JPS61273233A - Molding material for precision casting and casting method using same - Google Patents

Molding material for precision casting and casting method using same

Info

Publication number
JPS61273233A
JPS61273233A JP11496385A JP11496385A JPS61273233A JP S61273233 A JPS61273233 A JP S61273233A JP 11496385 A JP11496385 A JP 11496385A JP 11496385 A JP11496385 A JP 11496385A JP S61273233 A JPS61273233 A JP S61273233A
Authority
JP
Japan
Prior art keywords
casting
molding material
mold
grain size
average grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11496385A
Other languages
Japanese (ja)
Inventor
Tatsuo Kobayashi
辰雄 小林
Mineo Isokami
磯上 峰男
Yoichiro Yoshihara
洋一郎 芳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11496385A priority Critical patent/JPS61273233A/en
Publication of JPS61273233A publication Critical patent/JPS61273233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To obtain a molding material which can be used for metals having low to high m.p., metals having high activity and glass ceramics by adding a limited weight ratio of zirconium oxide having a limited average grain size to magnesium oxide having a limited average grain size. CONSTITUTION:A wax pattern having the shape of a casting object is set in a casting flask and the powder molding material prepd. by adding at least 5wt% of zirconium oxide having <=1.0mm average grain size to the magnesium oxide having <=1.0mm average grain size is packed into the casting flask. A molten metal is poured into the shell formed by a dewaxing stage after the above-mentioned stage and is precisely cast. The MgO-ZrO2 molding material for precision casting obtd. in the above-mentioned manner has excellent chemical stability at a high temp. and is the molding material consisting of a mixture composed of MgO and ZrO2 having the high resistance to heat and corrosion and therefore the molding material is usable for casting of metals having high m.p. and high activity such as Ti and Ti alloy and glass ceramics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、工業用金属材料やガラス材料などの精密鋳造
用鋳型材とそれを用いた鋳造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mold material for precision casting of industrial metal materials, glass materials, etc., and a casting method using the same.

(従来の技術) 一般に鋳造技術は、鍛造プレス、粉末冶金などの他の金
属加工技術と比べて、大きさ、形状、製作個数などの点
で自由度が大きい特色ある加工技術であり、昔から利用
されてきた重要な金属加工技術の1つである。その中で
も特に精密鋳造法は鋳型に金型を使用せずに、普通鋳造
法と比較し、それよりも格段と寸法精度の高い製品を鋳
造できる方法として、さまざまな改良、開発が行われて
来た。そして現在では金型、一般機械部品、ジェットエ
ンジンなどの航空宇宙部品等の製造分野においては必須
の技術となっている。
(Conventional technology) In general, casting technology is a unique processing technology that has a greater degree of freedom in terms of size, shape, number of pieces, etc. than other metal processing technologies such as forging presses and powder metallurgy. It is one of the important metal processing techniques that have been used. Among these, the precision casting method in particular has undergone various improvements and developments as a method that can cast products with much higher dimensional accuracy than the regular casting method without using a mold. Ta. Nowadays, it has become an essential technology in the manufacturing field of molds, general mechanical parts, aerospace parts such as jet engines, etc.

さて、精密鋳造法により、アルミニウム、マグネシウム
、チタニウム、銅及びそれらの合金、綱、ステンレス、
コバルト基耐熱合金、ニッケル基耐熱合金など、大気溶
解材、真空溶解材のほとんどすべての金属が鋳造可能で
あるが、これらの金属の鋳造品の寸法精度や機械的性質
などの品質及び性状は使用する鋳型材料や鋳造プロセス
に大きく左右される。そして鋳型材料の選定がきわめて
重要な成功のための因子となってきた。
Now, by precision casting, aluminum, magnesium, titanium, copper and their alloys, steel, stainless steel,
Almost all metals, such as cobalt-based heat-resistant alloys and nickel-based heat-resistant alloys, can be cast using air-melted materials or vacuum-melted materials. It greatly depends on the mold material used and the casting process. The selection of mold material has become an extremely important factor for success.

ところで、これまでにインベストメント鋳造用鋳型材料
としてはシリカ、アルミナ、シャモット、マグネシア、
ジルコン石膏などが多く利用されて来た。しかしながら
、これらの鋳型材料はそれぞれ一長一短があり、その適
用範囲は比較的限られたものであった。例えば、シリカ
は比較的安価で、かつ耐火温度も高いので従来より鋳物
工業においては最も広く利用されており、インベストメ
ント鋳造用の混合物の基本的な原料としても使用されて
いるがステンレス鋼の鋳込みの場合、生成するクロム酸
化物との反応により鋳肌面が荒れてしまうこと、また、
純チタンや合金チタンなどのきわめて反応的な金属は鋳
込めないなどの欠点がある。
By the way, silica, alumina, chamotte, magnesia,
Zircon gypsum and other materials have been widely used. However, each of these mold materials has advantages and disadvantages, and their range of application has been relatively limited. For example, silica is relatively cheap and has a high refractory temperature, so it has traditionally been most widely used in the foundry industry, and is also used as a basic raw material for investment casting mixtures, but it is also used in stainless steel casting. In this case, the casting surface may become rough due to the reaction with the chromium oxide that is generated.
Disadvantages include the inability to cast highly reactive metals such as pure titanium and titanium alloys.

また石膏はAg、^u1八1へMg、 Cusおよび、
これらの合金などの低融点非鉄金属に対して複雑な、か
つ薄い断面を有する形状においても良好な寸法精度とす
ぐれた表面仕上げが可能な鋳型材料として、歯科と装身
具類の分野で広く利用されているが、より高融点の鋼や
耐熱合金などの鋳込みの場合は、石膏中のイオウが高温
で化学的に反応し、鋳物表面が非常に粗悪になるなどの
欠点があった。
In addition, gypsum is Ag, Mg to ^u181, Cus, and
It is widely used in the fields of dentistry and jewelry as a molding material that can produce good dimensional accuracy and excellent surface finish even in complex shapes with thin cross-sections for low-melting nonferrous metals such as these alloys. However, when casting higher melting point steel or heat-resistant alloys, the sulfur in the plaster chemically reacts at high temperatures, resulting in extremely poor casting surfaces.

(本発明が解決しようとする問題点) 畝上の如く、これまでの精密鋳造用鋳型材料の適用可能
な鋳込み金属の範囲は限られたものであり、より広範囲
な金属に適用できる鋳型材の開発が望まれていた。
(Problems to be solved by the present invention) As mentioned above, the range of casting metals to which conventional precision casting mold materials can be applied is limited, and there is a need for mold materials that can be applied to a wider range of metals. development was desired.

その1つとして最近、チタン用鋳型材としてマグネシア
系埋没材が開発されているが、これとてその鋳造品の品
質の点でまだ満足すべきものとは言えない状態にある。
As one of these, a magnesia-based investment material has recently been developed as a mold material for titanium, but the quality of its cast products is still far from satisfactory.

そこで低融点から高融点の金属に至るまで良好な熱的安
定性と強度を有し、かつきわめて反応的で、活性な金属
やガラスセラミックスまでも適用可能な鋳型材をもたら
さんとするものである。
Therefore, we aim to create a molding material that has good thermal stability and strength for metals ranging from low to high melting points, is extremely reactive, and can be applied to active metals and glass ceramics. be.

(問題を解決するための手段) 本発明者らは、かかる問題を解決するため、従来の鋳型
材も含めて種々の鋳型材のテストを行った結果、酸化マ
グネシウムMgOと酸化ジルコニウムZ・0□の混合物
組成からなる鋳型材が高融点を有)し、その化学的安定
性は高温においても金属酸化物の浸食に耐え溶融金属、
ガラスにもぬれず、炉内雰囲気による影響を受けないと
いうすぐれた高温耐火材料としての特徴を有しているこ
と、そしてまたきわめて反応的な金属すなわちチタン、
ジルコニウムなども容易に鋳造可能であり、鋳造体の品
質もすぐれていることを知見するに至った。
(Means for solving the problem) In order to solve the problem, the present inventors conducted tests on various mold materials including conventional mold materials, and found that magnesium oxide MgO and zirconium oxide Z・0□ The mold material consists of a mixture composition of
It has the characteristics of an excellent high-temperature refractory material in that it does not get wet with glass and is not affected by the furnace atmosphere, and it is also an extremely reactive metal, titanium.
It has been discovered that zirconium can be easily cast, and the quality of the cast product is also excellent.

(実施例) 以下に本発明による金属やガラスなどの精密鋳造用鋳型
材の組成例と鋳造方法について実施例に基づいて説明す
る。
(Example) Examples of the composition and casting method of the mold material for precision casting of metal, glass, etc. according to the present invention will be described below based on Examples.

「実施例 1」 鋳型材の基材として純度98%平均粒径が325メツシ
ユパスのマグネシアと純度94%、平均粒径が325メ
ツシユパスの電融カルシア安定化ジルコニアを用いこれ
に結合剤としてシリカゾル、アクリル系エマルジョンそ
して微量の界面活性剤および消泡剤を下記の割合いで調
合し、泥状埋没材を形成した。
"Example 1" Magnesia with a purity of 98% and an average particle diameter of 325 mesh pass and fused calcia-stabilized zirconia with a purity of 94% and an average particle diameter of 325 mesh pass were used as the base material of the mold material, and silica sol and acrylic were used as binders. A mud-like investment material was prepared by blending a system emulsion and trace amounts of a surfactant and an antifoaming agent in the following proportions.

鋳型材組成 MgO:95重量%/Zr0z:5.0重量%   1
00部シリカゾル           15部アクリ
ル樹脂系エマルジョン   15部界面活性材    
       0.1部消泡材           
  0.1部ワックスパターンとして幅10mm長さ3
011II11厚さ2mmの板状モデルを使用し、これ
を上記組成の鋳型材を用い公知のインベストメント法に
より鋳型を製作した後、ステンレス鋼SOS 420 
J −2とSCM440の鋳造を行った・。その結果、
溶湯と鋳型との化学反応はほとんどな(、表面の肌荒れ
のない鋳造品が得られた。
Mold material composition MgO: 95% by weight/Zr0z: 5.0% by weight 1
00 parts silica sol 15 parts acrylic resin emulsion 15 parts surfactant
0.1 part defoaming agent
0.1 part wax pattern width 10mm length 3
011II11 Using a plate model with a thickness of 2 mm, a mold was made using a mold material with the above composition by a known investment method, and then stainless steel SOS 420 was used.
Casting of J-2 and SCM440 was carried out. the result,
There was almost no chemical reaction between the molten metal and the mold (and a cast product with no surface roughness was obtained.

「実施例2」 鋳型材の基材として純度98%平均粒径が200メツシ
ユバスのマグネシアと純度93%、70%以上が約10
μの平均粒径の電融マグネシア安定化ジルコニアを用い
、これに結合剤として無機質バインダー有機質バインダ
ー等を次の割合いで添加し、泥状埋没材を形成した。
"Example 2" As the base material of the mold material, magnesia with a purity of 98% and an average particle size of 200 mesh and a purity of 93% and an average particle size of about 10% are used.
Electrofused magnesia-stabilized zirconia with an average particle size of μ was used, and an inorganic binder, an organic binder, etc. were added as a binder in the following proportions to form a mud-like investment material.

鋳型材組成 MgOニア0重量%/Zr0z:30重量%  100
部シリカゾル          16部フェノール樹
脂        16部界面活性剤        
 0.1部消泡剤           0.1部実施
例1と同様なワックスパターンを使用し、アルミニウム
合金(AC4C)と調合(ベリリウム銅)の鋳造を行っ
た。
Mold material composition MgOnia 0% by weight/Zr0z: 30% by weight 100
1 part silica sol 16 parts phenolic resin 16 parts surfactant
0.1 part Antifoaming agent 0.1 part Using the same wax pattern as in Example 1, aluminum alloy (AC4C) and formulation (beryllium copper) were cast.

その結果得られた鋳造品はプラスターモールドで鋳込ん
だものと比較して機械的強度および伸び硬度において何
ら遜色がなかった。また表面性状も繊維で良好であった
The resulting cast products were comparable in mechanical strength and elongation hardness to those cast in plaster molds. In addition, the surface properties of the fibers were good.

「実施例3」 鋳型材の基材として純度98.5%平均粒径が350メ
ツシユパスのマグネシアと純度95%平均粒径約20μ
のイツトリア部分安定化ジルコニア、結合剤として以下
のような無機質バインダー、有機質バインダー等を添加
し、泥状埋没剤を形成した。
"Example 3" Magnesia with a purity of 98.5% and an average particle diameter of 350 mesh passes and a purity of 95% and an average particle diameter of approximately 20μ are used as the base material of the mold material.
Ittria partially stabilized zirconia, the following inorganic binder, organic binder, etc. were added as a binder to form a mud-like investment agent.

鋳型材組成 MgO:30重量%/Zrozニア0重量%   10
0部ジルコニアゾル        13部尿素樹脂 
          13部界面活性剤       
   0.2部消泡剤            0.2
部前記実施例1と同様なワックスパターンを使用して、
チタンおよびチタン合金Ti−6AI −4Vの鋳造を
行った。
Mold material composition MgO: 30% by weight/Zroz 0% by weight 10
0 parts zirconia sol 13 parts urea resin
13 parts surfactant
0.2 parts Antifoaming agent 0.2
Using the same wax pattern as in Example 1 above,
Titanium and titanium alloy Ti-6AI-4V were cast.

鋳造はアルゴンアーク溶解加圧式鋳造機にて行った。Casting was performed using an argon arc melting pressure casting machine.

この結果、鋳型表面にはクランクや焼付現象もなく鋳造
品の酸洗いの鋳肌表面の性状も良好であった。
As a result, there was no cranking or seizure phenomenon on the mold surface, and the surface properties of the pickled surface of the cast product were also good.

また、これらの鋳造品のxwA透視装置による内部検査
を行ったが内包巣等の内部欠陥は認められなかった。
In addition, internal inspection of these cast products using an xwA fluoroscope was conducted, but no internal defects such as internal cysts were found.

「実施例4」 鋳型材の基材として実施例1と同様な性状の酸化マグネ
シウムと酸化ジルコニウムを用い、以下の組成からなる
泥状埋没材を形成した。
"Example 4" Using magnesium oxide and zirconium oxide having the same properties as in Example 1 as the base material of the mold material, a mud-like investment material having the following composition was formed.

鋳型材組成 MgO: 10重量%/Zr0z:90重量%   1
00部ジルコニアゾル         10部アクリ
ル樹脂系エマルジョン  10部界面活性剤     
     0.1部消泡剤            0
.1部このスラリーヘモデル形態のクラウンワックスパ
ターンを浸漬し、コーディング層の厚みを0.7〜1.
0+++mとした。次にこれを空気中で自然乾燥した後
、内径4011ffi、高さ50mmの金属製リング内
にアスベストリボンの内張りを施した円筒内におさめ、
その周囲をインベストメント鋳造用の石膏スラリーで埋
没し、バックアップした。パターンを埋没後、約1〜2
時間温室で放置し湯口表面にスラリーを塗布し、石膏表
面をコーティングした。これを電気炉中で加熱し脱ロウ
焼成した。
Mold material composition MgO: 10% by weight/Zr0z: 90% by weight 1
00 parts Zirconia sol 10 parts Acrylic resin emulsion 10 parts Surfactant
0.1 part antifoaming agent 0
.. One part of the crown wax pattern in the form of a model is dipped into this slurry, and the thickness of the coating layer is 0.7-1.
It was set to 0+++m. Next, after naturally drying it in the air, it was placed in a cylinder lined with asbestos ribbon inside a metal ring with an inner diameter of 4011ffi and a height of 50 mm.
The surrounding area was filled with gypsum slurry for investment casting and backed up. After burying the pattern, about 1-2
After leaving it in a greenhouse for an hour, a slurry was applied to the sprue surface to coat the plaster surface. This was heated in an electric furnace to dewax and fire it.

鋳造は合金チタンTi −6Al −4Vを用い実施例
3と同じ方法で行った。
Casting was performed in the same manner as in Example 3 using titanium alloy Ti-6Al-4V.

この結果、合金チタンの溶湯に対するコーディング層の
耐熱性と機械的強度は十分でバックアップ材としての石
膏との反応は認められず鋳型の損傷も無かった。そして
得られた鋳造品の酸処理後の表面性状は、美麗で、品質
的にも実施例3と比較して遜色がなかった。
As a result, the heat resistance and mechanical strength of the coating layer against the molten titanium alloy were sufficient, no reaction was observed with the plaster as a backup material, and there was no damage to the mold. The surface quality of the obtained cast product after acid treatment was beautiful, and the quality was comparable to that of Example 3.

「実施例5」 実施例4と同様な鋳造方法で下記の組成からなるガラス
セラミックスの鋳造を行った。
"Example 5" A glass ceramic having the following composition was cast using the same casting method as in Example 4.

ガラス組成 Nazo  5.0重量% Kto   0.5重量% MgO3,0重量% Ca0 33.0重量% 5i(h  45.0重量% PzOs  13.5重量% この結果、クラックの入らない機械的強度にすぐれたガ
ラス受像鋳造体が得られた。
Glass composition: Nazo 5.0% by weight Kto 0.5% by weight MgO 3,0% by weight Ca0 33.0% by weight 5i(h 45.0% by weight PzOs 13.5% by weight) As a result, mechanical strength without cracks is achieved. An excellent glass image-receiving cast body was obtained.

さて、以上の実施例で示さなかったが本発明によるMg
O−ZrOt系混合鋳型材料と酸化マグネシウムMgO
および酸化ジルコニウムZrO,単独との性状、性能の
比較実験を合金チタンで行った。
Now, although not shown in the above examples, Mg according to the present invention
O-ZrOt mixed mold material and magnesium oxide MgO
A comparison experiment was conducted on the properties and performance of titanium alloy and zirconium oxide ZrO alone.

その結果、MgO100%の場合、得られた鋳造体の引
っ張り強度は100Kg 7mm”以上とすぐれている
ものの、伸びは3%前後と非常に小さく、X線透視装置
による観察結果で内包巣等がしばしば観察された。また
この鋳型材は、硬化が急速であり、スラリーの安定性に
難点を有していた。
As a result, in the case of 100% MgO, the tensile strength of the obtained cast body is excellent at over 100 kg 7 mm, but the elongation is very small at around 3%, and as a result of observation with an X-ray fluoroscope, internal cysts etc. are often observed. Furthermore, this mold material hardened rapidly and had problems with the stability of the slurry.

一方、ZrO□100%のものは、引っ張り強度がMg
O添加したものより小さくその反面伸びは6〜7%台を
示した。
On the other hand, the tensile strength of 100% ZrO□ is Mg.
On the other hand, the elongation was smaller than that with O added, and on the other hand, the elongation was in the 6 to 7% range.

そして内包巣等はほとんど認められなかった。And almost no cysts were observed.

これら一連の実験からMgOに対するZrO,添加量は
少なくとも5.0重量%以上であることが望ましいこと
がわかった。
From these series of experiments, it has been found that it is desirable that the amount of ZrO added to MgO is at least 5.0% by weight.

次にMgO,ZrO,の平均粒径であるが、1.0m+
n以上では通気度は十分あるものの、鋳型強度の保持の
点で結合力が十分でなく、得られる鋳造体は繊細な鋳肌
面が得られにくいという欠点を有する。またバックアッ
プ材としては寸法精度のすぐれた鋳造体を得る目的には
、石膏を用いることが好ましいがその他のスコッタ材(
耐火砂)を使用してもよい。更に結合剤、界面活性剤、
消泡剤等は添加、混合した場合凝集、沈澱等を惹起しな
いものを適正な範囲内で自由に組み合せて使用できる。
Next, the average particle size of MgO and ZrO is 1.0m+
If it is more than n, the air permeability is sufficient, but the bonding force is not sufficient in terms of maintaining mold strength, and the resulting cast body has the disadvantage that it is difficult to obtain a delicate casting surface. In addition, as a backup material, it is preferable to use gypsum for the purpose of obtaining a cast body with excellent dimensional accuracy, but other scoter materials (
refractory sand) may be used. Furthermore, binders, surfactants,
Antifoaming agents and the like can be used in any combination within an appropriate range, as long as they do not cause aggregation, precipitation, etc. when added or mixed.

(発明の効果) 以上の如く、本発明によるMgO−ZrO□系精密鋳造
用鋳型材は高温時での化学的安定性にすぐれ耐熱性、耐
蝕性に富むMgOおよびZrO□の混合物から成る鋳型
材であることから、アルミニウム合金や銅合金のように
低融点の金属は言うに及ばず、チタンおよびチタン合金
のような高融点でかつ高活性な金属で通常は鋳造困難な
金属やガラスセラミックなどの鋳造にも使用できるなど
従来にない広範囲な金属その他の精密鋳造を行うことが
できる。
(Effects of the Invention) As described above, the MgO-ZrO□-based precision casting mold material according to the present invention is a mold material made of a mixture of MgO and ZrO□, which has excellent chemical stability at high temperatures and is rich in heat resistance and corrosion resistance. Therefore, not only metals with low melting points such as aluminum alloys and copper alloys, but also metals with high melting points and high activity such as titanium and titanium alloys, which are normally difficult to cast, and metals such as glass ceramics. It can also be used for casting, making it possible to perform precision casting of a wide variety of metals and other materials that have never been possible before.

Claims (3)

【特許請求の範囲】[Claims] (1)平均粒径が1.0mm以下の酸化マグネシウムに
、平均粒径が1.0mm以下の酸化ジルコニウムを少な
くとも、5重量%以上添加したことを特徴とする精密鋳
造用鋳型材。
(1) A mold material for precision casting, characterized in that at least 5% by weight or more of zirconium oxide with an average particle size of 1.0 mm or less is added to magnesium oxide with an average particle size of 1.0 mm or less.
(2)鋳造対象物形状をした、ろう模型を型枠中にセッ
トし、該型枠中に平均粒径が1.0mm以下の酸化マグ
ネシウムに、平均粒径が1.0mm以下の酸化ジルコニ
ウムを少なくとも、5%重量添加してなる粉末状の鋳型
材を充填する工程の後、脱ろう工程を経て形成された殻
中に溶湯を注入することを特徴とする鋳造方法。
(2) A wax model in the shape of the object to be cast is set in a mold, and in the mold, zirconium oxide with an average grain size of 1.0 mm or less is added to magnesium oxide with an average grain size of 1.0 mm or less. A casting method characterized in that, after a step of filling a powdered mold material with at least 5% weight addition, molten metal is injected into a shell formed through a dewaxing step.
(3)平均粒径が1.0mm1以下の酸化マグネシウム
に平均粒径が1.0mm以下の酸化ジルコニウムを少な
くとも5重量%以上、添加してなる粉末状の鋳造材と結
合材を含んだ溶液とを混練して、スラリーを作る工程を
経た後、そのスラリー中に鋳造対象物を成するう模型を
浸漬もしくは上記スラリーを表面に塗布して、少なくと
もろう模型表面に鋳型材のコート層を備えたろう模型を
型枠中に石膏、ケイ酸塩、リン酸塩などの、バックアッ
プ材を充填し、脱ろう工程後の殻中に溶湯を注入せしめ
ることを特徴とする鋳造方法。
(3) A powdered casting material made by adding at least 5% by weight of zirconium oxide with an average particle size of 1.0 mm or less to magnesium oxide with an average particle size of 1.0 mm or less, and a solution containing a binder. After passing through the process of kneading and making a slurry, a model forming the object to be cast is immersed in the slurry or the slurry is applied to the surface of the wax model to form a wax model with a coating layer of mold material on at least the surface of the wax model. A casting method characterized by filling a backup material such as gypsum, silicate, or phosphate into a mold for the model, and injecting molten metal into the shell after the dewaxing process.
JP11496385A 1985-05-27 1985-05-27 Molding material for precision casting and casting method using same Pending JPS61273233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11496385A JPS61273233A (en) 1985-05-27 1985-05-27 Molding material for precision casting and casting method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11496385A JPS61273233A (en) 1985-05-27 1985-05-27 Molding material for precision casting and casting method using same

Publications (1)

Publication Number Publication Date
JPS61273233A true JPS61273233A (en) 1986-12-03

Family

ID=14650967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11496385A Pending JPS61273233A (en) 1985-05-27 1985-05-27 Molding material for precision casting and casting method using same

Country Status (1)

Country Link
JP (1) JPS61273233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733419A1 (en) * 1995-03-21 1996-09-25 Schütz-Dental GmbH Investment casting material
JP2015167980A (en) * 2014-03-07 2015-09-28 三菱重工業株式会社 Core material, core, core material manufacturing method, and core manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733419A1 (en) * 1995-03-21 1996-09-25 Schütz-Dental GmbH Investment casting material
JP2015167980A (en) * 2014-03-07 2015-09-28 三菱重工業株式会社 Core material, core, core material manufacturing method, and core manufacturing method

Similar Documents

Publication Publication Date Title
EP0204674B1 (en) Casting of reactive metals into ceramic molds
EP2950943B1 (en) Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
JP2663392B2 (en) Core for casting titanium and its alloys
Yuan et al. Investment casting of Ti–46Al–8Nb–1B alloy using moulds with CaO-stabilized zirconia face coat at various mould pre-heat temperatures
JPS6234449B2 (en)
EP3074363B1 (en) A method for forming a mold for casting a titanium-containing article
US4316498A (en) Investment shell molding materials and processes
JPS6012246A (en) Production of investment shell mold for unidirectional solidification casting of super alloy
CN104662387B (en) Crucible and facecoat compositions and methods for melting titanium and titanium aluminide alloys
JPH0613137B2 (en) Mold material
Saridikmen et al. Properties of ceramic casting molds produced with two different binders
JP2015531733A5 (en)
JPS61273233A (en) Molding material for precision casting and casting method using same
JPH0327841A (en) Molding material
JP2718460B2 (en) Easily collapsible mold and method for producing the same
JPH0647142B2 (en) Precision casting mold material and casting method using the same
US2701207A (en) Mold composition and process
JPH05208241A (en) Casting mold for precision casting of titanium or titanium alloy
JPS63140740A (en) Mold for casting active metal of high melting point
JPH04500949A (en) Container for molten metal, material for the container, and method for manufacturing the material
JPH04317461A (en) Casting mold material for casting high melting point metal
Ping Precision cast dies produced by a ceramic mould process—a review
JPS63260648A (en) Mold material for precision casting and casting method using the same
JPS6027442A (en) Casting mold
CA2748523C (en) Method of impregnating crucibles and refractory articles