EP2941327A1 - Method for the production of core sand and/or molding sand for casting purposes - Google Patents

Method for the production of core sand and/or molding sand for casting purposes

Info

Publication number
EP2941327A1
EP2941327A1 EP14700045.9A EP14700045A EP2941327A1 EP 2941327 A1 EP2941327 A1 EP 2941327A1 EP 14700045 A EP14700045 A EP 14700045A EP 2941327 A1 EP2941327 A1 EP 2941327A1
Authority
EP
European Patent Office
Prior art keywords
expandable graphite
molding
casting
sand
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14700045.9A
Other languages
German (de)
French (fr)
Other versions
EP2941327B1 (en
Inventor
Andreas Wolff
Bettina VENNEMANN
Dieter Genske
Peter OBERSCHELP
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imertech SAS
Original Assignee
S & B Ind Minerals GmbH
S & B Industrial Minerals GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S & B Ind Minerals GmbH, S & B Industrial Minerals GmbH filed Critical S & B Ind Minerals GmbH
Publication of EP2941327A1 publication Critical patent/EP2941327A1/en
Application granted granted Critical
Publication of EP2941327B1 publication Critical patent/EP2941327B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/14Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for separating the pattern from the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores

Definitions

  • the invention relates to a method for producing a core and / or molding sand for foundry purposes, after which a granular mineral and refractory molding material is mixed with at least one inorganic binder and additionally an inorganic blowing additive.
  • bentonite is typically used as the binder.
  • the additional added blowing additive may be perlite, vermiculite or expandable graphite.
  • the bulking additive has a Blähinger of at least 9, that is, the Blveshadditiv in question multiplies its volume at a certain temperature accordingly. This temperature is typically at 300 ° C. As a result, harmful emissions in particular are avoided and the casting quality is improved.
  • Inorganic binders such as bentonite according to EP 2 014 391 A2 are equipped with the fundamental advantage over organic binders that significantly less pollutants are released during casting.
  • bentonite as an inorganic binder for molds and cores it is also possible in principle to use molding material mixtures for the production of casting molds for metal processing, which use a binding agent based on water glass, as described in DE 10 2004 042 535 A1.
  • the molding base material is typically sand or quartz sand.
  • the physical curing of the binder, for example, from the water glass is done regularly by heating by moisture is removed by drying. Drying can be done in a hot core box, by hot air blowing in the core box concerned, or by microwave heating or in a conventional oven.
  • the grains of the molding base material are connected to each other via binder bridges produced with the aid of the binder.
  • the additional intumescent additives added in the context of EP 2 014 391 A2 or also according to US Pat. No. 4 505 750 A now ensure that coring is facilitated. Because the swelling additive ensures that, for example, the core can be separated from the casting.
  • DD 158 090 A1 deals with a method for controlling the strength of inorganic molding materials based on alkali metal silicate solutions.
  • the special characteristic of water glass is described as a binder and also the unsatisfactory decay properties are presented in this context.
  • the invention is based on the technical problem of developing a method of the type described above so that a perfect and rapid disintegration of the mold is associated with a perfect surface of the casting.
  • a generic method in the context of the invention is characterized in that are used as a binder water glass and as blowing additive expandable graphite.
  • water glass is first used as the binder.
  • Water glass is known to be solidified from a melt glassy water-soluble sodium and potassium silicates or their aqueous solutions. Depending on whether predominantly sodium or potassium silicates are contained, one speaks of soda water glass or potassium water glass.
  • Such waterglasses are characterized by a high rate of setting and low emissions.
  • the use of water glass in foundry technology for hardening molds and cores is basically known, as exemplified by DE 10 2004 042 535 A1, but not in combination with an additional intumescent additive in the form of expandable graphite.
  • expanded graphites are special graphites which typically expand by about 50 to 600 volume percent upon heating to temperatures above 150 ° C.
  • the above expansion can be so
  • the expandable graphite in question is optionally ground and then heated in a crucible. From a comparison of the volume before and after heating can then be deduced on the volume increase.
  • a certain amount of expandable graphite (in g) is used in this process, so that not only the increase in volume can be specified, but also an expansion rate, ie the volume increase (in cm 3 ) per gram of expanded graphite used.
  • the expansion properties of expanded graphite can be determined, for example, by means of thermomechanical analysis (TMA).
  • TMA thermomechanical analysis
  • dimensional changes of expanded graphite or individual graphite particles are measured as a function of temperature and time.
  • the respective sample of expandable graphite is applied to a sample carrier and the dimensional changes of the sample are measured and recorded with the aid of a measuring probe as a function of the heating temperature and the heating time.
  • the powdery sample of expanded graphite can be introduced into a corundum crucible, which is covered with a steel crucible.
  • the steel crucible ensures the smooth transfer of the dimensional changes of the sample to the probe, which is in mechanical contact with the top of the steel crucible, as the sample expands.
  • the probe is subjected to an adjustable load.
  • thermochemical analysis TMA
  • the calculation of the expansion of the substance in% or in cm 3 are in the
  • the expanded graphite can be characterized by its rate of expansion, that is to say the volume increase (in cm 3 ) relative to the mass (in g), inter alia.
  • the expandability of expanded graphite can be attributed to the fact that between the lattice planes of the graphite impurities are embedded, which cause the expansion of the lattice plane spaces when energized.
  • These foreign constituents may be metallic groups, halogens, OH groups, acid residues or also SOx and / or ⁇ .
  • a granular mineral molding base material (quartz sand) was used for the casting test, and with two different expansion rates as binder waterglass with 1, 6 wt .-% and 0.3 wt .-% expandable graphite, each based on the mold base material:
  • an expanded graphite having an expansion rate of more than 10 cm 3 / g and in particular such having an expansion rate of 10 to 100 cm 3 / g, a maximum of 120 cm 3 / g, has proven to be particularly favorable.
  • the lower limit of 10 cm 3 / g is explained by the fact that only at such an expansion rate of expandable graphite a coring is made possible, that is, the shape without adherence to the casting properly disintegrates.
  • expansion rates of up to 350 cm 3 / g and especially those of up to 100 cm 3 / g are particularly preferred.
  • the expansion rate gives the
  • sulfur or nitrogen compounds are generally incorporated into the individual layers of the graphite. It is therefore SOx or ⁇ expandable graphite. These typically have a starting temperature for expansion that is more than 1 80 ° C. In particular, a starting temperature of about 220 ° C is observed. That is, only above the specified temperatures (> 180 ° C), the previously stated volume increase is observed.
  • the particle size is more than 20 ⁇ .
  • particles or grains in a diameter range from 20 ⁇ to 150 ⁇ used and preferably those with a grain size between 150 ⁇ and 300 ⁇ .
  • the described grain size of the expanded graphite up to a maximum of 300 ⁇ takes into account inter alia the fact that usually granular mineral sand, in particular quartz sand, is used as the molding base material. This is usually in a mean grain size ⁇ 0.5 mm before, that is, with a grain diameter of typically less than 500 ⁇ . In general, its grain size ranges from 100 ⁇ to 300 ⁇ . As a result, the grains of on the one hand the expanded graphite and on the other hand the mold base material are approximately the same size, which favors the mixing of the molding material with the expandable graphite and its uniform distribution within the produced core and / or molding sand.
  • Expanded graphite generally has a carbon content of 85% to 99.5% by weight.
  • the maximum humidity of the expanded graphite is in
  • the PH value may be between 3 and 8.
  • the starting temperature is in the range between 180 ° C and 220 ° C.
  • the expandable graphite is added to the mixture in a proportion of up to about 1% by weight and preferably up to about 0.5% by weight.
  • the mixture is the mixture of the granular mineral molding material and the at least one inorganic binder.
  • the inorganic blowing additive in the form of expandable graphite is added to this mixture.
  • Particularly preferred is a proportion of the expandable graphite in the mixture in question of about 0.1 wt .-%.
  • the percentages by weight in each case relate to the molding material used.
  • the expandable graphite evenly distributed Blähgraphit confuseer in the mixture to simplify from the starting temperature, the coring. Because of the introduced expanded graphite virtually all bonds between the individual grains of the molding material are repealed. At the same time, the expanded graphite, with its relatively low expansion rate of typically not more than 100 cm 3 / g or not more than 350 cm 3 / g, ensures that the surface of the casting that is formed is not or is not negatively affected.
  • the bentonite-bonded test specimen corresponds to the state of the art, as described, for example, in EP 2 014 391 A2 and uses bentonite as the inorganic binder.
  • the water-glass-bonded test specimen belongs to the process according to the invention, in which water glass (in conjunction with expandable graphite as intumescent additive) is used as binder.
  • bentonite-bonded molding material 5% by weight bentonite (based on the quartz sand) + water + quartz sand was used as the bentonite-bonded molding material.
  • the bentonite-bonded molding material has 0.3 wt .-% expandable graphite (based on the quartz sand) with an expansion rate ⁇ 100 cm 3 / g. The entire production of the test specimens was carried out in the laborkorkergergang and according to the educachanurgiher ein VDG leaflet P 69.
  • the water-glass-bonded molding material according to the inventive method from 1, 6 wt .-% water glass (based on the quartz sand or the granular mineral mold base material) and the same proportion expanded graphite as before and the rest quartz sand.
  • the test specimen was produced here in a wing mixer and the hardening of the water-glass bonded cores in a drying oven.
  • water glass bonded moldings or molding materials without stabilizing mold frame can be prepared so that they can be handled freely and inexpensively and so can be used as bentonite bonded moldings in terms of their casting technology application for a wider range of applications.
  • cores to form inner contours for example, water jacket cores in the production of molds for water-cooled engines to name, which can not be imagined with bentonite-bonded cores and handled.
  • main benefits are the main benefits.
  • the core and / or molding sand produced by the process according to the invention can also be advantageously used for the production of casting molds for iron-carbon alloys, aluminum alloys, copper alloys such as brass, bronze etc. but also for magnesium alloys and castings produced therefrom.
  • the casting molds in question are typically used in the automotive industry. In fact, this molds can be realized with the particularly filigree structures with
  • Comparative Example 1 In the photograph shown in Fig. 1, a casting is shown in the left photo, which has been prepared without expandable graphite using a core and / or molding sand and water glass as a binder.
  • the right-hand photograph in FIG. 1 shows the relevant workpiece with added expandable graphite in an amount of 0.1% by weight, based on the core or molding sand produced (likewise with water glass as binder, in both cases equal grammages for water glass and the core or molding sand as well as the same core or molding sand was used.
  • 2 and 3A to 3C show the basic process in the production of a mold using the core and / or molding sand according to the invention. 2 shows how predominantly hatched grains of sand 1
  • FIG. 3A by way of example, two grains or grains of sand 1 of the basic molding material are coupled to one another by a bridge of the inorganic binder or water glass 2 shown in black.
  • FIG. 3B shows how, when the starting temperature is exceeded, a crack occurs in the bridge between the sand grains 1 formed by inorganic binders or the water glass 2. For this purpose, essentially the expanding graphite expanding above the starting temperature is responsible.
  • FIG. 3C shows the breakage of the binder bridge 3 produced by the binder or water glass 2 in this way.

Abstract

The invention relates to a method for producing core sand and/or molding sand for casting purposes. A granular mineral mold base material is mixed with at least one inorganic binder and additionally an inorganic expanding additive. According to the invention, water glass is used as the binder and expanded graphite is used as the expanding additive.

Description

Verfahren zur Herstellung eines Kern- und/oder Formsandes für  Process for producing a core and / or molding sand for
Gießereizwecke  foundry purposes
Beschreibung: Description:
Die Erfindung betrifft ein Verfahren zur Herstellung eines Kern- und/oder Formsandes für Gießereizwecke, wonach ein granulärer mineralischer sowie feuerfester Formgrundstoff mit wenigstens einem anorganischen Bindemittel und zusätzlich einem anorganischen Blähadditiv gemischt wird. The invention relates to a method for producing a core and / or molding sand for foundry purposes, after which a granular mineral and refractory molding material is mixed with at least one inorganic binder and additionally an inorganic blowing additive.
Bei einem Verfahren des eingangs beschriebenen Aufbaus, wie dies beispielsweise in der EP 2 014 391 A2 der Anmelderin oder auch der US 4 505 750 A beschrieben wird, kommt typischerweise Bentonit als Bindemittel zum Einsatz. Bei dem zusätzlich zugegebenen Blähadditiv kann es sich um Perlit, Vermiculit oder auch Blähgraphit handeln. Das Blähadditiv verfügt über eine Blähzahl von wenigstens 9, das heißt, das fragliche Blähadditiv vervielfacht sein Volumen bei einer bestimmten Temperatur entsprechend. Diese Temperatur liegt typischerweise bei 300 °C. Hierdurch werden insbesondere schädliche Emissionen vermieden und die Gussqualität verbessert. In a method of the structure described at the outset, as described, for example, in the applicant's EP 2 014 391 A2 or also US Pat. No. 4 505 750 A, bentonite is typically used as the binder. The additional added blowing additive may be perlite, vermiculite or expandable graphite. The bulking additive has a Blähzahl of at least 9, that is, the Blähadditiv in question multiplies its volume at a certain temperature accordingly. This temperature is typically at 300 ° C. As a result, harmful emissions in particular are avoided and the casting quality is improved.
Anorganische Bindemittel wie beispielsweise Bentonit entsprechend der EP 2 014 391 A2 sind mit dem grundsätzlichen Vorteil gegenüber organischen Bindemitteln ausgerüstet, dass beim Abgießen bedeutend weniger Schadstoffe freigesetzt werden. Neben Bentonit als anorganischem Bindemittel für Formen und Kerne können grundsätzlich auch Formstoffmischungen zur Herstellung von Gießformen für die Metallverarbeitung zum Einsatz kommen, die auf ein auf Wasserglas basierendes Bindemittel zurückgreifen, wie dies in der DE 10 2004 042 535 A1 beschrieben wird. Generell werden mit Hilfe des anorganischen Bindemittels die einzelnen Körner des granulären mineralischen und feuerfesten Formgrundstoffes miteinander Inorganic binders such as bentonite according to EP 2 014 391 A2 are equipped with the fundamental advantage over organic binders that significantly less pollutants are released during casting. In addition to bentonite as an inorganic binder for molds and cores it is also possible in principle to use molding material mixtures for the production of casting molds for metal processing, which use a binding agent based on water glass, as described in DE 10 2004 042 535 A1. Generally, with the help of the inorganic binder, the individual grains of the granular mineral and refractory mold base material with each other
verbunden bzw. geklebt. Bei dem Formgrundstoff handelt es sich typischerweise um Sand bzw. Quarzsand. Die physikalische Aushärtung des Bindemittels, beispielsweise vom Wasserglas, erfolgt regelmäßig durch Erhitzen, indem Feuchtigkeit durch Trocknen entzogen wird. Das Trocknen kann in einer heißen Kernbüchse, durch Begasen mit heißer Luft in der betreffenden Kernbüchse oder auch mit Hilfe einer Mikrowellenheizung bzw. in einem herkömmlichen Ofen erfolgen. connected or glued. The molding base material is typically sand or quartz sand. The physical curing of the binder, for example, from the water glass is done regularly by heating by moisture is removed by drying. Drying can be done in a hot core box, by hot air blowing in the core box concerned, or by microwave heating or in a conventional oven.
Nach dem Aushärten sind die Körner des Formgrundstoffes über mit Hilfe des Bindemittels erzeugte Binderbrücken miteinander verbunden. Die im Rahmen der EP 2 014 391 A2 oder auch gemäß der US 4 505 750 A zugegebenen zusätzlichen Blähadditive sorgen nun dafür, dass das Entkernen erleichtert wird . Denn das Blähadditiv stellt sicher, dass beispielsweise der Kern vom Gussteil getrennt werden kann. After curing, the grains of the molding base material are connected to each other via binder bridges produced with the aid of the binder. The additional intumescent additives added in the context of EP 2 014 391 A2 or also according to US Pat. No. 4 505 750 A now ensure that coring is facilitated. Because the swelling additive ensures that, for example, the core can be separated from the casting.
An dieser Stelle können häufig aufgrund der speziellen Charakteristik des anorganischen Bindemittels und insbesondere von Wasserglasbindern Schwierigkeiten auftreten, so dass die Trennung des Kerns bzw. Kernsandes und/oder Formsandes vom jeweiligen Gussteil nur teilweise oder unvollständig gelingt. Beispielsweise befasst sich die DD 158 090 A1 mit einem Verfahren zur Festigkeitsregulierung anorganischer Formstoffe auf der Basis von Alkalisilikatlösungen. Hier wird die besondere Charakteristik von Wasserglas als Bindemittel beschrieben und werden auch die unbefriedigenden Zerfallseigenschaften in diesem Kontext dargestellt. Due to the special characteristics of the inorganic binder and especially of waterglass binders, difficulties may often arise at this point, so that the separation of the core or core sand and / or foundry sand from the respective casting is only partially or incompletely successful. For example, DD 158 090 A1 deals with a method for controlling the strength of inorganic molding materials based on alkali metal silicate solutions. Here, the special characteristic of water glass is described as a binder and also the unsatisfactory decay properties are presented in this context.
Denn diese muss möglichst genau und fehlerfrei abgebildet werden. So können Oberflächenfehler unter anderem beim Ablösen von Partikeln bzw. Körnern entstehen. Außerdem werden ein oder mehrphasige Einschlüsse an der Gussoberfläche beobachtet, die sich auf Reaktionen des Kern- und/oder Formsandes mit Because this must be as accurate and accurate as possible. For example, surface defects can occur during the detachment of particles or grains. In addition, single or multi-phase inclusions are observed on the casting surface due to reactions of the core and / or molding sand with
der Schmelze zurückführen lassen. Solche Einschlüsse sind manchmal makroskopisch, also mit bloßem Auge, zu erkennen und beeinflussen regelmäßig die mechanischen Festigkeiten eines Gussteils. Hieraus kann im Extremfall Ausschuss resultieren. let melt back. Such inclusions can sometimes be recognized macroscopically, ie with the naked eye, and regularly influence the mechanical strengths of a casting. This can result in extreme cases committee.
Bei der Herstellung der Gussteile steht nicht nur eine einwandfreie Gussoberfläche im Fokus, sondern der gesamte Fertigungsprozess stellt an das Entkernen besonders hohe Anforderungen. Das heißt, es kommt darauf an, dass die Formen und Kerne nach der Herstellung des Gussteils einwandfrei vom Gussteil getrennt werden . Um diesen Vorgang zu unterstützen, wird oftmals mechanische Energie durch Rütteln oder Vibrieren zugeführt, welche ergänzend zu dem Blähadditiv dafür sorgt, dass die Binderbrücken zwischen den einzelnen Körnern zerstört werden und folglich der Formgrundstoff im Idealfall aus dem Gussstück frei herausrieselt. In the production of castings, not only is a perfect casting surface in focus, but the entire manufacturing process places particularly high demands on coring. That is, it is important that the molds and cores are properly separated from the casting after the casting is made. In order to support this process, mechanical energy is often supplied by shaking or vibrating, which, in addition to the blowing additive, ensures that the binder bridges between the individual grains are destroyed and consequently, ideally, the molding material trickles freely out of the casting.
Insbesondere bei anorganisch gebundenen Kernen mit schmalen Konturen im Millimeterbereich, wie sie unter anderem bei Zylinderköpfen mit Wassermantel zur Herstellung von Automobil motoren beobachtet werden, ergeben sich Ent- kernprobleme, die auch noch durch die relativ geringen Gießtemperaturen der im Allgemeinen eingesetzten Aluminiumlegierungen verstärkt werden . Das heißt, in den gebildeten dünnen Kanälen können oft Kernsandreste hängen bleiben oder die Kanäle sind sogar verschlossen. Hinzu kommt, dass anorganische Bindemittel auf Basis von Bentonit im Allgemeinen mit dem Nachteil verbunden sind, dass die hieraus hergestellten Gießformen relativ geringe Festig- keiten aufweisen. Hohe Festigkeiten sind aber besonders wichtig für die Produktion solcher komplizierter dünnwandiger Kerne (Formen) und deren sichere Handhabung. Particularly in the case of inorganically bound cores with narrow contours in the millimeter range, as are observed, inter alia, in the case of cylinder heads with water jacket for the production of automotive engines, this results in core problems which are also intensified by the relatively low casting temperatures of the aluminum alloys generally used. That is, in the formed thin channels often Kernsandreste get stuck or the channels are even closed. In addition, inorganic binders based on bentonite are generally associated with the disadvantage that the casting molds produced therefrom have relatively low strengths. However, high strengths are particularly important for the production of such complicated thin-walled cores (molds) and their safe handling.
Der Grund für die niedrigen Festigkeiten bentonitgebundener Formen und Kerne gegenüber beispielsweise wasserglasgebundenen Formen und Kernen lässt sich im Wesentlichen darauf zurückführen, dass die bentonitgebundenen Gießformen einen etwas anderen Bindungsmechanismus besitzen und noch Restwasser aus dem Bindemittel enthalten. - Hier setzt die Erfindung ein. The reason for the low strengths of bentonite-bonded shapes and cores compared to, for example, water-glass bonded shapes and cores can be attributed essentially to the fact that the bentonite-bonded casting molds have a slightly different binding mechanism and still contain residual water from the binder. - This is where the invention starts.
Der Erfindung liegt das technische Problem zugrunde, ein Verfahren der eingangs beschriebenen Ausprägung so weiterzuentwickeln, dass ein einwandfreier und schneller Zerfall der Gussform mit einer einwandfreien Oberfläche des Gussteiles einhergeht. The invention is based on the technical problem of developing a method of the type described above so that a perfect and rapid disintegration of the mold is associated with a perfect surface of the casting.
Zur Lösung dieser technischen Problemstellung ist ein gattungsgemäßes Verfahren im Rahmen der Erfindung dadurch gekennzeichnet, dass als Bindemittel Wasserglas und als Blähadditiv Blähgraphit eingesetzt werden. To solve this technical problem, a generic method in the context of the invention is characterized in that are used as a binder water glass and as blowing additive expandable graphite.
Im Rahmen der Erfindung kommt als Bindemittel zunächst einmal Wasserglas zum Einsatz. Bei Wasserglas handelt es sich bekanntermaßen um aus einer Schmelze erstarrte glasartige wasserlösliche Natrium- und Kaliumsilikate oder ihre wässrigen Lösungen. Je nach dem, ob überwiegend Natrium- oder Kalium- Silikate enthalten sind, spricht man von Natronwasserglas oder von Kaliwasserglas. Solche Wasserglase zeichnen sich durch eine hohe Geschwindigkeit beim Abbinden und geringe Emissionen aus. Der Einsatz von Wasserglas in der Gießereitechnik zum Härten von Formen und Kernen ist zwar grundsätzlich bekannt, wie die DE 10 2004 042 535 A1 beispielhaft belegt, allerdings nicht in Kombination mit einem zusätzlichen Blähadditiv in Gestalt von Blähgraphit. In the context of the invention, water glass is first used as the binder. Water glass is known to be solidified from a melt glassy water-soluble sodium and potassium silicates or their aqueous solutions. Depending on whether predominantly sodium or potassium silicates are contained, one speaks of soda water glass or potassium water glass. Such waterglasses are characterized by a high rate of setting and low emissions. The use of water glass in foundry technology for hardening molds and cores is basically known, as exemplified by DE 10 2004 042 535 A1, but not in combination with an additional intumescent additive in the form of expandable graphite.
Tatsächlich handelt es sich bei Blähgraphiten um spezielle Graphite, die typischerweise beim Erhitzen auf Temperaturen über 150 °C um etwa 50 bis 600 Vol.-% expandieren. Die vorgenannte Expansion kann beispielsweise so In fact, expanded graphites are special graphites which typically expand by about 50 to 600 volume percent upon heating to temperatures above 150 ° C. For example, the above expansion can be so
bestimmt werden, dass das fragliche Blähgraphit gegebenenfalls gemahlen und dann in einem Schmelztiegel erhitzt wird. Aus einem Vergleich des Volumens vor und nach dem Erhitzen kann dann auf die Volumenzunahme rückgeschlossen werden. Üblicherweise kommt bei diesem Vorgang eine bestimmte Menge des Blähgraphites (in g) zum Einsatz, so dass nicht nur die Volumenzunahme angegeben werden kann, sondern auch eine Expansionsrate, das heißt die Volumenzunahme (in cm3) pro Gramm des eingesetzten Blähgraphits. it can be determined that the expandable graphite in question is optionally ground and then heated in a crucible. From a comparison of the volume before and after heating can then be deduced on the volume increase. Usually, a certain amount of expandable graphite (in g) is used in this process, so that not only the increase in volume can be specified, but also an expansion rate, ie the volume increase (in cm 3 ) per gram of expanded graphite used.
Einzelheiten der Herstellung solcher Blähgraphite sowie der Messung der Expansionseigenschaften lassen sich unter anderem der EP 1 489 1 36 A1 entnehmen. Danach können die Expansionseigenschaften von Blähgraphit beispielsweise mit Hilfe der thermomechanischen Analyse (TMA) bestimmt werden. Mit Hilfe dieser thermochemischen Analyse werden Dimensionsänderungen des Blähgraphits respektive einzelner Graphitpartikel als Funktion der Temperatur und der Zeit gemessen. Hierfür wird die jeweilige Probe des Blähgraphits auf einen Probenträger aufgebracht und werden die Dimensionsänderungen der Probe mit Hilfe einer Messsonde in Abhängigkeit von der Aufheiztemperatur und der Aufheizzeit gemessen und aufgezeichnet. Dazu lässt sich typischerweise die pulverförmige Probe aus dem Blähgraphit in einen Korundtiegel einbringen, der mit einem Stahltiegel abgedeckt wird. Der Stahltiegel gewährleistet bei der Ausdehnung der Probe die ruckfreie Übertragung der Dimensionsänderungen der Probe auf die Messsonde, welche mit der Oberseite des Stahltiegels in mechanischen Kontakt steht. Außerdem wird die Messsonde mit einer einstellbaren Auflast beaufschlagt. Details of the production of such expandable graphites and the measurement of the expansion properties can be found inter alia in EP 1 489 1 36 A1. Thereafter, the expansion properties of expanded graphite can be determined, for example, by means of thermomechanical analysis (TMA). With the aid of this thermochemical analysis dimensional changes of expanded graphite or individual graphite particles are measured as a function of temperature and time. For this purpose, the respective sample of expandable graphite is applied to a sample carrier and the dimensional changes of the sample are measured and recorded with the aid of a measuring probe as a function of the heating temperature and the heating time. Typically, the powdery sample of expanded graphite can be introduced into a corundum crucible, which is covered with a steel crucible. The steel crucible ensures the smooth transfer of the dimensional changes of the sample to the probe, which is in mechanical contact with the top of the steel crucible, as the sample expands. In addition, the probe is subjected to an adjustable load.
Weitere Einzelheiten dieser thermochemischen Analyse (TMA) und auch die Berechnung der Ausdehnung der Substanz in % bzw. in cm3 werden in der Further details of this thermochemical analysis (TMA) and also the calculation of the expansion of the substance in% or in cm 3 are in the
zuvor bereits genannten EP 1 489 136 A1 im Detail beschrieben. Als Folge hiervon lässt sich der Blähgraphit über seine Expansionsrate, das heißt die Volumenzunahme (in cm3) bezogen auf die Masse (in g) unter anderem charakterisieren. previously mentioned EP 1 489 136 A1. As a consequence of this, the expanded graphite can be characterized by its rate of expansion, that is to say the volume increase (in cm 3 ) relative to the mass (in g), inter alia.
Die Blähfähigkeit des Blähgraphits lässt sich darauf zurückführen, dass zwischen den Gitterebenen des Graphits Fremdbestandteile eingelagert sind, die bei Energiezufuhr die Aufweitung der Gitterebenen-Zwischenräume bewirken. Bei diesen Fremdbestandteilen kann es sich um metallische Gruppen, Halogene, OH-Gruppen, Säurereste oder auch SOx und/ oder ΝΟχ handeln. The expandability of expanded graphite can be attributed to the fact that between the lattice planes of the graphite impurities are embedded, which cause the expansion of the lattice plane spaces when energized. These foreign constituents may be metallic groups, halogens, OH groups, acid residues or also SOx and / or ΝΟχ.
Im Rahmen der Erfindung kommen insbesondere schwach expandierende Blähgraphite zum Einsatz, welche einerseits das Entkernen erheblich verbessern, andererseits die sich nach dem Gießen bildende Oberfläche des Gussteiles praktisch nicht negativ beeinflussen. In the context of the invention, in particular weakly expanding expandable graphites are used, which, on the one hand, significantly improve coring, and on the other hand have practically no adverse effects on the surface of the casting which forms after casting.
Um diesen Sachverhalt insbesondere quantitativ aufzuzeigen, wurden in diesem Zusammenhang Abgießversuche mit wasserglasgebundenen Prüfkörpern und Zusätzen von Blähgraphiten unterschiedlicher Expansionsraten unter- nommen. In order to demonstrate this fact quantitatively in particular, pouring tests were carried out with water glass bonded test specimens and additions of expanded graphite with different expansion rates.
Dazu wurde für den Gießversuch ein granulärer mineralischer Formgrundstoff (Quarzsand) sowie als Bindemittel Wasserglas mit 1 ,6 Gew.-% und 0,3 Gew.-% Blähgraphit, jeweils bezogen auf den Formgrundstoff, mit zwei verschiedenen Expansionsraten verwendet: For this purpose, a granular mineral molding base material (quartz sand) was used for the casting test, and with two different expansion rates as binder waterglass with 1, 6 wt .-% and 0.3 wt .-% expandable graphite, each based on the mold base material:
1 . Expansionsrate < 120 cm3/g (Blähgraphit) Probe Nummer 11 . Expansion rate <120 cm 3 / g (expanded graphite) Sample number 1
2. Expansionsrate > 350 cm3/g (Blähgraphit) Probe Nummer 2 2. Expansion rate> 350 cm 3 / g (expanded graphite) Sample number 2
Im weiteren Verlauf des Versuches wurden die Formlinge als Innenkerne in eine gemeinsame Form eingebracht und abgegossen. Nach dem Erkalten war bei beiden ein einfaches Entkernen sichtbar, das heißt ein einfaches Herausrieseln des Quarzsandes aus dem Gusskörper war erkennbar. Beim Aufsägen beider Gusskörper wurde aber zusätzlich sichtbar, dass der Blähgraphit mit der hohen Expansionsrate (> 350 cm3/g) die Bildung der Gussoberfläche des Probekörpers so stark beeinflusst hatte (vgl. Fig. 4, Probe Nummer 2), dass man als Ergebnis Reste des Blähgraphits makroskopisch auf der Gussoberfläche erkennen konnte. In the further course of the experiment, the moldings were introduced as inner cores in a common mold and poured. After cooling, a simple coring was visible in both, that is, a simple trickling out of the quartz sand from the casting was visible. When sawing both cast bodies, however, it was also apparent that the expanded graphite with the high expansion rate (> 350 cm 3 / g) had influenced the formation of the casting surface of the test specimen so strongly (see Fig. 4, sample number 2) Remains of expanded graphite macroscopically on the casting surface could recognize.
Im Vergleich zum Probekörper Nummer 1 bzw. Probe Nummer 1 in Fig. 4, der mit schwach expandierendem Blähgraphit behandelt worden war, wurden diese starken Einflüsse auf die Oberfläche nicht oder nur kaum sichtbar, so dass hinsichtlich der Oberflächenqualität bei dem Abgießversuch keine oder kaum Ein- schränkungen festgestellt werden konnten. Compared to the sample number 1 or sample number 1 in Fig. 4, which had been treated with low expanding expandable graphite, these strong influences on the surface were not or only barely visible, so that with regard to the surface quality in the Abgießversuch no or hardly one - restrictions were found.
Aus den oben geschilderten Abgießversuchen hat sich also ein Blähgraphit mit einer Expansionsrate von mehr als 10 cm3/g und insbesondere ein solcher mit einer Expansionsrate von 10 bis 100 cm3/g, maximal 120 cm3/g, als besonders günstig erwiesen. Die Untergrenze von 10 cm3/g erklärt sich dadurch, dass erst bei einer solchen Expansionsrate des Blähgraphits ein Entkernen ermöglicht wird, das heißt, die Form ohne Anhaftungen am Gusskörper einwandfrei zerfällt. Prinzipiell kann auch mit einer Expansionsrate von mehr als 350 cm3/g gearbeitet werden. Hier ist jedoch mit einer verminderten Oberflächenqualität, wie im Abgießversuch bereits geschildert, zu rechnen. From the pouring experiments described above, therefore, an expanded graphite having an expansion rate of more than 10 cm 3 / g and in particular such having an expansion rate of 10 to 100 cm 3 / g, a maximum of 120 cm 3 / g, has proven to be particularly favorable. The lower limit of 10 cm 3 / g is explained by the fact that only at such an expansion rate of expandable graphite a coring is made possible, that is, the shape without adherence to the casting properly disintegrates. In principle, it is also possible to work with an expansion rate of more than 350 cm 3 / g. Here, however, is expected with a reduced surface quality, as already described in Abgießversuch.
Im Allgemeinen sind damit Expansionsraten bis maximal 350 cm3/g und insbesondere solche bis 100 cm3/g besonders bevorzugt. Die Expansionsrate gibt die In general, therefore, expansion rates of up to 350 cm 3 / g and especially those of up to 100 cm 3 / g are particularly preferred. The expansion rate gives the
Volumenzunahme des Blähgraphits (in cm3) bezogen auf dessen Masse (in g) an. Volume increase of expandable graphite (in cm 3 ) relative to its mass (in g).
Bei der Herstellung des erfindungsgemäßen Blähgraphits werden in die einzel- nen Schichten des Graphits allgemein Schwefel- oder Stickstoffverbindungen mit eingebaut. Es handelt sich folglich um SOx oder ΝΟχ- Blähgraphite. Diese verfügen typischerweise über eine Starttemperatur zur Expansion, die bei mehr als 1 80 °C liegt. Insbesondere wird eine Starttemperatur von ca. 220 °C beobachtet. Das heißt, erst oberhalb der angegebenen Temperaturen (> 180 °C) wird die zuvor angegebenen Volumenzunahme beobachtet. In the production of the expanded graphite according to the invention, sulfur or nitrogen compounds are generally incorporated into the individual layers of the graphite. It is therefore SOx or ΝΟχ expandable graphite. These typically have a starting temperature for expansion that is more than 1 80 ° C. In particular, a starting temperature of about 220 ° C is observed. That is, only above the specified temperatures (> 180 ° C), the previously stated volume increase is observed.
Als Blähgraph it kommt typischerweise ein solcher zum Einsatz, dessen Teilchengröße mehr als 20 μιτι beträgt. Insbesondere werden Teilchen bzw. Körner in einem Durchmesserbereich von 20 μιτι bis 150 μιτι eingesetzt und bevorzugt solche mit einer Körnung zwischen 150 μιτι und 300 μιτι. As a Blähgraph it is typically such a used, the particle size is more than 20 μιτι. In particular, particles or grains in a diameter range from 20 μιτι to 150 μιτι used and preferably those with a grain size between 150 μιτι and 300 μιτι.
Die beschriebene Körnung des Blähgraphits bis maximal 300 μιτι trägt unter anderem dem Umstand Rechnung, dass als Formgrundstoff üblicherweise granulärer mineralischer Sand, wie insbesondere Quarzsand, zum Einsatz kommt. Dieser liegt meistens in einer mittleren Körnung < 0,5 mm vor, das heißt mit einem Korndurchmesser von typischerweise weniger als 500 μιτι. Im Allgemeinen bewegt sich seine Körnung im Bereich zwischen 100 μιτι bis 300 μιτι. Dadurch sind die Körner von einerseits dem Blähgraphit und andererseits dem Formgrundstoff in etwa gleich groß bemessen, was die Durchmischung des Formgrundstoffes mit dem Blähgraphit und dessen gleichmäßige Verteilung innerhalb des hergestellten Kern- und/oder Formsandes begünstigt. The described grain size of the expanded graphite up to a maximum of 300 μιτι takes into account inter alia the fact that usually granular mineral sand, in particular quartz sand, is used as the molding base material. This is usually in a mean grain size <0.5 mm before, that is, with a grain diameter of typically less than 500 μιτι. In general, its grain size ranges from 100 μιτι to 300 μιτι. As a result, the grains of on the one hand the expanded graphite and on the other hand the mold base material are approximately the same size, which favors the mixing of the molding material with the expandable graphite and its uniform distribution within the produced core and / or molding sand.
Der Blähgraphit verfügt im Allgemeinen über einen Kohlenstoffgehalt von 85 Gew.-% bis 99,5 Gew.-%. Die maximale Feuchte des Blähgraphits liegt im Expanded graphite generally has a carbon content of 85% to 99.5% by weight. The maximum humidity of the expanded graphite is in
Bereich von maximal 1 Gew.-%. Der PH-Wert mag zwischen 3 und 8 angesiedelt sein. Die Starttemperatur liegt im Bereich zwischen 180 °C und 220 °C. Range of maximum 1 wt .-%. The PH value may be between 3 and 8. The starting temperature is in the range between 180 ° C and 220 ° C.
Meistens wird der Blähgraphit der Mischung mit einem Anteil von bis zu ca. 1 Gew.-% und vorzugsweise bis zu ca. 0,5 Gew.-% zugegeben . Bei der Mischung handelt es sich um die Mischung aus dem granulären mineralischen Formgrundstoff und dem wenigstens einen anorganischen Bindemittel. Zu dieser Mischung wird erfindungsgemäß das anorganische Blähadditiv in Gestalt des Blähgraphits hinzugegeben. Besonders bevorzugt ist ein Anteil des Bläh- graphits in der fraglichen Mischung von ca. 0,1 Gew.-%. Die Gewichtsprozentangaben beziehen sich dabei jeweils auf den eingesetzten Formgrundstoff. In most cases, the expandable graphite is added to the mixture in a proportion of up to about 1% by weight and preferably up to about 0.5% by weight. The mixture is the mixture of the granular mineral molding material and the at least one inorganic binder. According to the invention, the inorganic blowing additive in the form of expandable graphite is added to this mixture. Particularly preferred is a proportion of the expandable graphite in the mixture in question of about 0.1 wt .-%. The percentages by weight in each case relate to the molding material used.
Dennoch reichen die eingebrachten und aufgrund der Anpassung der jeweiligen Korndurchmesser von einerseits dem Formgrundstoff und andererseits dem Blähgraphit gleichmäßig verteilten Blähgraphitbestandteile in der Mischung aus, um ab der Starttemperatur das Entkernen zu vereinfachen. Denn durch den eingebrachten Blähgraphit werden praktisch sämtliche Bindungen zwischen den einzelnen Körnern des Formgrundstoffes aufgehoben. Zugleich sorgt der Blähgraphit mit seiner relativ geringen Expansionsrate von typischerweise nicht mehr als 100 cm3/g bzw. nicht mehr als 350 cm3/g dafür, dass die Oberfläche des sich bildenden Gussteils nicht oder praktisch nicht negativ beeinflusst wird . Das lässt sich im Kern darauf zurückführen, dass einerseits die schwache Expansion des Blähgraphits die Körner des Form- grundstoffes nicht übermäßig mit von innen her aufgebautem Druck beaufschlagt, sondern vielmehr die moderate Expansionsrate hauptsächlich dazu führt, dass die Binderbrücken aufgesprengt werden. Andererseits liegt der expandierende Blähgraphit in besonders feiner Verteilung vor, so dass Ein- Nevertheless, the introduced and due to the adaptation of the respective grain diameter of on the one hand the mold base and on the other hand, the expandable graphite evenly distributed Blähgraphitbestandteile in the mixture to simplify from the starting temperature, the coring. Because of the introduced expanded graphite virtually all bonds between the individual grains of the molding material are repealed. At the same time, the expanded graphite, with its relatively low expansion rate of typically not more than 100 cm 3 / g or not more than 350 cm 3 / g, ensures that the surface of the casting that is formed is not or is not negatively affected. In essence, this can be attributed to the fact that, on the one hand, the weak expansion of the expandable graphite does not exert excessive pressure on the grains of the molding material with pressure built up from the inside, but rather causes the moderate expansion rate mainly to break up the binder bridges. On the other hand, the expanding expanded graphite is in a particularly fine distribution, so that
Schlüsse an der Oberfläche des Gussteils prinzipiell nicht oder praktisch nicht auftreten können. Conclusions on the surface of the casting in principle not or practically can not occur.
Von besonderer Bedeutung ist darüber hinaus, dass hohe Biegefestigkeiten beobachtet werden, die deutlich oberhalb von 100 N/cm2 angesiedelt sind, folglich die beispielsweise in der EP 2 014 391 A2 angegebenen Trockendruckfestigkeiten im Bereich von ca. 40 N/cm2 weit übertreffen. Dies schon deshalb, weil nach dem erfindungsgemäßen Verfahren überhaupt und generell Biegeriegel zur Bestimmung der zuvor angegebenen Biegefestigkeit hergestellt werden können, wohingegen nach dem Verfahren entsprechend der EP 2 014 391 A2 solche Biegeriegel überhaupt nicht darstellbar sind. Jedenfalls ist die Festigkeit gegenüber der Lehre nach EP 2 014 391 A2 deutlich gesteigert. Of particular importance beyond that high bending strengths are observed, which are located well above 100 N / cm 2 , thus far exceeding the example given in EP 2 014 391 A2 specified dry compressive strengths in the range of about 40 N / cm 2 . This is because, according to the method of the invention, generally and generally bending bars for determining the bending strength given above can be produced, whereas according to the method according to EP 2 014 391 A2, such bending bars can not be produced at all. In any case, the strength over the teaching according to EP 2 014 391 A2 is significantly increased.
Diesen Sachverhalt untermauern vor allem die Vergleichsprüfwerte der Biege- festigkeit von bentonitgebundenen und wasserglasgebundenen Prüfkörpern, wie aus Tabelle 1 zu entnehmen ist. Der bentonitgebundene Prüfkörper entspricht dabei dem Stand der Technik, wie er beispielsweise in der EP 2 014 391 A2 beschrieben wird und als anorganisches Bindemittel Bentonit einsetzt. Demgegenüber gehört der wasserglasgebundene Prüfkörper zum erfindungs- gemäßen Verfahren, bei dem als Bindemittel Wasserglas (in Verbindung mit Blähgraphit als Blähadditiv) eingesetzt wird. This fact is supported in particular by the comparative test values for the flexural strength of bentonite-bonded and water-glass bonded specimens, as can be seen from Table 1. The bentonite-bonded test specimen corresponds to the state of the art, as described, for example, in EP 2 014 391 A2 and uses bentonite as the inorganic binder. In contrast, the water-glass-bonded test specimen belongs to the process according to the invention, in which water glass (in conjunction with expandable graphite as intumescent additive) is used as binder.
Dabei wurde als bentonitgebundener Formstoff 5 Gew.-% Bentonit (bezogen auf den Quarzsand) + Wasser + Quarzsand verwendet. Außerdem weist der bentonitgebundene Formstoff 0,3 Gew.-% Blähgraphit (bezogen auf den Quarzsand) mit einer Expansionsrate < 100 cm3/g auf. Die gesamte Herstellung der Prüfkörper erfolgte im Laborkollergang und gemäß der Prüfkörperherstellung VDG Merkblatt P 69. In this case, 5% by weight bentonite (based on the quartz sand) + water + quartz sand was used as the bentonite-bonded molding material. In addition, the bentonite-bonded molding material has 0.3 wt .-% expandable graphite (based on the quartz sand) with an expansion rate <100 cm 3 / g. The entire production of the test specimens was carried out in the laborkorkergergang and according to the Prüfkörperherstellung VDG leaflet P 69.
Zum Vergleich dazu bestand der wasserglasgebundene Formstoff entsprechend dem erfindungsgemäßen Verfahren aus 1 ,6 Gew.-% Wasserglas (bezogen auf den Quarzsand bzw. den granulären mineralischen Formgrundstoff) sowie dem gleichen Anteil Blähgraphit wie zuvor und dem Rest Quarz- sand. Die Herstellung des Prüfkörpers erfolgte hier in einem Flügelmischer und die Aushärtung der wasserglasgebundenen Kerne in einem Trockenschrank. For comparison, the water-glass-bonded molding material according to the inventive method from 1, 6 wt .-% water glass (based on the quartz sand or the granular mineral mold base material) and the same proportion expanded graphite as before and the rest quartz sand. The test specimen was produced here in a wing mixer and the hardening of the water-glass bonded cores in a drying oven.
Bei der Prüfung der bentonit- und wasserglasgebundenen Probekörper wurden folgende Biegefestigkeiten festgestellt, die die großen und bereits bekannten Unterschiede hinsichtlich der Biegefestigkeit, insbesondere die praktisch nicht messbaren Biegefestigkeiten bei bentonitgebundenen Formstoffen, wiedergeben (die Messungen 1 bis 3 beziehen sich auf jeweils drei Prüfkörper gleicher Grammatur und Herstellung, die zu statistischen Zwecken untersucht wurden): When testing the bentonite- and waterglass-bonded test specimens, the following flexural strengths were determined, which reflect the large and already known differences in flexural strength, in particular the virtually non-measurable flexural strengths of bentonite-bonded molded articles (measurements 1 to 3 refer to three test specimens of the same grammage) and production, which have been studied for statistical purposes):
Tabelle 1 . Messreihe zur Prüfung der bentonit- und wasserglasgebundenen Prüfkörper Table 1 . Measurement series for testing the bentonite and water glass bonded specimens
Damit ist die Anwendung eines bentonitgebundenen Formstoffs auf Formen beschränkt, die meist nur zur Bildung der Außenkontur von Gussformen Anwendung finden, was insgesamt einen Nachteil darstellt. Denn beispielsweise Innenkerne respektive Innenkonturen lassen sich hiermit praktisch nicht realisieren. Thus, the application of a bentonite-bonded molding material is limited to forms that are usually used only for forming the outer contour of molds, which represents a disadvantage overall. Because, for example, inner cores respectively inner contours can be hereby practically not realized.
Hinzu kommt, dass sich zu einer möglichen Stabilisierung und zur Bildung der nötigen Festigkeiten solche bentonitgebundenen Formstoffe stets in einem Formrahmen befinden müssen, auch Formkasten genannt, der diesen Festig- keitsnachteil des Bindemittels ausgleicht. In addition, for possible stabilization and for the formation of the necessary strengths, such bentonite-bonded molding materials must always be located in a molding frame, also called a molding box, which compensates for this strength disadvantage of the binder.
Dies ist ebenfalls als ein weiterer Nachteil anzusehen, da hier zum einen zusätzliche Material kosten für die Formkästen entstehen und zum anderen nach jeweiligen Gebrauch eine Reinigung bzw. Wiederaufbereitung der Formkästen notwendig ist, was auch hier zusätzliche Kosten entstehen lässt. This is also to be regarded as a further disadvantage, since here on the one hand additional material costs incurred for the molding boxes and on the other hand after each use a cleaning or reprocessing of the molding boxes is necessary, which also creates additional costs.
Zum Vergleich können wasserglasgebundene Formlinge bzw. Formstoffe ohne stabilisierenden Formrahmen (Formkasten) hergestellt werden, so dass sie frei und kostengünstig gehandhabt werden können und so auch hinsichtlich ihrer gießereitechnischen Anwendung für einen weiteren Anwendungsbereich als bentonitgebundene Formlinge verwendet werden können. Hier sind insbesondere die Herstellung von Kernen zur Ausbildung von Innenkonturen beispielsweise Wassermantel kernen bei der Herstellung von Gussformen für wassergekühlte Motoren zu nennen, die unmöglich mit bentonitgebundenen Kernen abzubilden und gehandhabt werden können. Hierin sind die wesentlichen Vorteile zu sehen. For comparison, water glass bonded moldings or molding materials without stabilizing mold frame (molding box) can be prepared so that they can be handled freely and inexpensively and so can be used as bentonite bonded moldings in terms of their casting technology application for a wider range of applications. Here are in particular the production of cores to form inner contours, for example, water jacket cores in the production of molds for water-cooled engines to name, which can not be imagined with bentonite-bonded cores and handled. Here are the main benefits.
Auch kann der nach dem erfindungsgemäßen Verfahren hergestellte Kern- und/ oder Formsand vorteilhaft zur Produktion von Gießformen für Eisen-Kohlen- stoff-Legierungen, Aluminiumlegierungen, Kupferlegierungen wie Messing, Bronze etc. aber auch für Magnesiumlegierungen und daraus hergestellte Gussteile zum Einsatz kommen. Dabei werden die fraglichen Gießformen typischerweise in der Automobilindustrie eingesetzt. Tatsächlich lassen sich hiermit Gießformen realisieren, die über besonders filigrane Strukturen mit The core and / or molding sand produced by the process according to the invention can also be advantageously used for the production of casting molds for iron-carbon alloys, aluminum alloys, copper alloys such as brass, bronze etc. but also for magnesium alloys and castings produced therefrom. The casting molds in question are typically used in the automotive industry. In fact, this molds can be realized with the particularly filigree structures with
dünnen Konturen und insbesondere Kernkonturen im Bereich von nur wenigen Millimetern verfügen. Solche schmalen Konturen und insbesondere Kanäle für Kühlwasser bei der Herstellung von Zylinderköpfen lassen sich besonders vorteilhaft mit Hilfe von Gießformen realisieren, die auf Basis des erfindungsgemäß herstellenden Kern- und/oder Formsandes produziert worden sind. Hier sind ebenfalls die wesentlichen Vorteile der Erfindungslehre zu sehen. have thin contours and in particular core contours in the range of only a few millimeters. Such narrow contours and in particular channels for cooling water in the production of cylinder heads can be realized particularly advantageously with the aid of casting molds which have been produced on the basis of the inventively producing core and / or molding sand. Here are also the main advantages of the doctrine of invention.
Vergleichsbeispiel 1 In der in Fig. 1 dargestellten Fotografie ist ein Gussstück im linken Foto gezeigt, welches ohne Blähgraphit unter Rückgriff auf einen Kern- und/oder Formsand sowie Wasserglas als Binder hergestellt worden ist. Die rechte Fotografie in der Fig. 1 zeigt das betreffende Werkstück mit zugesetztem Blähgraphit in einer Menge von 0,1 Gew.-% bezogen auf den hergestellten Kern- bzw. Formsand (ebenfalls mit Wasserglas als Binder, wobei in beiden Fällen gleiche Grammaturen für Wasserglas und den Kern- oder Formsand sowie auch der gleiche Kern- oder Formsand eingesetzt wurde. Comparative Example 1 In the photograph shown in Fig. 1, a casting is shown in the left photo, which has been prepared without expandable graphite using a core and / or molding sand and water glass as a binder. The right-hand photograph in FIG. 1 shows the relevant workpiece with added expandable graphite in an amount of 0.1% by weight, based on the core or molding sand produced (likewise with water glass as binder, in both cases equal grammages for water glass and the core or molding sand as well as the same core or molding sand was used.
Anhand der Fotografien in der Fig. 1 wird deutlich, dass die Gussoberfläche durch Zusatz von Blähgraphit selbst in der angegebenen Menge deutlich verbessert wird, wie die rechte Fotografie in der Fig. 1 zeigt. Demgegenüber ist bei einem Verzicht auf Blähgraphit mit deutlichen Fehlern an der Gussoberfläche zu rechnen, wie die linke Fotografie in der Fig. 1 deutlich macht. Theoretische Überlegungen It is clear from the photographs in FIG. 1 that the casting surface is markedly improved even by the addition of expanded graphite, even in the stated amount, as the right-hand photograph in FIG. 1 shows. In contrast, when dispensing with expandable graphite, significant defects in the casting surface are to be expected, as the left-hand photograph in FIG. 1 makes clear. Theoretical considerations
Die Fig. 2 und 3A bis 3C zeigen den prinzipiellen Vorgang bei der Herstellung einer Form mit Hilfe des erfindungsgemäßen Kern- und/oder Formsandes. In der Fig. 2 erkennt man, wie überwiegend schraffiert dargestellte Sandkörner 1 2 and 3A to 3C show the basic process in the production of a mold using the core and / or molding sand according to the invention. 2 shows how predominantly hatched grains of sand 1
zusammen mit schwarz dargestelltem anorganischen Binder bzw. Wasserglas 2 einen Wassermantel kern einer entsprechenden Kernform ausfüllen. In der Fig. 3A sind beispielhaft zwei Körner bzw. Sandkörner 1 des Formgrundstoffes durch eine schwarz dargestellte Brücke aus dem anorganischen Binder bzw. Wasserglas 2 miteinander gekoppelt. Die Fig. 3B zeigt, wie beim Überschreiten der Starttemperatur ein Riss in der durch anorganischen Binder bzw. das Wasserglas 2 gebildeten Brücke zwischen den Sandkörnern 1 entsteht. Hierfür ist im Wesentlichen das oberhalb der Starttemperatur expandierende Blähgraphit verantwortlich. Die Fig. 3C zeigt schließlich den auf diese Weise her- gestellten Bruch der durch das Bindemittel bzw. Wasserglas 2 erzeugten Binderbrücke 3. together with black represented inorganic binder or water glass 2 fill a water jacket core of a corresponding core shape. In FIG. 3A, by way of example, two grains or grains of sand 1 of the basic molding material are coupled to one another by a bridge of the inorganic binder or water glass 2 shown in black. FIG. 3B shows how, when the starting temperature is exceeded, a crack occurs in the bridge between the sand grains 1 formed by inorganic binders or the water glass 2. For this purpose, essentially the expanding graphite expanding above the starting temperature is responsible. Finally, FIG. 3C shows the breakage of the binder bridge 3 produced by the binder or water glass 2 in this way.

Claims

Patentansprüche: claims:
1 . Verfahren zur Herstellung eines Kern- und/oder Formsandes für Gießereizwecke, wonach ein granulärer mineralischer Formgrundstoff mit wenigstens einem anorganischen Bindemittel und zusätzlich einem anorganischen Blähadditiv gemischt wird, d a d u r c h g e k e n n z e i c h n e t, dass als Bindemittel Wasserglas und als Blähadditiv Blähgraphit eingesetzt werden. 1 . Process for the production of a core and / or molding sand for foundry purposes, according to which a granular mineral molding base material is mixed with at least one inorganic binder and additionally an inorganic blowing additive, waterglass is used as the binding agent and expandable graphite is used as blowing additive.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Blähgraphit eine Expansionsrate von maximal 350 cm3/g, insbesondere eine solche von 10 bis 100 cm3/g besitzt. 2. The method according to claim 1, characterized in that the expandable graphite has an expansion rate of at most 350 cm 3 / g, in particular one of 10 to 100 cm 3 / g.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Starttemperatur zur Expansion des Blähgraphits bei mehr als 180 °C angesiedelt ist, insbesondere im Bereich zwischen ca. 180 °C und 220 °C liegt. 3. The method according to claim 1 or 2, characterized in that the starting temperature for expansion of the expanded graphite is settled at more than 180 ° C, in particular in the range between about 180 ° C and 220 ° C.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Blähgraphit in einer Teilchengröße von mehr als 20 μιτι, insbesondere im Bereich von 20 bis 150 μιτι und vorzugsweise zwischen ca. 150 μιτι und 300 μιτι zugegeben wird. 4. The method according to any one of claims 1 to 3, characterized in that the expandable graphite in a particle size of more than 20 μιτι, in particular in the range of 20 to 150 μιτι and preferably between about 150 μιτι and 300 μιτι is added.
5. Verfahren nach einem Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Blähgraphit SOx oder ΝΟχ-Blähgraphit zum Einsatz kommt. 5. The method according to any one of claims 1 to 4, characterized in that is used as expandable graphite SOx or ΝΟχ-expandable graphite.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Blähgraphit einen Kohlenstoffgehalt von 85 Gew.-% bis 99,5 Gew.-% aufweist. 6. The method according to any one of claims 1 to 5, characterized in that the expandable graphite has a carbon content of 85 wt .-% to 99.5 wt .-%.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Blähgraphit der Mischung aus dem Formgrundstoff sowie dem Wasserglas mit einem Anteil von bis zu ca. 1 Gew.-%, vorzugsweise mit einem Anteil von 7. The method according to any one of claims 1 to 6, characterized in that the expandable graphite of the mixture of the molding material and the water glass in a proportion of up to about 1 wt .-%, preferably with a proportion of
bis zu ca. 0,5 Gew.-% und besonders bevorzugt mit einem Anteil bis zu ca. 0,1 Gew.-%, jeweils bezogen auf den Formgrundstoff, zugegeben wird. up to about 0.5 wt .-% and particularly preferably in an amount up to about 0.1 wt .-%, each based on the molding material is added.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Blähgraphit dem Wasserglas zugegeben und dann mit dem Formgrundstoff gemischt oder als separates Additiv dem Formgrundstoff inklusive Wasserglas zugegeben wird. 8. The method according to any one of claims 1 to 7, characterized in that the expandable graphite is added to the waterglass and then mixed with the mold base material or added as a separate additive to the mold base including water glass.
9. Verwendung eines nach dem Verfahren entsprechend den Ansprüchen 1 bis 8 hergestellten Kern- und/oder Formsandes zur Herstellung von Gießformen für9. Use of a produced according to the method according to claims 1 to 8 core and / or molding sand for the production of molds for
Aluminiumgusslegierungen, Eisen-Kohlenstoff-Legierungen, Kupferlegierungen und/oder Magnesiumlegierungen. Aluminum casting alloys, iron-carbon alloys, copper alloys and / or magnesium alloys.
10. Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass die Gießform in der Automobilindustrie eingesetzt wird. 10. Use according to claim 9, characterized in that the casting mold is used in the automotive industry.
EP14700045.9A 2013-01-04 2014-01-03 Method for the production of core sand and or molding sand for casting purposes Not-in-force EP2941327B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013100060 2013-01-04
PCT/EP2014/050055 WO2014106646A1 (en) 2013-01-04 2014-01-03 Method for the production of core sand and/or molding sand for casting purposes

Publications (2)

Publication Number Publication Date
EP2941327A1 true EP2941327A1 (en) 2015-11-11
EP2941327B1 EP2941327B1 (en) 2018-07-25

Family

ID=49920344

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14700045.9A Not-in-force EP2941327B1 (en) 2013-01-04 2014-01-03 Method for the production of core sand and or molding sand for casting purposes

Country Status (6)

Country Link
US (2) US20150367406A1 (en)
EP (1) EP2941327B1 (en)
CN (1) CN105073298A (en)
BR (1) BR112015015966A2 (en)
MX (1) MX2015008691A (en)
WO (1) WO2014106646A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073298A (en) * 2013-01-04 2015-11-18 S&B工业矿石有限公司 Method for the production of core sand and/or molding sand for casting purposes
DE102018006415A1 (en) 2018-08-15 2020-02-20 Goldschmidt Thermit Gmbh Process for sealing a casting mold for aluminothermic rail welding

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB461104A (en) * 1935-05-25 1937-02-10 Victor Krosta Process for the manufacture of precision castings from metals and alloys of high melting point
DD158090A1 (en) 1981-04-10 1982-12-29 Eckart Flemming METHOD FOR STRENGTH CONTROL OF INORGANIC MATERIALS BASED ON ALKALISILICATE SOLUTIONS
NZ200714A (en) 1981-06-24 1984-12-14 May & Baker Ltd Bolus comprising active material on bobbin for delivery to rumen
JPS5868446A (en) * 1981-10-20 1983-04-23 Toyota Central Res & Dev Lab Inc Composition for easily collapsible mold
JPS6045976B2 (en) * 1983-05-25 1985-10-14 岩谷産業株式会社 Self-hardening mold material for titanium or titanium alloy casting
US4505750A (en) * 1983-11-25 1985-03-19 Venture Chemicals, Inc. Foundry mold and core sands
JPH04319039A (en) * 1991-04-15 1992-11-10 Ohara:Kk Molding material for casting pure titanium or titanium alloy
US5769933A (en) * 1996-06-21 1998-06-23 Amcol International Corporation Activated carbon foundry sand additives and method of casting metal for reduced VOC emissions
CN1137793C (en) * 2000-08-17 2004-02-11 上海交通大学 Expanding gypsum casting powder and its paste-making method by using water
CA2469534A1 (en) 2003-06-18 2004-12-18 Hilti Aktiengesellschaft The use of thermally expandable graphite intercalation compounds for producing fire-protection seals and method for their production
DE102004042535B4 (en) * 2004-09-02 2019-05-29 Ask Chemicals Gmbh Molding material mixture for the production of casting molds for metal processing, process and use
DE102007027621A1 (en) * 2007-06-12 2008-12-18 S&B Industrial Minerals Gmbh Process for producing a core and / or foundry sand for foundry purposes
CN102773403B (en) * 2012-07-07 2014-02-12 山西宇清环保有限公司 Method for producing overturning plate valve cover by resin sand
CN105073298A (en) * 2013-01-04 2015-11-18 S&B工业矿石有限公司 Method for the production of core sand and/or molding sand for casting purposes

Also Published As

Publication number Publication date
MX2015008691A (en) 2016-03-04
CN105073298A (en) 2015-11-18
BR112015015966A2 (en) 2017-07-11
US20160346830A1 (en) 2016-12-01
US9764377B2 (en) 2017-09-19
EP2941327B1 (en) 2018-07-25
WO2014106646A1 (en) 2014-07-10
US20150367406A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
DE102007045649B4 (en) A method of making a mold and / or a core using comminuted natural particulate amorphous silicic materials in the foundry area and binder composition
EP3010669B1 (en) Method for producing a lithium-containing molding material mixture based on an inorganic binder for producing molds and cores for metal casting
EP2014392B1 (en) Moulding material mixture, moulded blank for moulding purposes and method for producing a moulded blank
EP2451596B1 (en) Mold wash for manufacturing mold coatings
EP3606690B1 (en) Method for producing casting molds, cores and basic mold materials regenerated therefrom
DE102006036381A1 (en) Molded material, foundry-molding material mixture and method for producing a mold or a molded article
EP2014391B1 (en) Method for producing a core and/or mould sand for casting purposes
DE102010043451A1 (en) Salt-based cores, process for their preparation and their use
DE102005041863A1 (en) Borosilicate glass-containing molding material mixtures
WO2011151420A1 (en) Infiltrate-stabilized salt cores
DE102013006135A1 (en) Salt-based cores, process for their preparation and their use
DE2531162B2 (en) Fired porous article and process for its manufacture
EP2308614B1 (en) Green aerosand
EP2941327B1 (en) Method for the production of core sand and or molding sand for casting purposes
DE2708265C3 (en) Process for the production of a self-hardening and water-soluble form
DE102020119013A1 (en) Process for the manufacture of an article for use in the foundry industry, corresponding mould, core, feeder element or mold material mixture, as well as devices and uses
DE102009024182B3 (en) Forming and removing mold or core during casting, e.g. of filigree structures, by forming mold or core containing hollow particles, to be collapsed under pressure after casting
EP1064112A1 (en) Use of iron mica in the production of moulds
DE2718332A1 (en) HEAT-RESISTANT POROESES COMPOSITE MATERIAL
DE102017131255A1 (en) A method of making a metallic casting or a cured molding using aliphatic polymers comprising hydroxy groups
EP1832357A1 (en) Mould or blank, casting moulding material mix and method for its manufacture
DE102018114700B3 (en) Use of a method for producing a tool for aluminum sheet forming
DE102008041217A1 (en) Molding material binder, useful for pourable molding material, preferably molding core inserts for casting mold, where the molding material binder is present in inorganic form
DE2649601C3 (en) Process for the production of casting cores and casting molds
AT389249B (en) Additive for regulating the strength remaining after casting of water-glass-bound casting moulds and/or cores

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OBERSCHELP, PETER

Inventor name: VENNEMANN, BETTINA

Inventor name: WOLFF, ANDREAS

Inventor name: GENSKE, DIETER

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMERYS METALCASTING GERMANY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 1/02 20060101AFI20180409BHEP

Ipc: B22C 1/14 20060101ALI20180409BHEP

Ipc: B22C 1/18 20060101ALI20180409BHEP

Ipc: B22C 9/10 20060101ALI20180409BHEP

INTG Intention to grant announced

Effective date: 20180504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1021217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014008952

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014008952

Country of ref document: DE

Owner name: IMERTECH SAS, FR

Free format text: FORMER OWNER: IMERYS METALCASTING GERMANY GMBH, 46049 OBERHAUSEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014008952

Country of ref document: DE

Representative=s name: HASELTINE LAKE KEMPNER LLP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014008952

Country of ref document: DE

Representative=s name: HASELTINE LAKE LLP, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: IMERTECH SAS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014008952

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190129

Year of fee payment: 6

Ref country code: FR

Payment date: 20190125

Year of fee payment: 6

Ref country code: IT

Payment date: 20190123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190103

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1021217

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014008952

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725