EP2935161A1 - Procédé et unité de production d'oléfines - Google Patents
Procédé et unité de production d'oléfinesInfo
- Publication number
- EP2935161A1 EP2935161A1 EP13799302.8A EP13799302A EP2935161A1 EP 2935161 A1 EP2935161 A1 EP 2935161A1 EP 13799302 A EP13799302 A EP 13799302A EP 2935161 A1 EP2935161 A1 EP 2935161A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- methanol
- fraction
- distillation
- stream containing
- separating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 58
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 255
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims abstract description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000004821 distillation Methods 0.000 claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 238000000746 purification Methods 0.000 claims description 20
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 238000000895 extractive distillation Methods 0.000 claims description 7
- 239000000047 product Substances 0.000 description 23
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 19
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 9
- 241000196324 Embryophyta Species 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000727 fraction Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- DQYBDCGIPTYXML-UHFFFAOYSA-N ethoxyethane;hydrate Chemical compound O.CCOCC DQYBDCGIPTYXML-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229940057952 methanol Drugs 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/04—Purification; Separation; Use of additives by distillation
- C07C7/05—Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
- C07C7/08—Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/009—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/143—Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/34—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
- B01D3/40—Extractive distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/20—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
Definitions
- the present invention relates to the production of olefins, in particular propylene.
- Propene (C3H6) is one of the most important starting substances of the chemical industry.
- the demand for the base material propylene is increasing worldwide, wherein propylene just like ethylene mostly is produced from petroleum in a steam cracker in a ratio dependent on the process and the raw materials.
- the oxygenates are separated from the water contained in the stream, wherein the oxygenate-containing stream subsequently can be recirculated into the reactor.
- This concept has the disadvantage that directly subsequent to the reactor quenching is effected, i.e. the product stream coming from the reactor is cooled by adding water. The water content in the product stream is distinctly increased thereby.
- the high water contents which are present in both columns due to the proposed separation concept lead to the fact that here as well very large amounts of energy are required for the purification, so that with an energy balance over the entire process the savings in the field of methanol purification hardly produce any effect or not at all.
- the process for producing olefins from oxygenates comprises the following steps:
- a partial stream of the methanol used as educt for the catalytic conversion is branched off and introduced into the distillation for separating a stream containing the C 4+ fraction and dimethyl ether (process step (iii)).
- This interconnection provides for both separating C 4 components from water and in parallel withdrawing a very pure methanol at one side draw in one and the same column, which methanol then is used as extracting agent in process step (ii). Due to this combination, the otherwise necessary purification of the methanol by three columns can be omitted, as a part of the methanol purification can also be performed in step (iii). In addition, the use of an externally supplied, possibly contaminated auxiliary substance for the extraction can be omitted.
- the separated aqueous stream containing methanol from process step (iii) is subjected to a purification, so that the methanol and the water fraction are separated from each other.
- the purified methanol is supplied to the heterogeneously catalyzed conversion in the reactor, whereby the conversion can be increased.
- a further increase of the yield of the desired product propylene is obtained in that the stream containing C 4+ and dimethyl ether from process step (iii) likewise is supplied to the heterogeneously catalyzed conversion.
- the dimethyl ether is at least partly converted to olefins, while the longer-chain olefins for the most part are converted to propylene.
- the process according to the invention can be carried out with methanol with a very high degree of purity, preferably degree AA, but is particularly effective when as educt methanol with a degree of purity of less than 99.8 wt-% (based on contained oxygenates, excluding the water content) is used, as the expensive methanol purification with a plurality of columns thus can be saved.
- a purification in only one distillation column usually will be effected, and the methanol then will directly be fed into the MTP reactor.
- the invention furthermore also comprises a plant with the feature of claim 10, which is suitable for carrying out the process with the features of claims 1 to 9.
- the plant for the production of olefins from oxygenates comprises a reactor for the heterogeneously catalyzed conversion of methanol to a stream containing a C3- and a C 4+ fraction, a distillation column for separating the C3 fraction from a bottom product, and a distillation column for separating a stream containing the C 4+ fraction and dimethyl ether from a stream containing water and methanol from the bottom product. Due to the novel purification, it is possible with this plant to also use methanol with a lower degree of purity, without the resulting product spectrum being shifted towards higher olefins or a higher energy demand being obtained.
- the distillation column for separating the C3- fraction and/or the distillation column for separating a stream containing the C 4+ fraction and dimethyl ether is a column for the extractive distillation.
- the separation efficiency of the respective column can distinctly be increased thereby.
- the column for separating a stream containing the C 4- fraction and dimethyl ether from a stream containing water and methanol includes a side draw by means of which methanol, preferably with a degree of purity of less than 0.1 wt-%, water, preferably less than 0.05 wt-% water, particularly preferably less than 0.01 wt-% water can be withdrawn. It hence is possible that the extracting agent required in the column for separating the C3- fraction is obtained within the column for separating a stream con- taining the C 4- fraction and dimethyl ether. Further features, advantages and possible applications of the invention can be taken from the following description of the drawings and the example. All features described and/or illustrated form the subject-matter of the invention per se or in any combination, independent of their inclusion in the claims or their back- references.
- Fig. 1 schematically shows a usual MTP process
- Fig. 2 schematically shows the MTP process according to the invention.
- the methanol subsequently gets into the MTP reactor 12, where it is converted to olefins.
- the conversion inside the reactor is effected in an adiabatically operated dimethyl ether pre-stage, where the methanol is converted to dimethyl ether and water by using a highly active and highly selective alumina catalyst.
- the stream consisting of methanol, water and dimethyl ether then is supplied to the actual MTP reactor stage and mixed there with steam, wherein conversions of methanol and dimethyl ether of up to 99% can be achieved when using a suitable zeolite-based catalyst.
- the reaction also can be carried out in a single stage on a zeolite catalyst, preferably on a catalyst of the type ZSM-5. As occurring gross reaction equation, the following two main reactions take place:
- the entire product stream obtained subsequently is cooled and compressed and the gaseous fraction is supplied to a first separating means 20.
- the same preferably is operated as extractive distillation, wherein methanol is used as extracting agent.
- This methanol is branched off from the educt inflow 10 and introduced into the separating means 20 via conduit 14.
- the C3- fraction is withdrawn over the head of the separating means 20.
- the remaining bottom product which contains the C 4+ fraction, methanol, dimethyl ether and water, is supplied via conduit 22 to a suitable extraction apparatus, e.g. a mixer-settler system 23, 26.
- the mixer 23 water is added in addition and mixed with the bottom product of the column 20. Via conduit 25, this mixture is supplied to the settler 26 in which the organic phase separates from the aqueous phase. Via conduit 27, the organic stream substantially containing the C 4+ fraction thus can be obtained, wherein the same can be recirculated into the reactor 12 via a non- illustrated conduit, in order to there convert the higher olefins to the desired target product propylene. Via conduit 28, the aqueous stream which also contains the oxygenates, above all dimethyl ether and methanol, is withdrawn. This stream must be subjected to a further purification. To increase the yield, it is recommendable to likewise guide the purified methanol and the dimethyl ether back into the reactor 12.
- the reaction product obtained is supplied via conduit 1 13 to a separating device 120 in which the target product, the C3- frac- tion, is withdrawn over head.
- the bottom product consisting of the C 4+ fraction, methanol, dimethyl ether and water is supplied to the separating means 123.
- the separating means 123 also is a distillation column. In this distillation col- umn, the C 4+ fraction, dimethyl ether and in part also methanol, is withdrawn over head. Via a non-illustrated conduit, this top product can be recirculated into the reactor 1 12. In the reactor 1 12, the higher olefins for the most part are converted to olefins with shorter chain length, whereby the yield of propylene can be increased further. The recirculated dimethyl ether likewise is available for the conversion to olefins. The possibly contained methanol is the educt of the reaction and correspondingly is converted in the reactor 1 12. Such interconnection of the separating means is possible due to the invention, since the changed concept allows to also use recirculation streams with a lower degree of purity, so that here the dimethyl ether and methanol can be recycled together with the C 4+ fraction.
- the following example shows the composition of the streams when using the process according to the invention, as it is shown in Fig. 2.
- the mass flow rate is 1000 kg/h.
- the two columns 120 and 123 have the following specifications:
- Column 120 has 30 trays and a reflux ratio of 4.6.
- the draw of the bottom prod- uct is effected in tray 15, the feeding of the extracting agent methanol in tray 2, wherein the trays each are to be counted from the top.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Water Supply & Treatment (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012112840.5A DE102012112840A1 (de) | 2012-12-21 | 2012-12-21 | Verfahren und Anlage zur Herstellung von Olefinen |
PCT/EP2013/075439 WO2014095358A1 (fr) | 2012-12-21 | 2013-12-03 | Procédé et unité de production d'oléfines |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2935161A1 true EP2935161A1 (fr) | 2015-10-28 |
EP2935161B1 EP2935161B1 (fr) | 2019-05-15 |
Family
ID=49709675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13799302.8A Active EP2935161B1 (fr) | 2012-12-21 | 2013-12-03 | Procédé et unité de production d'oléfines |
Country Status (5)
Country | Link |
---|---|
US (1) | US9932281B2 (fr) |
EP (1) | EP2935161B1 (fr) |
CN (1) | CN104837791B (fr) |
DE (1) | DE102012112840A1 (fr) |
WO (1) | WO2014095358A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110452087B (zh) * | 2018-05-08 | 2022-02-01 | 中国石油化工股份有限公司 | 低碳烯烃的生产方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4709113A (en) | 1987-04-29 | 1987-11-24 | Mobil Oil Corporation | Conversion of crude methanol to gasoline with extraction |
DE10027159A1 (de) * | 2000-05-31 | 2001-12-13 | Mg Technologies Ag | Verfahren zum Erzeugen von Propylen aus Methanol |
US7241716B2 (en) | 2003-11-10 | 2007-07-10 | Exxonmobil Chemical Patents Inc. | Protecting catalytic sites of metalloaluminophosphate molecular sieves |
US7879920B2 (en) | 2004-12-22 | 2011-02-01 | Exxonmobil Chemical Patents Inc. | Oxygenate to olefin manufacture and recovery process |
DE102005048931B8 (de) | 2005-10-13 | 2015-06-18 | Air Liquide Global E&C Solutions Germany Gmbh | Verfahren und Anlage zur Herstellung von C2-C4-Olefinen aus Methanol und/oder Dimethylether |
US8395008B2 (en) * | 2008-01-14 | 2013-03-12 | Catalytic Distillation Technologies | Process and catalyst for cracking of ethers and alcohols |
DE102011014892A1 (de) * | 2011-03-23 | 2012-09-27 | Lurgi Gmbh | Verfahren und Anlage zur Herstellung von niedermolekularen Olefinen |
-
2012
- 2012-12-21 DE DE102012112840.5A patent/DE102012112840A1/de not_active Withdrawn
-
2013
- 2013-12-03 CN CN201380063091.7A patent/CN104837791B/zh active Active
- 2013-12-03 EP EP13799302.8A patent/EP2935161B1/fr active Active
- 2013-12-03 US US14/654,258 patent/US9932281B2/en active Active
- 2013-12-03 WO PCT/EP2013/075439 patent/WO2014095358A1/fr active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2014095358A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2014095358A1 (fr) | 2014-06-26 |
EP2935161B1 (fr) | 2019-05-15 |
US20150353450A1 (en) | 2015-12-10 |
US9932281B2 (en) | 2018-04-03 |
CN104837791B (zh) | 2018-02-06 |
DE102012112840A1 (de) | 2014-06-26 |
CN104837791A (zh) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9724620B2 (en) | Process and plant for producing C2-C4 olefins from methanol and/or dimethyl ether | |
CN101555197B (zh) | 混合碳四综合利用方法 | |
EP3634597B1 (fr) | Processus et systèmes pour la récupération de l'acide méthane-sulfonique sous forme purifiée | |
CN106588589B (zh) | 聚甲醛二甲基醚的提纯方法 | |
CN101492335B (zh) | 综合利用混合碳四的组合方法 | |
CN105980338B (zh) | 由包含乙醇的原料生产1,3-丁二烯的方法 | |
US9878962B2 (en) | Process and plant for producing olefins from oxygenates | |
CN206109248U (zh) | 在从含氧化合物合成烯烃中用于高碳烯烃的回收和利用的设备 | |
US20140018593A1 (en) | Process and plant for the production of low-molecular olefins | |
CN105189412B (zh) | 用于从含氧物制备烯烃的方法和设备 | |
US9932281B2 (en) | Process and plant for the production of olefins | |
KR20170013283A (ko) | 적합한 반응물질들의 촉매 탈수에 의해 올레핀 생성물을 생산하기 위한 방법 | |
US9085500B2 (en) | Method for producing a product containing C3H6 and C2H4 | |
CN103755514A (zh) | 醇醚转化制备苯和对二甲苯的系统和工艺 | |
US6483000B2 (en) | Process for the manufacture in pure form of 1-pentene or an alpha-olefin lower than 1-pentene | |
EP2956429B1 (fr) | Procédé et installation de production d'oléfines à partir de composés oxygénés | |
CN106588597A (zh) | 提纯聚甲醛二甲基醚的方法 | |
US9505684B2 (en) | Method and system for producing low-oxygenate OLEFIN flows | |
CA2518544A1 (fr) | Production d'alkyle benzene lineaire | |
RU2594564C1 (ru) | Катализатор и способ конверсии этанола, метанола или их смеси | |
CN103420762A (zh) | 碳四和乙烯生产丙烯的方法 | |
CN216472988U (zh) | 高效脱除异丁烯之高纯度mtbe制备系统 | |
WO2014077997A1 (fr) | Procédé pour produire des pentènes linéaires et métathèse de ceux-ci | |
US20140187834A1 (en) | Process for extracting c4+ olefins and a process for converting oxygenates to olefins | |
JPH07188679A (ja) | 高オクタン価ガソリンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20171019 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013055486 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C07C0001200000 Ipc: B01D0003000000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07C 7/08 20060101ALI20181122BHEP Ipc: B01D 3/40 20060101ALI20181122BHEP Ipc: C07C 1/20 20060101ALI20181122BHEP Ipc: B01D 3/00 20060101AFI20181122BHEP Ipc: B01D 3/14 20060101ALI20181122BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190103 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013055486 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190815 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190915 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190815 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190816 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1132771 Country of ref document: AT Kind code of ref document: T Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013055486 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
26N | No opposition filed |
Effective date: 20200218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191203 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190515 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231220 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231214 Year of fee payment: 11 |