EP2938709A1 - Composition combustible comprenant un fioul lourd et un produit issu de la biomasse - Google Patents

Composition combustible comprenant un fioul lourd et un produit issu de la biomasse

Info

Publication number
EP2938709A1
EP2938709A1 EP13820842.6A EP13820842A EP2938709A1 EP 2938709 A1 EP2938709 A1 EP 2938709A1 EP 13820842 A EP13820842 A EP 13820842A EP 2938709 A1 EP2938709 A1 EP 2938709A1
Authority
EP
European Patent Office
Prior art keywords
fuel
composition
heavy fuel
weight
heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13820842.6A
Other languages
German (de)
English (en)
Other versions
EP2938709B1 (fr
Inventor
Bernard Manon
Patrick HAVIL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Publication of EP2938709A1 publication Critical patent/EP2938709A1/fr
Application granted granted Critical
Publication of EP2938709B1 publication Critical patent/EP2938709B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/06Dewatering or demulsification of hydrocarbon oils with mechanical means, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel

Definitions

  • the present invention relates to a fuel composition
  • a fuel composition comprising a heavy fuel oil and a product derived from biomass.
  • Heavy fuel oils are commercial high boiling hydrocarbons, relatively rich in heteroatoms such as sulfur or nitrogen and metals. Heavy fuel oils require, for the most part, to be stored hot so as to avoid any risk of solidification and to facilitate pumping and flow in pipelines. Commercial heavy fuel oils must comply with ASTM D396-98.
  • heavy fuel oils are formulated by assembling different bases from petroleum refining.
  • heavy fuel oil is blended with lighter cuts such as distillates or desulphurized cuts, for example ARDS effluent ("Atmospheric Residue").
  • ARDS effluent Atmospheric Residue
  • DeSulfurization which have a greater added value, which the formulator seeks to avoid.
  • heavy fuel oils resulting from the assembly of different bases must be sufficiently stable over time. The instability can be materialized for example by an increase in the viscosity or by the sedimentation of certain products. It is therefore necessary to carry out stability tests during any new formulation of heavy fuel oil.
  • the refining industry tends to decrease the production of heavy fuel oil, due to declining demand. This decrease is related to the shift to alternative energy sources by customers, particularly natural gas, as well as environmental constraints that tend to limit the amount of sulfur present in heavy fuels, sulfur is virtually absent from commercial natural gas. Reducing the amount of sulfur in heavy fuels requires refining investments and running costs that make this purification step often economically unsustainable.
  • the heavy fuel oil generally needs to be stored at a temperature of 50 ° C to make it pumpable. A decrease in storage temperature would improve overall energy efficiency.
  • the neutralization pastes can advantageously be used, and they essentially comprise base neutralized fatty acids, and come directly from the saponification of a vegetable or animal oil.
  • these oils mention may be made of, but not limited to, rapeseed, soya, sunflower, peanut and olive oil.
  • the neutralization pastes may contain, depending on their origin and the quality of the saponification, traces of phospholipids or unreacted mono-, di- or tri-glycerides.
  • the fatty acids have carbon chains Ci2-C2 4, preferably C16-C20 or C16-C18 better.
  • the use as a fuel therefore requires the implementation of effective methods of removing this water and other unwanted solids or viscous liquid residues.
  • the invention therefore relates to a process for preparing a final fuel composition comprising a neutralization paste composition and a heavy fuel, comprising the following steps of:
  • the implementation of the method also allows the effective removal of suspended solid residues, such as sludge, heavy metals and others, frequently present in such fuels.
  • the centrifugation step has the advantage of simplified implementation, avoiding resorting to complex chemical separation methods, such as distillation, which can be restrictive in terms of unwanted precautions and corrosion, and expensive.
  • the final fuel composition which represents the oily organic phase, after centrifugation, can advantageously be used as a fuel in installations referred to under items 2910A and 2910B relating to facilities classified for the protection of the environment (Order of 25 / 07/97 on general requirements for classified environmental protection installations subject to declaration under heading No. 2910: Combustion).
  • Item 2910A is for facilities that use commercial fuels with known characteristics, such as gas, coal and biomass.
  • Item 2910B refers to fuels not classified as waste and not included in 2910A, which fuels are by-products of the refining or petrochemical industry, such as High Viscosity Fuel (HVC) and oil, with characteristics close to those of commercial fuels, in particular as regards the emissions induced by their combustion.
  • HVC High Viscosity Fuel
  • the CHV is a solid fuel at room temperature, liquid at the temperature of use, consisting of a mixture of hydrocarbon molecules, similar to those found in heavy fuel oils. Sulfur and metal contents are essentially related to the nature of the crude oils used in their production.
  • the heavy fuel can be chosen from the group consisting of FCC slurry (of known terminology), High Viscosity Fuel and heavy fuel oils.
  • the heavy fuel may be an oily residue of refining, for example "slops" (recovery products).
  • the heavy fuel oil in the context of the invention may be heavy fuel oil comprising a mixture of asphaltenes peptized with resins, such as maltenes, in suspension in an oil.
  • asphaltenes are, in general, one of the main sources of carbon unburned production (asphaltene content of 2 to 8%).
  • Other parameters of heavy fuel oil also include the possible formation of unburnt carbonaceous: a content of Conradson residue of between 6% and 15%, or an imbalance of the ratio between Conradson carbon and metals.
  • Such heavy fuel oils may also be those whose sulfur content is ⁇ 1% by weight (heavy fuel oil STELs: Very Low Sulfur Content) or comprises a sulfur content ⁇ 0.55% by weight (heavy fuel oil TTBTS: Very Very Low Sulfur Content), which may further comprise one or a plurality of additives, such as activators or combustion additives.
  • a combustion additive may comprise surfactants. Such compounds are known and commercially available.
  • a combustion additive comprising a mixture of Fe, Ca and / or Ce oxide derivatives in a hydrocarbon solvent, such as apolar hydrocarbon solvents, is the most preferred.
  • Such an additive is preferably present in a content of between 0.020 and 0.030%.
  • An example is the Octapower CA2200 product provided by the Innospec Company.
  • heavy fuel oils are those mentioned above and can be very fluid to reduce NOx and dust emissions.
  • a preferred example of heavy fuel oil is that comprising 50% -60% by weight of CHV and 50% -40% of FCC slurry.
  • the High Viscosity Fuel may be high sulfur content ( ⁇ 3.5% by weight - HTS) or STEL.
  • the above heavy fuels can be obtained from the Total Refining Marketing Company, and the various physico-chemical properties and the contents of various products of such heavy fuels are readily available, in particular on the said company's website.
  • the heavy fuel may be a solid heavy fuel, such as sloops, dewatered and hydrocarbon polluted soil residues, coke, coal and combustion soot.
  • the proportion of the neutralization paste composition in the final fuel composition is not limited, and may preferably be between 10% and 80% by weight, advantageously between 30% and 80% by weight, in particular between 50% by weight. and 75% by weight.
  • the advantage of using such a fuel is particularly related to its PCI (Lower Calorific Value) of 7800 kcal / kg, which can vary according to the proportion of water present in said neutralization paste, and its low production cost and exploitation.
  • PCI Plant Calorific Value
  • the centrifugation step (step b)) may advantageously be a three-phase centrifugation, which provides the best results in terms of water removal.
  • the centrifugation step may itself be a combination of steps, in particular comprising a first diphasic type centrifugation step, which makes it possible to separate the suspended matter in the form of sludges containing a minimum of hydrocarbons, coupled in a second three-phase centrifugation step, which separates the recyclable hydrocarbon phase, the purified aqueous phase and the residual suspended solids from the first centrifugation.
  • This step can be implemented by any appropriate device known and commercially available.
  • centrifugation can be implemented with speeds of 4000 - 6000 rpm.
  • the duration of the centrifugation depends on the nature of the species to be separated, their partition coefficient, the difference in density between the aqueous phase, the oily phase and the particles, the particle size, the surface tension of the species to separate, from the temperature, the speed of centrifugation.
  • the separation time is therefore adapted to the case by those skilled in the art by conventional means of measurement and control.
  • the process may comprise, after step a) and before step b), a heating step up to temperatures advantageously of 60 ° C. and 90 ° C. in order to promote the thermodynamic aspects of the centrifugation, in particular by reducing the the viscosity of the mixture, and to decrease the surface tension.
  • the temperature may even be between 100 ° C. and 220 ° C.
  • the method may comprise after step b), a filtration step to remove any solid residues in suspension that would not have been removed by the centrifugation step.
  • Filtration is usually carried out on filters of 400 to 600 ⁇ .
  • the method may further advantageously comprise, prior to step a) of mixing, a step of adding an acid to the neutralization paste composition, followed by a stirring step.
  • the best results are obtained when the acid is present at a content of between 0.2% and 10%, in particular between 3% and 6% by weight relative to the total weight of the neutralization paste composition.
  • the acid must be able to ensure its functionality to release water from the organic phase of the neutralization paste.
  • the acid is very advantageously an organic or inorganic acid or their mixture of concentration sufficient to perform this operation. It is thus preferable that the acid is a strong inorganic acid, such as sulfuric acid, hydrochloric acid, phosphoric, of concentration greater than or equal to 25%. Sulfuric acid is preferred.
  • a stirring step is carried out, which can be carried out by any known means, both during a pilot scale and an industrial implementation.
  • the duration of the agitation is variable and generally depends on the nature of the pulp of the neutralization. Stirring is usually carried out for periods of a few minutes, such as 3-10 min, or even longer than 10 min, to reach as needed 10 to 30 min or 30-60 min.
  • This phase may contain between 1% and 2% by weight of water;
  • An acidic aqueous phase comprising from 45 to 55% by weight of water originating from the neutralization paste and the added acid, relative to the total weight of neutralization paste and acid. Its pH is usually between 2 and 3.
  • This intermediate layer may represent between 1% and 10% by weight relative to the total weight.
  • the increase in the volume of acid present in the reaction medium is in favor of a decrease in the intermediate phase, which increases the weight percentage of the oily phase, and a mass gain of a few percent, advantageously of 1%, is observed. at 5%.
  • the process may comprise an acid addition step, as performed above, very advantageously carried out after step a) and before step b), that is to say on the dough mixture neutralization and heavy fuel.
  • This embodiment is the most preferred because it allows a better release of water to the aqueous phase, and the presence of water in the final fuel composition is therefore advantageously between 1% and 0.1%, or even better, between 0.8 and 0.1%. Such a residual water content promotes the combustion properties of the final composition.
  • the Applicant has observed that the residual water content above is even lower than the mixture from step a) contains more heavy fuel. Without wishing to be bound by any theory, this would be explained by the fact that the increasing proportion of the heavy fuel content in the mixture promotes the lipophilic nature of the mixture and the passage of water from the organic phase to the aqueous phase of the mixture. the final fuel composition.
  • the final fuel compositions may be preferably used in various industrial fields, such as in the cement, sugar, glass, paper and heating industry, without being limiting.
  • the invention also relates to a fuel composition
  • a fuel composition comprising a mixture of a neutralization paste and a heavy fuel, wherein the water content is less than 3% by weight,
  • the water content may be less than 1%, in particular between 0.5% and 0.1% by weight.
  • the fuel composition contains traces of suspended solid residues, such as sludges, asphaltenes, metals, frequently present in such fuels in variable proportions which correspond substantially to the average of their incorporation from of each of the feedstocks used in the present process modulo the sediments separated during the step of separation of water and sediments and losses.
  • Such a final fuel composition can be obtained by carrying out the above process.
  • This fuel composition has the advantages as detailed above.
  • Heavy fuel oil TBTS has a mass content of sulfur ⁇ 1%. Such heavy fuel oil has been previously described and is available from the Total Refining Marketing Company.
  • the mixture thus obtained is heated to a temperature of 80 ° C., then subjected to centrifugation for 20 minutes at 5000 rpm and filtration on 500 ⁇ filters. An amount of this mixture is taken for analysis (Sample A).
  • sample B A sample of heavy fuel SIDS (Sample B) and a sample of neutralization paste composition (Sample C) undergo the same analyzes after centrifugation.
  • Ash content ASTM D482;
  • Chlorine content calcination
  • PCB Content Gas Chromatography (GC) Heavy Metals: ICP;
  • the heavy fuel oil TBTS is that described in Example 1.
  • Example D A sample is taken (Sample D) and different analyzes are performed to characterize it (Table 3).
  • Table 4 presents the results in terms of combustion yields and gas emissions, depending on the variation of certain parameters (a, b, c). Table 4
  • the fuel is pumped into a charging tank and sent into a loop with a return to the charging tank, and passes into a heater to bring it to the injection temperature in the burner. There is no problem with the combustion. The flame is stable in all cases.
  • the sample C is considered for acidification with an increasing content of concentrated sulfuric acid (50%).
  • sample E 97 ml of sample C are mixed with 3 ml of sulfuric acid (Sample E) and 95 ml of sample C with 5 ml of sulfuric acid (Sample F). After mixing, three-phase centrifugation is carried out for 10 minutes, and the following is observed.
  • Sample E 97 ml of sample C are mixed with 3 ml of sulfuric acid (Sample E) and 95 ml of sample C with 5 ml of sulfuric acid (Sample F). After mixing, three-phase centrifugation is carried out for 10 minutes, and the following is observed.
  • Oily phase 45% by weight and containing 2% of water. The oil is clear and constitutes the final fuel composition.
  • Oily phase 50% by weight and containing 1% water. The oil is clear and constitutes the final fuel composition.
  • Sample A is considered for acidification with an increasing content of 95% concentrated sulfuric acid.
  • sample C 97 ml of sample C are mixed with 3 ml of sulfuric acid (Sample G) and 87 ml of sample C with 3 ml of sulfuric acid and 10 ml of water (Sample H). After mixing, three-phase centrifugation is carried out for 10 minutes, and the following is observed.
  • Oily phase 86% by weight and containing 3% of water. The oil is clear and constitutes the final fuel composition.
  • Oily phase containing 2% water.
  • the oil is clear and constitutes the final fuel composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne un procédé de préparation d'une composition combustible finale comprenant une composition de pâte de neutralisation et un combustible lourd, comprenant les étapes de mélange de la composition de pâte de neutralisation et du combustible lourd en des proportions prédéterminées, et de centrifugation du mélange résultant, pour l'obtention de la composition combustible finale.

Description

COMPOSITION COMBUSTIBLE COMPRENANT UN FIOUL LOURD ET UN PRODUIT ISSU DE LA BIOMASSE
La présente invention concerne une composition combustible comprenant un fioul lourd et un produit issu de la biomasse.
Les fiouls lourds sont des hydrocarbures commerciaux à haut point d'ébullition, relativement riches en hétéroatomes comme le soufre ou l'azote et en métaux. Les fiouls lourds nécessitent, pour la plupart d'entre eux, d'être stockés à chaud afin d'éviter tout risque de solidification et afin d'en faciliter le pompage et l'écoulement dans des conduites d'acheminement. Les fiouls lourds commerciaux doivent être conformes à la norme ASTM D396-98.
Habituellement, les fiouls lourds sont formulés par assemblage de différentes bases issues du raffinage de pétrole. Dans certains cas, lorsque les spécifications commerciales sont difficiles à atteindre avec les bases utilisées habituellement pour la formulation, le fioul lourd est mélangé avec des coupes plus légères comme des distillais ou des coupes désulfurées, par exemple un effluent d'ARDS (« Atmospheric Residue DeSulfurization »), qui ont une valeur ajoutée plus importante, ce que le formulateur cherche à éviter. Par ailleurs, les fiouls lourds résultant de l'assemblage de différentes bases doivent être suffisamment stables dans le temps. L'instabilité peut être matérialisée par exemple par une augmentation de la viscosité ou par la sédimentation de certains produits. Il est donc nécessaire d'effectuer des essais de stabilité lors de toute nouvelle formulation de fioul lourd.
Il existe donc un besoin pour obtenir des fiouls lourds mieux adaptés aux contraintes environnementales. La demanderesse n'a pas connaissance de la commercialisation d'un combustible lourd liquide dont le coût du kWh soit comparable a celui du gaz naturel. De plus, les systèmes de post-traitement de fumées pour respecter les contraintes environnementales ont un coût élevé.
Une autre exigence liée aux combustibles lourds est leur utilisation dans des installations de type 2910 A et 2910 B selon la nomenclature ICPE.
L'industrie du raffinage, au moins en Europe de l'ouest, a tendance à diminuer la production de fioul lourd, en raison de la baisse de la demande. Cette baisse est liée au passage à des sources d'énergie alternatives par les clients, notamment du gaz naturel, ainsi qu'aux contraintes environnementales qui tendent à limiter la quantité de soufre présent dans les combustibles lourds, le soufre étant quasiment absent du gaz naturel commercial. La diminution de la quantité de soufre présent dans les combustibles lourds nécessite des investissements en raffinage et des frais de fonctionnement qui rendent cette étape de purification souvent non viable économiquement. De plus, le fioul lourd nécessite généralement d'être stocké à une température voisine de 50°C afin de le rendre pompable. Une diminution de la température de stockage permettrait d'améliorer le rendement énergétique global.
Il y a donc un besoin de combustibles, liquides ou solides, à bas coût, élaborés à partir de biomasse, lesquels peuvent être incorporés à des compositions de fioul lourds, afin que ces dernières puissent être encore davantage adaptées aux contraintes environnementales.
Parmi les combustibles issus de la biomasse, les pâtes de neutralisation peuvent être avantageusement utilisées, et elles comprennent essentiellement des acides gras neutralisés par une base, et proviennent directement de la saponification d'une huile végétale ou animale. Parmi ces huiles, on peut citer, sans être limitatif, l'huile de colza, de soja, de tournesol et d'arachide et d'olive. En plus des acides gras neutralisés par une base, les pâtes de neutralisation peuvent contenir, selon leur origine et la qualité de la saponification, des traces de phospholipides ou de mono-, di- ou tri-glycérides n'ayant pas réagi. Habituellement, les acides gras ont des chaînes carbonées en Ci2-C24, de préférence C16-C20 ou mieux C16-C18. Des avantages associés à de telles pâtes de neutralisation résident, d'une part, sur leur bas coût de mise en œuvre, et, d'autre part, dans l'absence de substances toxiques indésirables, telles que les pesticides, les aflatoxines, les métaux lourds, les dioxines, les PCB et les nitrites.
Toutefois, une des difficultés majeures de ces pâtes de neutralisation réside dans leur teneur en eau qui peut être rédhibitoire quant à leur utilisation en tant que combustible. En effet, de telles pâtes peuvent contenir des proportions importantes d'eau provenant de la réaction de saponification, typiquement, selon les cas, d'au moins 50% en poids. Une autre difficulté est liée au fait qu'il s'agit selon les cas d'émulsions, qu'il convient de traiter de façon spécifique.
L'utilisation en tant que combustible nécessite par conséquent de mettre en œuvre des méthodes d'élimination effective de cette eau et autres résidus solides ou liquides visqueux indésirables. L'invention concerne donc un procédé de préparation d'une composition combustible finale comprenant une composition de pâte de neutralisation et un combustible lourd, comprenant les étapes suivantes de :
a) Mélange de la composition de pâte de neutralisation et du combustible lourd en des proportions prédéterminées; et
b) Centrifugation du mélange résultant, pour l'obtention de la composition combustible finale. Ainsi, grâce à cette opération de centrifugation, il est possible d'obtenir une composition combustible finale, présentant très avantageusement une teneur en eau inférieure à 3%, voire inférieure à 1 %, en particulier comprise entre 0,5% et 0,1 % en poids.
Outre l'élimination d'eau, récupérée dans une phase aqueuse, la mise en œuvre du procédé permet également l'élimination effective de résidus solides en suspension, tels que les boues, les métaux lourds et autres, fréquemment présents dans de tels combustibles.
L'étape de centrifugation présente l'avantage d'une mise en oeuvre simplifiée, en évitant de recourir à des méthodes de séparation chimiques complexes, telles que distillation, lesquelles peuvent être contraignantes en termes de précautions et de corrosion indésirables, et onéreuses.
Par conséquent, la composition combustible finale, qui représente la phase organique, huileuse, après centrifugation, peut être avantageusement utilisée comme combustible dans des installations visées sous les rubriques 2910A et 2910B relatives aux installations classées pour la protection de l'environnement (Arrêté du 25/07/97 relatif aux prescriptions générales applicables aux installations classées pour la protection de l'environnement soumises à déclaration sous la rubrique n° 2910 : Combustion).
La rubrique 2910A vise les installations utilisant des combustibles commerciaux aux caractéristiques connues, tels que gaz, charbon et biomasse.
La rubrique 2910B vise les combustibles non classés comme déchets et non visés à la rubrique 2910A, lesquels combustibles sont des sous-produits issus de l'industrie du raffinage ou de la pétrochimie, tel que le Combustible Haute Viscosité (CHV) et les cokes de pétrole, présentant des caractéristiques proches de celles des combustibles commerciaux, en particulier pour ce qui concerne les émissions induites par leur combustion. Le CHV est un combustible solide à la température ambiante, liquide à la température d'emploi, constitué d'un mélange de molécules hydrocarbonées, analogues à celles que l'on trouve dans les fiouls lourds. Les teneurs en soufre et en métaux sont essentiellement liées à la nature des pétroles bruts utilisés pour leur élaboration.
Dans le cadre de l'invention, le combustible lourd peut être choisi dans le groupe constitué par les slurry de FCC (de terminologie connue), le Combustible Haute Viscosité et les fiouls lourds. Alternativement, le combustible lourd peut être un résidu huileux de raffinage, par exemple des « slops » (produits de récupération).
Le fioul lourd dans le contexte de l'invention peut être fioul lourd comprenant un mélange d'asphaltènes peptisés par des résines, tels que les maltènes, en suspension dans une huile. Ces asphaltènes sont, en général, une des sources principales de la production d'imbrûlés carbonés (teneur en asphaltènes de 2 à 8 %). D'autres paramètres du fioul lourd entrent aussi dans la formation possible d'imbrûlés carbonés : une teneur en résidu Conradson comprise entre 6 % et 15 %, ou encore un déséquilibre du rapport entre carbone Conradson et métaux. De tels fiouls lourds peuvent également être ceux dont le taux de soufre est < 1 % en poids (fioul lourd TBTS : Très Basse Teneur en Soufre) ou comprenant une teneur en soufre < 0,55% en poids (fioul lourd TTBTS : Très Très Basse Teneur en Soufre), lequel peut en outre comprendre un ou une pluralité d'additifs, tel que des activateurs ou additifs de combustion. Un additif de combustion peut comprendre des tensio-actifs. De tels composés sont connus et disponibles dans le commerce. Un additif de combustion comprenant un mélange de dérivés d'oxydes de Fe, Ca et/ou Ce dans un solvant hydrocarboné, tels que des solvants à base d'hydrocarbures apolaires, est le plus préféré. Un tel additif est de préférence présent en une teneur comprise entre 0,020 et 0,030%. Un exemple est le produit Octapower CA2200 fourni par la Société Innospec.
D'autres exemples de fiouls lourds sont ceux cités précédemment et peuvent être très fluides pour réduire les émissions de NOx et de poussières.
Il peut également s'agir de fiouls lourds domestiques classiques, connus de l'homme du métier.
Un exemple préféré de fioul lourd est celui comprenant de 50%-60% en poids de CHV et de 50%-40% de slurry de FCC.
Les fiouls lourds commerciaux doivent très avantageusement être conformes à la norme ASTM D396-98. Le Combustible Haute Viscosité peut être à haute teneur en soufre (< 3,5 % en poids - HTS) ou TBTS.
On peut se procurer les combustibles lourds ci-dessus auprès de la Société Total Raffinage Marketing, et les différentes propriétés physico-chimiques et les teneurs en divers produits de tels combustibles lourds sont aisément disponibles notamment sur le site internet de ladite Société.
Dans le contexte de l'invention, le combustible lourd peut être un combustible lourd solide, tel que les boues de « sloops », les résidus de terre déshydratée et polluée par des hydrocarbures, le coke, le charbon et les suies de combustion.
La proportion de la composition de pâte de neutralisation dans la composition combustible finale n'est pas limitée, et peut être de préférence comprise entre 10% et 80% en poids, avantageusement entre 30% et 80% en poids, en particulier entre 50% et 75% en poids.
L'intérêt d'utiliser un tel combustible est notamment lié à son PCI (Pouvoir Calorifique Inférieur) voisin de 7800 kcal/kg, qui peut varier selon la proportion d'eau présente dans ladite pâte de neutralisation, et à son faible coût de production et d'exploitation.
L'étape de centrifugation (étape b)) peut avantageusement être une centrifugation triphasique, laquelle fournit les meilleurs résultats en termes d'élimination de l'eau.
Toutefois, l'étape de centrifugation peut elle-même être une combinaison d'étapes, en particulier comprendre une première étape de centrifugation de type diphasique, qui permet de séparer les matières en suspension sous forme de boues contenant un minimum d'hydrocarbures, couplée à une deuxième étape de centrifugation triphasique, laquelle sépare la phase hydrocarbure recyclable, la phase aqueuse épurée et les matières en suspension résiduelles de la première centrifugation. Cette étape peut être mise en œuvre par tous dispositifs appropriés, connus et disponibles dans le commerce. Classiquement, la centrifugation peut être mise en œuvre avec des vitesse de 4000 - 6000 t/m in. La durée de la centrifugation dépend de la nature des espèces à séparer, de leur coefficient de partage, de la différence de densité entre la phase aqueuse, la phase huileuse et les particules, de la taille des particules, de la tension de surface des espèces à séparer, de la température, de la vitesse de centrifugation. La durée de séparation est donc adaptée au cas par l'homme de l'art par des moyens conventionnels de mesure et contrôle.
Le procédé peut comprendre après l'étape a) et avant l'étape b), une étape de chauffage jusqu'à des températures avantageusement comprises 60°C et 90°C afin de favoriser les aspects thermodynamiques de la centrifugation, notamment par diminution de la viscosité du mélange, et à diminuer la tension de surface. Selon un mode de réalisation, la température peut même être comprise entre 100°C et 220°C. Le procédé peut comprendre après l'étape b), une étape de filtration afin d'éliminer les éventuels résidus solides en suspension qui n'auraient pas été éliminés par l'étape de centrifugation.
La filtration est habituellement effectuée sur des filtres de 400 à 600 μιτι. Le procédé peut en outre avantageusement comprendre, préalablement à l'étape a) de mélange, une étape d'ajout d'un acide dans la composition de pâte de neutralisation, suivie d'une étape d'agitation.
En effet, la demanderesse a montré qu'un tel ajout permettait d'augmenter le rendement de séparation d'eau lors de la mise en œuvre de l'étape b), car l'acide favorise le relargage d'eau à partir de la composition de pâte de neutralisation vers une phase aqueuse acide ainsi engendrée, et d'améliorer les propriétés physico-chimiques de ladite composition, en particulier par amélioration de la pompabilité de la composition et par réduction de l'adhérence aux parois.
Avantageusement, les meilleurs résultats sont obtenus lorsque l'acide est présent à une teneur comprise entre 0,2% et 10%, en particulier entre 3% et 6% en poids par rapport au poids total de la composition de pâte de neutralisation.
L'acide doit pouvoir assurer sa fonctionnalité de relargage d'eau à partir de la phase organique de la pâte de neutralisation. L'acide est très avantageusement un acide organique ou inorganique ou leur mélange de concentration suffisante pour effectuer cette opération. Il est ainsi préférable que l'acide soit un acide inorganique fort, tel que l'acide sulfurique, chlorhydrique, phosphorique, de concentration supérieure ou égale à 25%. L'acide sulfurique est préféré.
Une fois l'ajout d'acide effectué, on procède à une étape d'agitation, laquelle peut être effectuée par tous moyens connus, aussi bien lors d'une mise en œuvre à l'échelle pilote qu'industrielle. La durée de l'agitation est variable et dépend généralement de la nature pâte de la neutralisation. L'agitation est habituellement mise en œuvre pendant des durées de quelques minutes, telles que 3-10 min, ou bien encore supérieures à 10 min, pour atteindre selon les besoins 10 à 30 min, voire 30-60min.
Lorsque l'on met en œuvre une telle étape, en combinaison avec l'étape b) de centrifugation, on observe généralement la formation de trois phases, lesquelles sont les suivantes :
- Une phase huileuse légère, surnageante, qui est limpide, comprenant de 45 à 55% en poids d'huile par rapport au poids total pâte de neutralisation et acide. Cette phase peut contenir entre 1 % et 2% en poids d'eau ;
- Une phase aqueuse acide comprenant de 45 à 55% en poids d'eau provenant de la pâte de neutralisation et de l'acide ajouté, par rapport au poids total pâte de neutralisation et acide. Son pH est habituellement compris entre 2 et 3.
- Une phase intermédiaire, entre la phase organique et aqueuse acide, sous forme d'une pellicule, susceptible de comprendre des résidus de la pâte de neutralisation. Cette couche intermédiaire peut représenter entre 1 % et 10% en poids par rapport au poids total.
La somme en poids de toutes les phases fait 100%.
L'augmentation du volume d'acide présent dans le milieu réactionnel est en faveur d'une diminution de la phase intermédiaire, ce qui accroît le pourcentage massique de la phase huileuse, et on observe un gain massique de quelques pourcents, avantageusement de 1 % à 5%.
En variante, le procédé peut comprendre une étape d'ajout d'acide, comme réalisée ci-dessus, très avantageusement effectuée après l'étape a) et avant l'étape b), c'est-à-dire sur le mélange pâte de neutralisation et combustible lourd. Ce mode de réalisation est le plus préféré car il permet un meilleur relargage d'eau vers la phase aqueuse, et la présence d'eau dans la composition combustible finale est donc avantageusement comprise entre 1 % et 0,1 %, voire mieux, entre 0,8 et 0,1 %. Une telle teneur en eau résiduelle favorise les propriétés de combustion de la composition finale.
En outre, la Demanderesse a observé que la teneur en eau résiduelle ci- dessus est d'autant plus faible que le mélange issu de l'étape a) contient davantage de combustible lourd. Sans vouloir être lié par une quelconque théorie, ceci s'expliquerait par le fait que la teneur croissante en proportion du combustible lourd dans le mélange favorise le caractère lipophile du mélange et le passage de l'eau depuis la phase organique vers la phase aqueuse de la composition combustible finale.
Les compositions combustibles finales peuvent être de préférence utilisées dans divers domaines industriels, tels que dans l'industrie du ciment, du sucre, du verre, du papier et chauffage, sans être limitatif.
L'invention concerne également une composition combustible comprenant un mélange d'une pâte de neutralisation et d'un combustible lourd, dans laquelle la teneur en eau est inférieure à 3% en poids,
Selon des formes avantageuses, la teneur en eau peut être inférieure à 1 %, en particulier comprise entre 0,5% et 0,1 % en poids.
Outre la faible teneur en eau, la composition combustible contient des traces de résidus solides en suspension, tels que des boues, des asphaltènes, des métaux, fréquemment présents dans de tels combustibles dans des proportions variables qui correspondent sensiblement à la moyenne de leur incorporation issue de chacune des charges utilisées dans le présent procédé modulo les sédiments séparés lors de l'étape de séparation de l'eau et des sédiments et les pertes.
Une telle composition combustible finale est susceptible d'être obtenue par la mise en oeuvre du procédé ci-dessus.
Cette composition combustible présente les avantages tels que détaillés précédemment.
Les exemples qui suivent illustrent l'invention sans en limiter la portée. Exemple 1
On considère 100 litres d'un mélange 50/50 (p/p) de fioul lourd TBTS avec une composition de pâte de neutralisation qui a été préparée à partir d'huile de tournesol.
Le fioul lourd TBTS présente une teneur massique en soufre < 1 %. Un tel fioul lourd a été décrit précédemment et est disponible auprès de la Société Total Raffinage Marketing.
Les différentes caractéristiques de ce fioul lourd sont données au Tableau 1 .
Tableau 1
Le mélange ainsi obtenu est chauffé jusqu'à une température de 80°C, puis subit une centrifugation pendant 20 min à 5000 t/min, puis une filtration sur des filtres de 500 μιτι. On prélève une quantité de ce mélange pour analyse (Echantillon A).
Un échantillon de fioul lourd TBTS (Echantillon B) et un échantillon de composition de pâte de neutralisation (Echantillon C) subissent les mêmes analyses, après centrifugation.
Les résultats sont donnés au Tableau 2.
Tableau 2
Méthodes d'analyses
Teneure en eau : ASTMD 95 ou NF EN 3733 ;
Viscosité : NF EN ISO 3104 ;
Teneur en cendres : ASTM D482 ;
PCI : NFM 07030 ;
Teneur en chlore : calcination ;
Teneur en Soufre : NF EN ISO 8754 ou ASTM D4294 ; Teneur en Azote : ASTM D3228
Teneur PCB : Chromatographie phase gazeuse (CPG) Métaux lourds : ICP ;
Insolubles : NF M 07 063 Exemple 2
On considère 100 litres d'un mélange 75/25 (p/p) de fioul lourd TBTS avec une composition de pâte de neutralisation qui a été préparée à partir d'huile de tournesol.
Le fioul lourd TBTS est celui décrit à l'Exemple 1 .
On prélève un échantillon (Echantillon D) et on pratique différentes analyses en vue de le caractériser (Tableau 3).
Tableau 3
Des essais de combustion sont effectués avec l'échantillon D sur une chaudière classée 2910B (ICPE).
Le tableau 4 présente les résultats en termes de rendements de combustion et en émission de gaz, en fonction de la variation de certains paramètres (a, b, c). Tableau 4
HP= Haute Pression.
Le combustible est pompé dans un bac de charge et envoyé dans une boucle comportant un retour vers le bac de charge, et passe dans un réchauffeur pour l'amener à la température d'injection dans le brûleur. On n'observe aucun problème au niveau de la combustion. La flamme est stable dans tous les cas.
Exemple 3
On considère l'échantillon C pour acidification avec une teneur croissante en acide sulfurique concentré (50%).
Pour cela, on mélange 97 ml d'échantillon C avec 3 ml d'acide sulfurique (Echantillon E) et 95 ml d'échantillon C avec 5 ml d'acide sulfurique (Echantillon F). Après mélange, une centrifugation triphasique est mise en oeuvre pendant 10 min, et on observe ce qui suit. Echantillon E
- Phase huileuse : 45% en poids et contenant 2% d'eau. L'huile est limpide et constitue la composition combustible finale.
- Phase intermédiaire : 5% en poids, en majorité constituée de résidus de pâte de neutralisation.
- Phase aqueuse acide : 50% en poids, ayant pour valeur de pH = 3.
Echantillon F
- Phase huileuse : 50% en poids et contenant 1 % d'eau. L'huile est limpide et constitue la composition combustible finale.
- Phase intermédiaire : 2% en poids, en majorité constituée de résidus de pâte de neutralisation.
- Phase aqueuse acide : 48% en poids, ayant pour valeur de pH = 2.
Exemple 4
On considère l'échantillon A pour acidification avec une teneur croissante en acide sulfurique concentré à 95%.
Pour cela, on mélange 97 ml d'échantillon C avec 3 ml d'acide sulfurique (Echantillon G) et 87 ml d'échantillon C avec 3 ml d'acide sulfurique et 10 ml d'eau (Echantillon H). Après mélange, une centrifugation triphasique est mise en oeuvre pendant 10 min, et on observe ce qui suit.
Echantillon G
- Phase huileuse : 86% en poids et contenant 3% d'eau. L'huile est limpide et constitue la composition combustible finale.
- Phase intermédiaire : pas de présence visible de cette phase ;
- Phase aqueuse acide : 14% en poids, ayant pour valeur de pH = 2.
Echantillon H
- Phase huileuse contenant 2% d'eau. L'huile est limpide et constitue la composition combustible finale.
- Phase intermédiaire : moins importante que celle visible pour les Echantillons E et F, en majorité constituée de résidus de pâte de neutralisation.
- Phase aqueuse acide a pour valeur de pH = 3.

Claims

REVENDICATIONS
1 . Procédé de préparation d'une composition combustible finale comprenant une composition de pâte de neutralisation et un combustible lourd, comprenant les étapes suivantes de :
a) Mélange de la composition de pâte de neutralisation et du combustible lourd en des proportions prédéterminées; et
b) Centrifugation du mélange résultant, pour l'obtention de la composition combustible finale.
2. Procédé selon la revendication 1 , dans lequel le combustible est choisi dans le groupe constitué par le slurry de FCC, le Combustible Haute Viscosité et les fiouls lourds conformes à la norme ASTM D396-98.
3. Procédé selon la revendication 1 ou 2, dans lequel la proportion de la composition de pâte de neutralisation dans la composition combustible finale est comprise entre 10% et 80% en poids, avantageusement entre 30% et 80% en poids, en particulier entre 50% et 75% en poids.
4. Procédé selon l'une des revendications 1 à 3, dans lequel l'étape de centrifugation b) est une centrifugation triphasique.
5. Procédé selon la revendication 4, dans lequel l'étape b) comprend une première étape de centrifugation de type diphasique couplée à une deuxième étape de centrifugation triphasique.
6. Procédé selon l'une des revendications 1 à 5, comprenant en outre, préalablement à l'étape a) de mélange, une étape d'ajout d'un acide dans la composition de pâte de neutralisation, suivie d'une étape d'agitation.
7. Procédé selon l'une des revendications 1 à 5, comprenant une étape d'ajout d'acide effectuée après l'étape a) et avant l'étape b).
8. Composition combustible susceptible d'être obtenue par la mise en œuvre du procédé selon l'une des revendications 1 à 7, comprenant un mélange d'une pâte de neutralisation et d'un combustible lourd, dans laquelle la teneur en eau est inférieure à 3% en poids.
EP13820842.6A 2012-12-27 2013-12-20 Composition combustible comprenant un fioul lourd et un produit issu de la biomasse Not-in-force EP2938709B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262841A FR3000498B1 (fr) 2012-12-27 2012-12-27 Composition combustible comprenant un fioul lourd et un produit issu de la biomasse.
PCT/FR2013/053211 WO2014102492A1 (fr) 2012-12-27 2013-12-20 Composition combustible comprenant un fioul lourd et un produit issu de la biomasse

Publications (2)

Publication Number Publication Date
EP2938709A1 true EP2938709A1 (fr) 2015-11-04
EP2938709B1 EP2938709B1 (fr) 2017-02-08

Family

ID=48407637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13820842.6A Not-in-force EP2938709B1 (fr) 2012-12-27 2013-12-20 Composition combustible comprenant un fioul lourd et un produit issu de la biomasse

Country Status (5)

Country Link
EP (1) EP2938709B1 (fr)
ES (1) ES2618962T3 (fr)
FR (1) FR3000498B1 (fr)
PT (1) PT2938709T (fr)
WO (1) WO2014102492A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3038323B1 (fr) 2015-07-01 2019-05-17 Total Marketing Services Procede de preparation d'une huile acide combustible issue de l'acidification d'une pate de neutralisation d'origine vegetale et/ou animale.
FR3040709B1 (fr) * 2015-09-03 2019-06-28 Total Marketing Services Additif de lubrifiance pour carburant a faible teneur en soufre.
FR3053048B1 (fr) * 2016-06-28 2019-08-23 Total Marketing Services Composition combustible issue de la biomasse et son procede de preparation.
FR3075812B1 (fr) 2017-12-21 2020-06-05 Total Marketing Services Composition combustible issue de la biomasse, utilisation d'une composition issue de la biomasse comme combustible et procede de preparation.
FR3085685A1 (fr) 2018-09-10 2020-03-13 Total Marketing Services Procede de traitement de poix d'huile de tall, composition combustible issue de la biomasse, utilisation d'une composition issue de la biomasse comme combustible et procede de preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198787A (en) * 1981-05-29 1982-12-06 Kureha Chem Ind Co Ltd Preparation of raw material for preparing carbon material
SE0401291D0 (sv) * 2004-05-17 2004-05-17 Systemseparation Sweden Ab Process for the purification of spent process oil
US20060225341A1 (en) * 2004-12-20 2006-10-12 Rodolfo Rohr Production of biodiesel
AP2014007808A0 (en) * 2011-12-28 2014-07-31 Total Marketing Services Fuel composition comprising a heavy fuel oil and biomass product

Also Published As

Publication number Publication date
PT2938709T (pt) 2017-03-17
FR3000498A1 (fr) 2014-07-04
EP2938709B1 (fr) 2017-02-08
WO2014102492A1 (fr) 2014-07-03
FR3000498B1 (fr) 2015-03-13
ES2618962T3 (es) 2017-06-22

Similar Documents

Publication Publication Date Title
EP2938709B1 (fr) Composition combustible comprenant un fioul lourd et un produit issu de la biomasse
EP2231728B1 (fr) Utilisation de copolymères d&#39;éthylène et/ou de propylène et d&#39;esters vinyliques modifiés par greffage comme additifs bifonctionnels de lubrifiance et de tenue à froid pour hydrocarbures liquides
EP0225199B1 (fr) Procédé permettant d&#39;homogénéiser un mélange de liquides résiduaires aqueux et de combustibles liquides ou solides
CA2765245C (fr) Terpolymere ethylene/acetate de vinyle/esters insatures comme additif ameliorant la tenue a froid des hydrocarbures liquides comme les distillats moyens et les carburants ou combustibles
FR2735785A1 (fr) Procede de raffinage d&#39;huiles usagees par traitement alcalin
FR2935709A1 (fr) Procede de traitement de dechets gras
EP2798046A1 (fr) Composition combustible comprenant un fioul lourd et un produit issu de la biomasse
EP3263675B1 (fr) Composition combustible issue de la biomasse, son procédé de préparation et de combustion
FR2855525A1 (fr) Combustible emulsionne eau/hydrocarbures, sa preparation et ses utilisations
FR2842820A1 (fr) Combustible emulsionne eau/hydrocarbures, sa preparation et ses utilisations
FR2594839A1 (fr) Procede de fractionnement d&#39;asphaltes solides
EP3344739A1 (fr) Additif de lubrifiance pour carburant a faible teneur en soufre.
EP4065670B1 (fr) Additif de lubrifiance pour carburant
EP3112444B1 (fr) Procédé de préparation d&#39;une huile acide combustible issue de l&#39;acidification d&#39;une pâté de neutralisation d&#39;origine végétale et/ou animale
LU85431A1 (fr) Procede de liaison de composes de vanadium
EP0086141B1 (fr) Procédé de préparation de complexes organo-solubles du calcium, les complexes obtenus et leur utilisation, notamment comme additifs pour améliorer la combustion des gazoles et des fuel-oils
FR3039162A1 (fr) Purification d&#39;huile et preparation d&#39;additif anti-ornierage
FR2875810A1 (fr) Combustible liquide et procede de production d&#39;un tel combustible
EP3500655A1 (fr) Procede de fabrication d&#39;un additif de lubrifiance pour carburant a faible teneur en soufre
BE371346A (fr)
OA16942A (fr) Composition combustible comprenant un fioul lourd et un produit issu de la biomasse.
FR2985267A1 (fr) Composition combustible comprenant un fioul lourd et un produit issu de la biomasse.
FR2827871A1 (fr) Procede de traitement des dechets hydrocarbures pateux ou solides par emulsification pour la production d&#39;un fuel
FR2616795A1 (fr) Procede ameliore de production de chaleur par combustion d&#39;un fuel lourd
BE559003A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 33/06 20060101ALI20160429BHEP

Ipc: C10L 1/04 20060101AFI20160429BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160617

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

INTG Intention to grant announced

Effective date: 20161124

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 866872

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2938709

Country of ref document: PT

Date of ref document: 20170317

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20170310

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013017395

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2618962

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170622

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 866872

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170509

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013017395

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20171109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171120

Year of fee payment: 5

Ref country code: FR

Payment date: 20171121

Year of fee payment: 5

Ref country code: NL

Payment date: 20171124

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20171204

Year of fee payment: 5

Ref country code: IT

Payment date: 20171120

Year of fee payment: 5

Ref country code: CH

Payment date: 20171124

Year of fee payment: 5

Ref country code: BE

Payment date: 20171122

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180103

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171220

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013017395

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181220

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608