.7〜0.8%程度膨張
させることが出来る。
(2) A mold made by kneading this mold material with water generates hydrogen gas due to the action of fine aluminum powder as an expansion accelerator, suppressing shrinkage of the mold, and depending on the amount of fine aluminum powder added. can be expanded by at least about 0.7 to 0.8%.

また、鋳込時の鋳型温度約700〜800′Cに於ける
鋳型の熱膨張率が約0.5〜0.6%となるので、両者
の膨張率の合計値約1.2〜1.4%で以つて、チタン
又はチタンを主成分とする合金の鋳込時の収縮率約1.
5%を略補償することが出来る。従つて、この自硬性鋳
型材料を用いて、チタン又はチタン合金からなる義歯な
どの略完全な精密鋳造品を鋳造することができる。(3
)この鋳型材料で製作した鋳型は、硬化促進剤及び結合
剤の作用で、その圧縮強度が改善され、JIS規定値を
充足する。
Furthermore, since the coefficient of thermal expansion of the mold at a mold temperature of approximately 700 to 800'C during casting is approximately 0.5 to 0.6%, the total value of both coefficients of expansion is approximately 1.2 to 1. 4%, the shrinkage rate during casting of titanium or titanium-based alloys is approximately 1.
Approximately 5% can be compensated. Therefore, using this self-hardening mold material, it is possible to cast a substantially complete precision cast product such as a denture made of titanium or a titanium alloy. (3
) The mold made using this mold material has improved compressive strength due to the effects of the hardening accelerator and binder, and satisfies the JIS standard values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマグネシアセメントM4の粉砕時間と粒度分布
の関係を示す図表、第2図はマグネシアセメント0M4
に炭酸水素ナトリウムは第1リン酸カリウムを添加した
鋳型材料でW/P=0.13として製作した鋳型につい
てそれぞれの添加量と硬化時間の関係を示す線図、第3
図はマグネシアセメント0M4に炭酸水素ナトリウム又
は第1リン酸カリウムを添加した鋳型材料でW/P=0
.17として製作した鋳型についてそれぞれの添加量と
硬化時間の関係を示す線図、第4図及ひ第5図は各々マ
グネシアセメント0M4に炭酸水素ナトリウム又は第一
リン酸カリウムを添加した鋳型材料で、W/P=0.1
3として製作した鋳型の加熱温度と熱膨張率の関係を示
す線図、第6図及び第7図は各々マグネシアセメント0
M4に炭酸水素ナトリウム又は第一リン酸カリウムを添
加した鋳型材料で、W/P=0.13として製作した鋳
型のそれぞれの添加量と圧縮強さの関係を示す棒グラフ
、第8図及び第9図は各々マグネシアセメント■4に炭
酸水素ナトリウム又は第一リン酸カリウムを添加した鋳
型材料で、W/P=0.17として製作した鋳型のそれ
ぞれの添加量と圧縮強さの関係を示す棒グラフ、第10
図はマグネシアセメント0M4に炭酸水素ナトリウムを
添加した鋳型材料で、W/P=0.14として製作した
鋳型の凝縮時間と凝縮時の寸法変化率の関係を示す線図
、第11図はマグネシアセメント0M4に0.3%の炭
酸水素ナトリウムを添加するとともに各%のアルミニウ
ム微粉末を添加した鋳型材料で、W/P=0.14とし
て製作した鋳型の凝縮時間と凝縮時の寸法変化率の関係
を示す線図、第12図はマグネシアセメント心■に0.
3%の炭酸水素ナトリウムを添加するとともに各%のア
ルミニウム微粉末を添加した鋳型材料で、W/P=0.
16として製作した鋳型の凝縮時間と凝縮時の寸法変化
率の関係を示す線図、第13図はマグネシアセメント0
M4に0.3%の炭酸水素ナトリウムを添加するととも
に各%のアルミニウム微粉末を添加した鋳型材料で、W
/P=0.14として製作した鋳型の加熱温度と加熱時
の熱膨張率の関係を示す線図、第14図はマグネシアセ
メント4M4に0.3%の炭酸水素ナトリウムを添加す
るとともに各%のアルミニウム微粉末を添加した鋳型材
料で、W/P=0.16として製作した鋳型の加熱温度
と加熱時の熱膨張率の関係を示す線図、第15図乃至第
18図は各鋳造品を支台歯に嵌めた状態の縦断正面図、
第19図は金型支台とカップ状鋳造品の縦断正面図、第
20図は各鋳造品の表面の中心線平均粗さの棒グラフ、
第21図はマグネシアやチタン酸化物などの酸化物生成
エネルギーの線図である。
Figure 1 is a chart showing the relationship between grinding time and particle size distribution for magnesia cement M4, and Figure 2 is a chart showing the relationship between magnesia cement M4 and particle size distribution.
Figure 3 is a diagram showing the relationship between the amount of sodium bicarbonate added and the curing time for a mold made with W/P = 0.13 using a mold material with monobasic potassium phosphate added.
The figure shows a mold material made by adding sodium bicarbonate or dibasic potassium phosphate to magnesia cement 0M4, W/P = 0.
.. Figures 4 and 5 are diagrams showing the relationship between each addition amount and curing time for the molds manufactured as No. 17, respectively, for mold materials in which sodium hydrogen carbonate or monopotassium phosphate was added to magnesia cement 0M4, respectively. W/P=0.1
Figures 6 and 7 are diagrams showing the relationship between heating temperature and coefficient of thermal expansion of the mold manufactured as No. 3, respectively, using magnesia cement 0.
Figures 8 and 9 are bar graphs showing the relationship between the amount of each addition and the compressive strength of molds made with M4 containing sodium bicarbonate or monopotassium phosphate, with W/P = 0.13. The figure is a bar graph showing the relationship between the amount of each addition and the compressive strength of molds made with W/P = 0.17 using mold materials in which sodium bicarbonate or monopotassium phosphate was added to magnesia cement ■4. 10th
The figure is a diagram showing the relationship between the condensation time and the dimensional change rate during condensation of a mold made with magnesia cement 0M4 and sodium hydrogen carbonate added, with W/P = 0.14. Relationship between condensation time and dimensional change rate during condensation of molds manufactured with W/P = 0.14 using mold materials made by adding 0.3% sodium bicarbonate to 0M4 and each percentage of fine aluminum powder. Figure 12 is a diagram showing the magnesia cement core ■.
A mold material containing 3% of sodium bicarbonate and each percentage of aluminum fine powder added, W/P=0.
A diagram showing the relationship between the condensation time and the dimensional change rate during condensation of the mold manufactured as No.
A mold material made by adding 0.3% sodium hydrogen carbonate to M4 and each percentage of fine aluminum powder.
Figure 14 is a diagram showing the relationship between the heating temperature of a mold manufactured with /P=0.14 and the coefficient of thermal expansion during heating. Figures 15 to 18 are diagrams showing the relationship between the heating temperature and the coefficient of thermal expansion during heating for molds manufactured with mold material containing fine aluminum powder and W/P = 0.16. Longitudinal front view of the state fitted to the abutment tooth,
Fig. 19 is a longitudinal sectional front view of the mold support and cup-shaped cast product, Fig. 20 is a bar graph of the center line average roughness of the surface of each cast product,
FIG. 21 is a diagram of the energy for forming oxides such as magnesia and titanium oxides.

Claims (1)

【特許請求の範囲】[Claims] 1 マグネシアセメントに、硬化促進剤及び結合剤とし
て、アルカリ金属の炭酸水素塩とアルカリ金属のリン酸
塩のうちの少なくとも一つを添加するとともに、膨張促
進剤としてアルミニウム微粉末を添加してなるチタン又
はチタン合金鋳造用の自硬性鋳型材料2 特許請求の範
囲第1項に記載しにチタン又はチタン合金鋳造用の自硬
性鋳型材料において、硬化促進剤及び結合剤として炭酸
水素ナトリウム(NaHCO_3)を用いたもの3 特
許請求の範囲第1項に記載したチタン又はチタン合金鋳
造用の自硬性鋳型材料において、硬化促進剤及び結合剤
として第一リン酸カリウム(KH_2PO_4)を用い
たもの4 特許請求の範囲第1項に記載したチタン又は
チタン合金鋳造用の自硬性鋳型材料において、マグネシ
アセメントがマグネシア(MgO)にシリカ(SiO_
2)、酸化ナトリウム(Na_2O)、酸化第二鉄(F
e_2O_3)及びアルミナ(Al_2O_3)を添加
してなるもの
1 Titanium obtained by adding at least one of alkali metal hydrogen carbonate and alkali metal phosphate as a hardening accelerator and binder to magnesia cement, and adding fine aluminum powder as an expansion accelerator. or self-hardening mold material 2 for casting titanium alloys In the self-hardening mold material for casting titanium or titanium alloys described in claim 1, sodium hydrogen carbonate (NaHCO_3) is used as a hardening accelerator and a binder. 3. The self-hardening mold material for casting titanium or titanium alloy as set forth in Claim 1, in which monopotassium phosphate (KH_2PO_4) is used as a hardening accelerator and binder. 4. Claim 4 In the self-hardening mold material for casting titanium or titanium alloys described in item 1, magnesia cement is mixed with magnesia (MgO) and silica (SiO_
2), sodium oxide (Na_2O), ferric oxide (F
e_2O_3) and alumina (Al_2O_3) added.
JP9326983A 1983-05-25 1983-05-25 Self-hardening mold material for titanium or titanium alloy casting Expired JPS6045976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9326983A JPS6045976B2 (en) 1983-05-25 1983-05-25 Self-hardening mold material for titanium or titanium alloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9326983A JPS6045976B2 (en) 1983-05-25 1983-05-25 Self-hardening mold material for titanium or titanium alloy casting

Publications (2)

Publication Number Publication Date
JPS59218237A JPS59218237A (en) 1984-12-08
JPS6045976B2 true JPS6045976B2 (en) 1985-10-14

Family

ID=14077742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9326983A Expired JPS6045976B2 (en) 1983-05-25 1983-05-25 Self-hardening mold material for titanium or titanium alloy casting

Country Status (1)

Country Link
JP (1) JPS6045976B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619940A (en) * 1984-06-27 1986-01-17 Kenji Tsugaya Mold material for casting titanium or titanium alloy
US20150367406A1 (en) * 2013-01-04 2015-12-24 S & B Industrial Minerals Gmbh Method for the production of core sand and/or molding sand for casting purposes
CN104028694A (en) * 2013-03-05 2014-09-10 侯伟 Foaming gypsum casting mold formula for impeller casting and blending technology

Also Published As

Publication number Publication date
JPS59218237A (en) 1984-12-08

Similar Documents

Publication Publication Date Title
JP6082388B2 (en) Investment composition for gypsum casting
JPH0428455B2 (en)
JPS6045976B2 (en) Self-hardening mold material for titanium or titanium alloy casting
EP0511546A2 (en) Investment material and mold for dental use and burnout thereof
WO2013109491A1 (en) Investment composition material having a reducing agent
JP2648996B2 (en) Investment for refractory metal casting
EP0433546B1 (en) Nonsilica mold material for dental titanium cast
JP2622494B2 (en) Mold material for high melting point metal casting
JPH02247037A (en) Coating composition of molding material
JP2754197B2 (en) Mold for superplastic working of titanium alloy
JPH1176270A (en) Gypsum type embedding material composition for dentistry
JPH04317461A (en) Casting mold material for casting high melting point metal
JP4090101B2 (en) Dental high-temperature gypsum investment
JPS59166341A (en) Casting mold for casting titanium
JPS601109A (en) Embedding composition for precision casting
JPH04200950A (en) Molding material for casting metal having high melting point
JPS6234450B2 (en)
JPS632521B2 (en)
JPH0692817A (en) Investment material
JP3602290B2 (en) Gypsum-based investment for high-temperature dental casting
JP2578076B2 (en) Dental refractory profile
JPH10113746A (en) Gypsum-based casting embedding material for dental use
JPS61273233A (en) Molding material for precision casting and casting method using same
JPS60166140A (en) Thermal expandability imparting agent for embedding material
JPH09192777A (en) Gypsum mold