EP2927912A1 - Flachkabel mit Kurzschlussvermeidung im Brandfall sowie Verwendung und Herstellung eines solchen Flachkabels - Google Patents

Flachkabel mit Kurzschlussvermeidung im Brandfall sowie Verwendung und Herstellung eines solchen Flachkabels Download PDF

Info

Publication number
EP2927912A1
EP2927912A1 EP15000414.1A EP15000414A EP2927912A1 EP 2927912 A1 EP2927912 A1 EP 2927912A1 EP 15000414 A EP15000414 A EP 15000414A EP 2927912 A1 EP2927912 A1 EP 2927912A1
Authority
EP
European Patent Office
Prior art keywords
fire
flat cable
core
insulating layer
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15000414.1A
Other languages
English (en)
French (fr)
Other versions
EP2927912B1 (de
Inventor
Onodi Tamas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WOERTZ ENGINEERING AG
Original Assignee
Woertz Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Woertz Engineering filed Critical Woertz Engineering
Publication of EP2927912A1 publication Critical patent/EP2927912A1/de
Application granted granted Critical
Publication of EP2927912B1 publication Critical patent/EP2927912B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • H01B7/0823Parallel wires, incorporated in a flat insulating profile

Definitions

  • the invention relates to a flat cable with short circuit avoidance in case of fire and the use and manufacture of such a flat cable.
  • the evacuation time may be 30 minutes or more. These are therefore usually equipped with electrical emergency equipment that must be supplied in case of fire, at least for the evacuation time with electrical energy to allow evacuation. These include e.g. Smoke exhaust fan, emergency lighting, signs etc.
  • Flat cables are basically particularly suitable for functional integrity, as shown in the publication EP 2 375 505 A1 is known.
  • conventional round cables the wires are twisted together. In case of fire, therefore, after the conductor insulation has burnt, the wire conductors come to lie at the intersection points.
  • core conductors run without crossing points in the cable. Therefore, a flat cable behaves in terms of the risk of short circuit from the outset cheaper.
  • a flat cable has virtually no internal stress, as they are typical for twisted round cable, so has no pronounced tendency as the round cable to discard when burning the insulation.
  • the publication US 2009/0078446 A1 describes another fire-resistant cable, in which the core conductors are surrounded by a core insulation as a whole.
  • This common core insulation acts as a cladding mechanically fixing the conductor conductor.
  • the common insulation is made of a polymer that can be converted in case of fire at least on the surface in a ceramic state.
  • the common insulation is surrounded by an outer jacket, which leaves fire-resistant ash in case of fire.
  • the publication JP H01117204 A describes a fire-resistant flat cable in which the individual wire conductors (strands) are wrapped with a glass mica tape. The conductors are wound side by side and are held together by a surrounding layer of polyethylene. This layer is surrounded by a fire-resistant coat, which in turn is surrounded by a fabric cover.
  • cables are often used on metallic cable support systems, e.g. metallic cable racks lying out.
  • the present invention provides a flat cable with short circuit prevention in case of fire even when laying on an electrically conductive support body.
  • the flat cable comprises at least two cores, an intermediate sheath, at least one fire-resistant insulating layer and an outer sheath.
  • the at least two wires run parallel to each other in a plane.
  • the cores each have a core conductor and a core insulation which is annular in cross-section, wherein in at least one of the cores the core insulation comprises insulating material extruded directly onto the core conductor and insulating in case of fire.
  • the intermediate sheath encloses the cores as a whole and thereby encloses the core insulation directly on the outside thereof.
  • the intermediate sheath engages between two cores of a flat side of the flat cable to the other flat side.
  • the outer jacket surrounds the intermediate jacket and defines the outer contour of the flat cable.
  • At least one fire-resistant insulating layer is arranged between the intermediate casing and the outer casing.
  • Another aspect relates to the use of a flat cable described above on an electrically conductive support body, wherein the flat cable is oriented so that the at least one fire-resistant insulating layer comes to rest between the wires and the support body.
  • Another aspect relates to a method for producing a flat cable with short circuit prevention in case of fire, even when laying on an electrically conductive cable support.
  • the method comprises producing cores with a core insulation arranged directly on a wire conductor, ring-shaped in cross-section, applying an intermediate sheath to at least two cores, applying at least one fire-resistant insulating layer to the outside of the intermediate sheath and applying an outer sheath to the intermediate sheath together with the fire-resistant insulating layer ,
  • the production of cores with a core insulation arranged directly on a conductor, in cross-section annular insulation comprises producing the core insulation, an encapsulation of the core conductor with an insulating in the event of fire insulating material with an extruder.
  • the intermediate sheath is applied to a plurality of cores running parallel to one another in a plane, of which at least one core is equipped with the insulating in the event of fire insulating material, so that it encloses the cores in total, while the core insulations wrapped directly on the outside and between two Veins from one flat side of the flat cable to the other flat side passes through.
  • the outer jacket defines the outer contour of the flat cable.
  • the flat cable according to the invention is provided for short-circuit avoidance in case of fire, even when laid on an electrically conductive supporting body, for example a metallic (i.e., electrically conductive) cable rack.
  • Short circuit can be caused by electrical contact between two wire conductors. In the event of a fire, fire-resistant cable insulation does not burn due to high ambient temperatures or direct flame exposure.
  • this has e.g. two or three wires (a live wire, a wire for the neutral wire and possibly a wire for the protective conductor), in embodiments as a three-phase flat cable are e.g. four or five cores (one core per phase, and one conductor for the neutral conductor and, if necessary, one conductor for the protective conductor).
  • the individual wires include a wire conductor and a core insulation.
  • the individual core conductors of the flat cable have a cross-sectionally annular core insulation.
  • the core insulation comprises, in the event of fire, ceramising insulating material which is extruded directly onto the conductor surface, ie without additional intermediate layer.
  • fire ceramizing insulating materials are known in the art, such as from P. Eyerer et al., Polymer Engineering Technologies and Practice, Springer-Verlag, 2008, p. 111 .
  • the insulating material is, for example, a thermoplastic with one or more ceramizing additives in case of fire, which form a ceramic crust when the plastic burns.
  • the additives may be, for example, silicate material, metal or semimetal oxides (such as SiO 2 , Al 2 O 3 ), or other suitable ceramizing materials such as zinc borate, or mixtures thereof.
  • the ceramizing plastic is applied, for example as a melt directly to the surface of the wire conductor, and surrounds the wire conductor in cross-section annular. If, in case of fire, the plastic of the core insulation burns off, the ceramizing additive forms the said insulating crust, which then still ensures a certain electrical insulation.
  • the flat cable comprises an intermediate sheath made of plastic, which surrounds the outside of the core insulation, for example, the intermediate sheath can be extruded onto the core insulation, and enclose the cores in total.
  • the veins do not touch, but run under one Distance from each other, and are defined by the swept intermediate sheath held at this distance.
  • the thus ensured spacing of the wires acts preventively in case of fire against short circuit, since the wires are already apart from the outset and so less easily touch in case of fire, ie, in electrical contact with each other can.
  • the ensured by the penetration, relatively large vein spacing thus acts with the other described measures for short circuit prevention (ceramizing core insulation, fire-resistant insulating layer outside the intermediate sheath) together.
  • this version is equipped with spaced wires with ceramic core insulation in case of fire to avoid short circuits between two wire conductors sufficient.
  • two ceramic core insulation layers are located between two live core conductors. It has been recognized, however, that with flat cables running on metallic cable support systems, short circuits can also occur between one or more core conductors and the electrically conductive support bodies. Between a core conductor and such an electrically conductive support body is in the event of fire, only a ceramicized core insulation.
  • the flat cable comprises at least one fire-resistant insulating layer.
  • the flat cable comprises a single fire-resistant insulating layer, in other embodiments, it comprises more than one such insulating layer, wherein the plurality of layers, for example, lie directly on one another and thus form a layer structure.
  • the at least one insulating layer is non-flammable and dimensionally stable upon exposure to fire, i. it retains its insulating property even in case of fire, for example in a kiln test at 750 ° C for at least 15 min at.
  • the fire-resistant insulating layer or the plurality of fire-resistant insulating layers are arranged outside of the intermediate sheath; It ensures (or ensure) so that in case of fire, an electrical insulation between the wires and the metallic support body of the flat cable.
  • the fire-resistant insulating layer extends e.g. over the entire surface between the respective outer wires of the flat cable and thus covers all the wires of the flat cable together with the wire gaps.
  • This structure is surrounded by an outer protective layer, the outer sheath, which defines the outer contour of the flat cable and, where appropriate, gives the cable resistance to aggressive substances and mechanical damage during normal operation and can be marked and labeled in color.
  • the cable described thus avoids not only direct short circuits between adjacent wires in case of fire, but also due to the reinforced fire-resistant equipment for flat side and those to a metallic support body. It is because of the relatively economical use of ceramizing plastic cheaper than known cable to produce.
  • the ceramic insulating material of the wire insulation in some embodiments comprises a plastic which is mixed with keramiserendem additive.
  • the plastic a flexible, non-halogenated thermoplastic polymer such as polyethylene, polypropylene, ethylene-propylene-diene (EPDM), acrylonitrile-butadiene-styrene, polyamides, polylactate, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polystyrene, polyetheretherketone, or mixtures thereof, which is mixed with the ceramizing additive.
  • the core conductors can be overmolded with a melt of the ceramizing additive added plastic, so as to obtain the wires including the ceramic core insulation.
  • ceramizing additives are, for example, silicate material, metal or semimetal oxide (such as SiO 2 , Al 2 O 3 ), or other suitable ceramizing material such as zinc borate, or mixtures thereof.
  • the ceramizing additive forms in case of fire, i. at temperatures at which the plastic in which the additive is burned off, an insulating crust.
  • the plastic is mixed with one or more crusting agents that leave a stable, non-conductive ash in case of fire.
  • the core insulation in its entire thickness of the extruded, in the event of fire keram isdem insulating material leads to a relatively thick insulating crust in case of fire.
  • the core insulation in the at least one core with ceramic in the event of fire insulating material constructed in two layers. Only an inner part of the core insulation is made of the extruded, in the event of fire ceramizing insulating material, while an outer part of the core insulation is made of non-fire-resistant plastic, so burns in case of fire.
  • a flat cable has inherently favorable fire performance characteristics (due to the absence of conductor crossovers and internal stresses); Due to these properties and by cooperation with the fire-resistant insulating layer outside the intermediate sheath, it is sufficient to form only a part of the core insulation fireproof.
  • the equipment of the cores with a non-fire resistant plastic sheath in addition to the fire-resistant facilitates that the conditions of normal operation (non-fire), such as strength, elasticity, resistance to aggressive substances, etc.) to core insulation can be more easily satisfied than alone with a fire resistant cladding.
  • the core insulation comprises an insulating material which ceramises in the event of fire. This expresses the fact that not all wires of the flat cable have to be equipped with this fire-resistant insulating material, but includes the possibility of a fire resistant equipment of all wires.
  • all the wires of the flat cable are equipped with in the event of fire keram isdem insulating material.
  • the core insulation is made entirely of non-fire-resistant plastic, so that it completely burns in case of fire.
  • the non-fire-resistant cores may be those cores which are intended to carry no voltage, that is, for example, around the conductor forming the protective conductor. Namely, fire-resistant insulation is not required with such a core because it is at the same (earth) potential as e.g. an electrically conductive cable rack is located, and therefore in case of loss of insulation in case of fire, a conductor contact e.g. with the cable rack has no short circuit result. By this measure, therefore, the required amount of ceramic insulating material is minimized.
  • the core forming the neutral conductor is not exactly at ground potential, since in the case of a three-phase system (and not least in a single-phase system) which is not exactly phase-compensated, a current flow takes place in the neutral conductor, the i.A. leads to a non-zero voltage of the neutral to ground.
  • the core forming the neutral conductor is equipped with insulating in the event of fire Keram ensue.
  • the voltage applied to the neutral voltage is considered to be negligible, so that (even) the core forming the neutral conductor is not equipped fireproof.
  • the intermediate sheath is made of a ceramizing in case of fire insulating material or plastic.
  • the plastic of the intermediate jacket is so a non-fire-resistant plastic that burns in the event of fire.
  • the intermediate sheath thus leaves, in contrast to the wire insulation of the live conductors, no insulating crust, or other insulating layer.
  • the intermediate sheath does not provide any fire-resistant insulation (such as additional encrustation) in the region of the penetration between the cores, in addition to that of the core insulation.
  • the intermediate coat thus makes no contribution to the fire protection; it rather serves (only) to stabilize the flat cable and the spacing of the wires in normal operation (ie in non-fire). In case of fire, the wires come to rest with the insulating crust formed from the wire insulation on the fire-resistant insulating layer.
  • the outer sheath can also be made of a ceramizing in case of fire insulating material or plastic.
  • the plastic of the outer shell is therefore a non-fire resistant plastic that burns in the event of fire.
  • the outer sheath thus leaves, in contrast to the wire insulation, no insulating crust, or other insulating layer.
  • the intermediate jacket is extruded directly and without an intermediate layer on the outside, so the surface, the core insulation.
  • a plastic melt is extruded directly onto the parallel juxtaposed wires and thereby forms the above-described penetration between two cores and ensures their spacing.
  • only the plastic of the passage of the intermediate sheath is located between two wires outside of the ring core in cross-section insulation. The thus ensured spacing of the wires acts preventively in case of fire against short circuit, since the wires are already far apart from the outset and thus less easily touch, i. can be in electrical contact with each other, can.
  • the spacing of adjacent wires from outside to outside of the adjacent wire insulation is at least equal to the wire radius.
  • the "core radius” is understood to mean the average radius of the two wires. This relatively large vein spacing is particularly preventive against short circuit, and thus cooperates with the other measures described for short-circuit prevention.
  • the fire-resistant insulating layer completely surrounds the intermediate jacket in the form of one or more windings, ie it is present on both flat sides of the flat cable.
  • the fire-resistant insulating layer is formed as a two-part insert on the two flat sides in each case between the intermediate jacket and the outer jacket.
  • the fire-resistant insulating layer may be provided only on the flat sides of the flat cable (i.e., not on the narrow sides thereof), or may extend to the area of the narrow sides.
  • the flat cable on only one side of a fire-resistant insulating layer.
  • the fire-resistant insulating layer may be provided on only one flat side of the flat cable (i.e., not on the narrow sides thereof), or may extend in the region of the narrow sides.
  • fire-resistant insulating layer on only one of the two flat sides of the flat cable is in laying the flat cable on an electrically conductive support body of the flat cable, e.g. Metal planks to ensure that the cable with the said flat side with the fire-resistant insulating layer to the electrically conductive support body, i. oriented downwards. This ensures that the fire-resistant insulating layer is in case of fire between the wire conductors and the electrically conductive support body.
  • the outer sheath in some of these embodiments no 180 ° symmetry to the side with the at least one fire-resistant insulating layer by an asymmetrical configuration of the outer contour of the outer shell of to make outward visible.
  • a flat cable in which the two possible orientations would be indistinguishable from the outside, had a 180 ° symmetry about an axis of symmetry in the middle of the cable in the cable longitudinal direction (because the two orientations correspond to a rotation of the cable through 180 ° about the said axis of symmetry ).
  • 180 ° symmetry means that a Flat cable can be turned around this axis, without its outer cross-sectional shape would differ in these two orientations.
  • various edge roundings of the essentially rectangular contour of the flat cable and / or an index nose and / or a recess on one or more of the outer sides of the outer jacket can be used.
  • a refraction of the symmetry is visible from the outside, how to orient the flat cable, so that the fire-resistant insulating layer is below.
  • the at least one fire-resistant insulating layer comprises a fire-resistant and electrically insulating mineral material, which prevents electrical contact between the wire conductors and the support body for the flat cable in case of fire.
  • the mineral is a silicate.
  • the fire-resistant insulating layer comprises a mica layer.
  • Mica is a fissile aluminosilicate that is electrically insulating and fire resistant.
  • the refractory insulating layer may be a flexible carrier tape, e.g. include a glass cloth tape.
  • the mica layer may be glued to the flexible carrier tape.
  • the flexible carrier tape is e.g. applied together with the mica layer in the preparation of the flat cable on the intermediate jacket, e.g. ironed.
  • the present description also relates to a use of the flat cable, in which it is designed on an electrically conductive support body. It is oriented so that the at least one fire-resistant insulating layer between the wires and the support body comes to rest. If the flat cable has a fire-resistant insulating layer on both flat sides, then it does not matter with which orientation the flat cable is laid. If, on the other hand, the fire-resistant insulating layer has only one flat side, the cable is oriented with the insulating layer to the carrier body, as mentioned above.
  • the method comprises the overmolding of core conductors with insulating in the event of fire insulating material, with an extruder.
  • the core insulation thus obtained encloses the conductors therefore with an annular cross-section directly on the surface thereof and thus represents a continuous fire-resistant protective layer with respect to the conductor surface.
  • the intermediate jacket is made.
  • this is also done by extrusion, e.g. the individual wires are parallel to each other in a plane from each other with an extruder with a plastic coating so that the plastic envelops the wires as a whole.
  • the plastic melt is e.g. Extruded directly onto the outside of the wire insulation and produces a substantially rectangular plastic block in which the wires are cast, the intermediate sheath.
  • the wires are so far apart that the intermediate sheath penetrates the cores from one of its flat sides to the opposite flat side.
  • the at least one fire-resistant insulating layer is applied to the outside of the intermediate jacket.
  • the refractory insulating layer may be bonded to the intermediate jacket, for example, by being glued or ironed onto the intermediate jacket. It is also possible to first add insulating layer and intermediate sheath without such connection, i. put on each other, and to provide a connection between the two only by the outer sheath, the e.g. can also be extruded.
  • the outer sheath is applied to the intermediate sheath together with the fire-resistant insulating layer; it defines the outer contour of the flat cable, depending on the arrangement of the fire-resistant insulating layer between the intermediate jacket and outer jacket.
  • this can also be done by extrusion, by providing the intermediate sheath together with the cores lying therein together with the fire-resistant insulating layer with an extruder with a plastic coating which forms the outer sheath.
  • Fig. 1 shows an exemplary embodiment of a flat cable 1 with short circuit avoidance in case of fire, even when laying on an electrically conductive support body.
  • the flat cable 1 has in the three-phase system shown here by way of example, for example, five parallel wires 7, which run side by side in a plane at a fixed distance from each other.
  • Each of these five wires 7 consists of a metallic core conductor 2 in the middle and a core insulation surrounding this ring 3.
  • the core insulation 3 are each constructed of a single layer of insulating material.
  • the insulating material is mineral staggered plastic. The minerals burn at typical temperatures, above the normal operating temperature, when the plastic matrix in which they are located burns (above 200 ° - 300 ° C), a ceramic crust, which prevents a short circuit between the wire conductors 2.
  • the three left veins 7 are used in the in the Fig. 1 . 2 . 4, 5 shown flat cable 1, for example, as a phase conductor, while the right center of the core 7, for example, the neutral conductor and the right outside vein 7, for example, the protective conductor.
  • all cores 7 are of identical design, ie they have the same conductor cross-section, the same fire-resistant (ceramizing) core insulation and the same core spacings.
  • Others by the Fig. 1 and 2 In contrast, only the three live wires, that is, the phase conductors are equipped with fire resistant (ceramizing) wire insulation, while the core insulation of the protective conductor is made entirely of non-fire resistant plastic.
  • the neutral conductor is generally not completely de-energized; in some embodiments, it has fire-resistant core insulation (such as the phase conductors), but in other embodiments, non-fire-resistant core insulation (such as the protective conductor).
  • the individual wires 7 are embedded in a non-fire resistant intermediate sheath 4 made of plastic.
  • the intermediate casing 4 surrounds the wires 7 on all sides and in each case forms a passage between the individual wires 7 from one of the flat sides of the flat cable 1 to the other flat side.
  • the penetration of the intermediate sheath 4 ensures the parallel spacing of the wires 7 in normal operation and ensures in case of fire due to the distance between the wires 7 for additional short-circuit avoidance between the individual wire conductors. 2
  • the underside of the flat cable 1 is located outside of the intermediate sheath 4, a fire-resistant insulating layer 5, e.g. made of mica, if necessary on a glass cloth tape.
  • a fire-resistant insulating layer 5 e.g. made of mica, if necessary on a glass cloth tape.
  • this insulating layer 5 provides a remaining electrical insulation between the wires 7 and the optionally conductive contact surface of the flat cable 1.
  • the outer sheath 6 gives the flat cable 1 its outer contour.
  • the flat cable 1 has an index nose 8 on one of the two narrow sides of the outer jacket 6.
  • the asymmetrical outer contour of the flat cable 1, when later laying the flat cable 1, ensures that the side with the fire-resistant insulating layer 5, i. the mica layer is visible from the outside, so that the flat cable 1 is laid with this layer 5 down.
  • Fig. 2 shows a schematic cross section of the exemplary embodiment of a flat cable 1 with short circuit prevention in case of fire, even when laying on an electrically conductive support body, which is described above.
  • the flat cable 1 has e.g. five wires 7, wherein the wires 7 have a designated "21" diameter.
  • the distance "22" between the centers of two adjacent wire conductors 2 is at least 1.5 times the wire diameter 21.
  • the space between two adjacent wires 7 is filled by the passage of the intermediate jacket 4 from a flat side of the flat cable 1 to the other.
  • the intermediate casing 4 completely surrounds all wire insulation 3. At the side edges of the intermediate jacket 4 have fillets 25.
  • a fire-resistant insulating layer 5 in the form of a mica layer having a width 28 which extends at least from the outer edge of one of the two outer wires 7 to that of the other outer wire 7 and so electrical insulation between the wires 7 and one electrically conductive substrate in case of fire (ie burned intermediate jacket 4 and outer jacket 6) guaranteed.
  • Said electrically conductive support body for the flat cable 1 may, for example, a metallic cable rack 9 according to Fig. 3 be.
  • the example shown is a metal perforated metal cable tray with flanged upper edges.
  • the 4 and 5 show a schematic cross section of an embodiment of the flat cable 1 with two-layer core insulation on the cable rack 9 in the normal state, ie in non-fire ( Fig. 4 ) or in case of fire ( Fig. 5 ).
  • the 4 and 5 together with associated description meet in an analogous manner to the single-layer embodiment of Fig. 1 and 2 to.
  • the 4 and 5 thus illustrate the use of the embodiment of the Fig. 1 and 2 on an electrically conductive cable support before and after a fire.
  • the core insulation of the live wires 7 here the phase conductor and the neutral conductor
  • an inner layer of the core insulation 3 which is made of ceramic in the event of fire, ie fireproof plastic
  • an outer layer of the core insulation 10 made of non-fire-resistant plastic
  • the fire-resistant inner layer 3 is extruded directly onto the core conductor 2, while the non-fire-resistant outer layer 10 surrounds the inner layer 3.
  • This fire-resistant training of the core insulation can be provided with all wires 7, but can also be limited to the on live conductors (possibly including the neutral conductor).
  • the latter is in the 4 and 5 by way of example, in which the protective conductor 7a (on the right in the picture on the right) has a uniform (ie single-layered) core insulation made of non-fire-resistant plastic 10.
  • the flat cable 1 lies in the event of non-fire flat on the cable tray 9, wherein the fire-resistant insulating layer 5 down, i. oriented to the bearing surface of the flat cable 1.
  • the intermediate sheath 4 and the outer sheath 6 remains of the fire-resistant (ceramizing) layer of the core insulation 3, the intermediate sheath 4, the fire-resistant insulating layer 5 and the outer sheath 6 only an insulating crust 3 'to each of the live conductor 2 and the insulating layer 5 left.
  • the wires 7 'then lie with the insulating crust 3' directly on the fire-resistant insulating layer 5.
  • the protective conductor 7a 'does not form such a crust; the conductor 2 of the protective conductor 7a 'therefore lies directly on the fire-resistant insulating layer 5.
  • the insulating crusts 3' provide.
  • the insulating crusts 3 'and, in addition, the insulating layer 5 ensure insulation from the metallic cable tray 9.
  • the fire-resistant insulating layer 5 extends with the width 28 (FIG. Fig. 2 ) at least below the entire surface in which the wires 7 ', 7a' of the flat cable 1 extend. In other words, the fire-resistant insulating layer 5 extends at least over the entire width of the flat cable 1, in the case of fire veins 7 ', 7a' rest.
  • FIGS. 6A to C illustrate steps of an exemplary manufacturing method of the flat cable 1 for both embodiments of the Fig. 1 / 2 and Fig. 4/5 ,
  • the FIGS. 6A and 6C show a suitable extrusion device for this purpose in side view;
  • Fig. 6B shows such in plan view.
  • the manufacturing method is shown here with reference to a cable with only three wires 7.
  • the fire-resistant core insulation 3 or the fire-resistant inner layer 3 of the core insulation is sprayed onto the core conductor 2.
  • Fig. 6 A shows the production of a single wire 7.
  • the other required wires 7 are prepared accordingly.
  • the core insulation 3 or the inner layer 3 of the core insulation is sprayed onto the core conductor 2 by extrusion of a plastics melt mixed with a ceramic additive in the event of fire directly.
  • the core conductor 2 eg copper wire
  • the extruder die 35 is circular and has a diameter which substantially corresponds to the outer diameter 21 of the core and the outer diameter of the inner layer 3, respectively.
  • the amount of plastic melt extruded per unit time and the feed rate of the copper wire are matched to each other, so that the outer diameter of the sprayed core insulation substantially the desired value, namely the nozzle diameter (core outer diameter 21 and Outside diameter of the inner layer 3) corresponds.
  • the plastic coating solidifies by cooling after exiting from the extruder die 35, and thus forms the ceramic insulation in the event of fire core insulation 3.
  • the wire 7 is wound on a take-up drum 33. The said mechanical stress is achieved by means of the take-off and take-up reels 31 and 33, respectively.
  • the outer layer of the core insulation 10 is extruded from non-fire-resistant plastic to the inner layer 3 in a further analog extrusion process.
  • Non-fire resistant cores 7a are prepared in an analogous manner in an extrusion process by extruding the core insulation 10 of non-fire resistant plastic directly onto the conductor 2.
  • the extruder die 45 corresponds in shape essentially to the outer contour of the intermediate jacket 4 to be produced Intermediate vein intersecting, and the veins 7 completely embedding intermediate coat 4.
  • the amount of extruded per unit time plastic melt and the feed rate of the wires 7 are in turn so matched to each other that the outer dimensions of the sprayed intermediate jacket 4th essentially correspond to the desired values, namely the nozzle dimensions or the thickness and width of the intermediate jacket 4.
  • the plastic coating solidifies by cooling after exiting the extruder die 45, thus forming the intermediate sheath 4 on the wires.
  • the resulting intermediate product 50 (intermediate casing 4 with the embedded wires 7) is wound onto a take-up drum 43.
  • the said mechanical stress is achieved by means of the take-off and take-up drums 41, 41 ', 41 "and 43, respectively.
  • the spraying of the (eg fire-resistant) outer jacket 6 onto the intermediate product 50 and a fire-resistant insulating layer 5 is carried out.
  • This is again carried out by extrusion of a plastic melt (containing, for example, no ceramizing additives) onto the intermediate product 50 and the fire-resistant insulating layer 5 Fig. 6C ,
  • the intermediate product 50 with the applied insulating layer 5 is mechanically stretched by a respective unwinding drum 51, 58 by a further extruder 57, namely pulled centrally through a shaping extruder die 55.
  • the fire-resistant insulating layer 5 is placed on one side only on the intermediate product 50.
  • the fire-resistant insulating layer 5 is placed on both sides of the intermediate product 50; this can be done, for example, by unwinding two fire-resistant insulating tapes from unwinding reels in the manner of the unwinding reel 58 shown, or by wrapping the intermediate product 50 with a fire-resistant insulating tape before this third extrusion process.
  • the extruder nozzle 55 corresponds in shape essentially to the outer contour of the flat cable 1 to be produced.
  • the intermediate jacket 4 including the fire-resistant insulating layer 5 embeds the outer jacket 6.
  • the amount of plastic melt extruded per unit time and the feed rate of intermediate product 50 and insulating layer 5 are again matched to one another that the outer dimensions of the outer jacket 6 substantially corresponds to the desired values, namely the nozzle dimensions or the thickness and width of the flat cable 1.
  • the plastic coating solidifies by cooling after exiting the extruder die 55, and thus forms the outer sheath 6.
  • the resulting finished flat cable 1 is wound onto a take-up drum 53.
  • the said mechanical stress is achieved by means of the take-off and Aufwickeltrommeln 51 and 53, respectively.

Landscapes

  • Insulated Conductors (AREA)

Abstract

Ein Flachkabel (1) mit Kurzschlussvermeidung im Brandfall auch bei Verlegung auf einem elektrisch leitenden Tragkörper hat wenigstens zwei Adern (7, 7a), die parallel nebeneinander in einer Ebene verlaufen. Die Adern (7, 7a) haben jeweils einen Aderleiter (2) und eine im Querschnitt ringförmige Aderisolierung (3, 10), wobei bei wenigstens einer der Adern (7) die Aderisolierung (3, 10) unmittelbar auf den Aderleiter (2) extrudiertes, im Brandfall keramisierendes Isoliermaterial umfasst. Ein Zwischenmantel (4) umschließt die Adern (7, 7a) und greift zwischen jeweils zwei Adern (7, 7a) von einer Flachseite des Flachkabels zur anderen Flachseite durch. Ein Außenmantel (6) umgibt den Zwischenmantel (4) und definiert die Außenkontur des Flachkabels (1). Wenigstens eine feuerbeständige Isolierschicht (5) ist auÀŸen auf dem Zwischenmantel (4) angeordnet; sie liegt zwischen dem Zwischenmantel (4) und dem Außenmantel (6).

Description

    GEBIET DER ERFINDUNG
  • Die Erfindung betrifft ein Flachkabel mit Kurzschlussvermeidung im Brandfall sowie die Verwendung und Herstellung eines solchen Flachkabels.
  • HINTERGRUND DER ERFINDUNG
  • In größeren Gebäuden, Verkehrsbauwerken (wie z.B. Tunnels) und Schiffen kann die Evakuierungszeit 30 min und mehr betragen. Diese sind daher in der Regel mit elektrischen Noteinrichtungen ausgerüstet, die im Brandfall zumindest für die Evakuierungszeit mit elektrischer Energie versorgt werden müssen, um eine Evakuierung zu ermöglichen. Hierzu gehören z.B. Rauchabzugsgebläse, Notbeleuchtungen, Hinweisschilder usw.
  • Die Eignung einer elektrischen Installation zur Aufrechterhaltung der Stromversorgung auch unter Brandeinwirkung wird üblicherweise mit dem Begriff "Funktionserhalt" beschrieben. Flachkabel sind grundsätzlich besonders für Funktionserhalt geeignet, wie aus der Druckschrift EP 2 375 505 A1 bekannt ist. Bei üblichen Rundkabeln sind die Adern nämlich miteinander verdrillt. Im Brandfall kommen daher nach dem Abbrennen der Aderisolation die Aderleiter an den Kreuzungspunkten aufeinander zu liegen. Beim Flachkabel verlaufen Aderleiter hingegen ohne Kreuzungspunkte im Kabel. Daher verhält sich ein Flachkabel hinsichtlich der Kurzschlussgefahr von vornherein günstiger. Zudem hat ein Flachkabel praktisch keine inneren Spannungen, wie sie für verdrillte Rundkabel typisch sind, hat also keine ausgeprägte Tendenz wie das Rundkabel, sich beim Verbrennen der Isolation zu verwerfen.
  • Im Stand der Technik gibt es verschiedene Vorschläge für brandfeste Flachkabel. Die bereits genannte Druckschrift EP 2 375 505 A1 beschreibt z.B. ein Flachkabel, bei dem die Aderleiter ohne die sonst übliche Aderisolierung von einer feuerbeständigen Isolierschicht direkt auf der metallischen Oberfläche der Aderleiter umfasst sind. Die Isolierschicht umfasst eine obere und eine untere Hälfte, welche die Aderleiter jeweils im Querschnitt halbkreisförmig umschließen. Zwischen den Aderleitern sind die feuerbeständigen Isolierschichten in der Mittelebene des Flachkabels miteinander verklebt, d.h. zwischen den Aderleitern ist stegartig feuerbeständiges Isoliermaterial angeordnet.
  • Die Druckschrift US 2009/0078446 A1 beschreibt ein anderes brandfestes Kabel, bei dem die Aderleiter insgesamt von einer Aderisolierung umgeben sind. Diese gemeinsame Aderisolierung wirkt als eine die Aderleiter mechanisch festlegende Ummantelung. Die gemeinsame Isolierung ist aus einem Polymer gefertigt, dass sich im Brandfall wenigstens an dessen Oberfläche in einen keramischen Zustand überführen lässt. Die gemeinsame Isolierung ist von einem Außenmantel umgeben, der im Brandfall feuerabweisende Asche hinterlässt.
  • Die Druckschrift JP H01117204 A beschreibt ein brandfestes Flachkabel bei dem die einzelnen Aderleiter (Litzen) mit einem Glas-Glimmerband umwickelt sind. Die so umwickelten Leiter verlaufen nebeneinander und werden von einer umgebenden Schicht aus Polyethylen zusammen gehalten. Diese Schicht ist von einem brandfesten Mantel umgeben, der wiederum von einer Stoffhülle umgeben ist.
  • In Tunneln und Gebäuden sind Kabel häufig auf metallischen Kabeltragsystemen, z.B. metallischen Kabelpritschen liegend geführt.
  • KURZFASSUNG DER ERFINDUNG
  • Die vorliegende Erfindung stellt ein Flachkabel mit Kurzschlussvermeidung im Brandfall auch bei Verlegung auf einem elektrisch leitenden Tragkörper bereit. Das Flachkabel umfasst wenigstens zwei Adern, einen Zwischenmantel, wenigstens eine feuerbeständige Isolierschicht und einen Außenmantel. Die wenigstens zwei Adern verlaufen parallel nebeneinander in einer Ebene. Die Adern weisen jeweils einen Aderleiter und eine im Querschnitt ringförmige Aderisolierung auf, wobei bei wenigstens einer der Adern die Aderisolierung unmittelbar auf den Aderleiter extrudiertes, im Brandfall keramisierendes Isoliermaterial umfässt. Der Zwischenmantel umschließt die Adern insgesamt und umhüllt dabei die Aderisolierungen unmittelbar an deren Außenseite. Der Zwischenmantel greift zwischen jeweils zwei Adern von einer Flachseite des Flachkabels zur anderen Flachseite durch. Der Außenmantel umgibt den Zwischenmantel und definiert die Außenkontur des Flachkabels. Zwischen dem Zwischenmantel und dem Außenmantel ist wenigstens eine feuerbeständige Isolierschicht angeordnet.
  • Ein weiterer Aspekt betrifft die Verwendung eines oben beschriebenen Flachkabels auf einem elektrisch leitenden Tragkörper, wobei das Flachkabel so orientiert wird, dass zwischen den Adern und dem Tragkörper die wenigstens eine feuerbeständige Isolierschicht zu liegen kommt.
  • Ein weiterer Aspekt betrifft ein Verfahren zur Herstellung eines Flachkabels mit Kurzschlussvermeidung im Brandfall auch bei Verlegung auf einer elektrisch leitenden Kabelunterlage. Das Verfahren umfasst das Herstellen von Adern mit einer unmittelbar auf einem Aderleiter angeordneten, im Querschnitt ringförmigen Aderisolierung, das Aufbringen eines Zwischenmantels auf wenigstens zwei Adern, das Aufbringen wenigstens einer feuerbeständigen Isolierschicht außen auf den Zwischenmantel und das Aufbringen eines Außenmantels auf den Zwischenmantel samt feuerbeständiger Isolierschicht. Das Herstellen von Adern mit einer unmittelbar auf einem Aderleiter angeordneten, im Querschnitt ringförmigen Aderisolierung umfasst das Herstellen der Aderisolierung ein Umspritzen des Aderleiters mit einem im Brandfall keramisierenden Isoliermaterial mit einem Extruder. Der Zwischenmantel wird auf mehrere, parallel nebeneinander in einer Ebene verlaufende Adern, von denen wenigstens eine Ader mit dem im Brandfall keramisierenden Isoliermaterial ausgerüstet ist, so aufgebracht, dass er die Adern insgesamt umschließt und dabei die Aderisolierungen unmittelbar an deren Außenseite umhüllt und jeweils zwischen zwei Adern von einer Flachseite des Flachkabels zur anderen Flachseite durchgreift. Der Außenmantel definiert die Außenkontur des Flachkabels.
  • Andere Merkmale ergeben sich aus den offenbarten Vorrichtungen und Verfahren oder werden dem Fachmann aus der folgenden Beschreibung der Beispiele und den begleitenden Figuren klar.
  • ALLGEMEINE ERLÄUTERUNG, AUCH BETREFFEND FAKULTATIVE AUSGESTALTUNGEN DER ERFINDUNG
  • Das erfindungsgemäße Flachkabel ist zur Kurzschlussvermeidung im Brandfall auch bei Verlegung auf einem elektrisch leitenden Tragkörper, beispielsweise einer metallischen (d.h. elektrisch leitenden) Kabelpritsche, vorgesehen.
  • Kurzschluss kann durch elektrischen Kontakt zwischen zwei Aderleitern zustande kommen. Im Brandfall brennen nicht brandfeste Kabelisolierungen aufgrund hoher Umgebungstemperaturen oder direkter Flammeneinwirkung ab.
  • Bei Ausführungen als einphasiges Flachkabel weist dieses z.B. zwei oder drei Adern auf (eine spannungsführende Ader, eine Ader für den Neutralleiter und ggf. eine Ader für den Schutzleiter), bei Ausführungen als dreiphasiges Flachkabel sind es z.B. vier oder fünf Adern (je eine Ader pro Phase, und eine Ader für den Neutralleiter und ggf. eine Ader für den Schutzleiter). Die einzelnen Adern umfassen einen Aderleiter und eine Aderisolierung.
  • Die einzelnen Aderleiter des Flachkabels weisen eine im Querschnitt ringförmige Aderisolierung auf. Bei der oder den spanungsführenden Adern und optional auch beim Neutralleiter und/oder dem Schutzleiter, also wenigstens bei einer Ader des Flachkabels umfasst die Aderisolierung im Brandfall keramisierendes Isoliermaterial, welches direkt, d.h. ohne zusätzliche Zwischenschicht, auf die Leiteroberfläche extrudiert ist. Im Brandfall keramisierende Isolierstoffe sind im Stand der Technik bekannt, wie zum Beispiel aus P. Eyerer et al., Polymer Engineering Technologien und Praxis, Springer-Verlag, 2008, S. 111, Stichwort "Keramisierende Polymere", und K. W. Thomson et al., In the firing line, European Coatings Journal, 2006, 12, S. 34-39. Das Isoliermaterial ist beispielsweise ein thermoplastischer Kunststoff mit einem oder mehreren im Brandfall keramisierenden Zusatzstoffen, die bei Abbrennen des Kunststoffs eine keramische Kruste ausbilden. Bei den Zusatzstoffen kann es sich beispielsweise um Silicatmaterial, Metall- oder Halbmetalloxide (wie SiO2, Al2O3), oder andere geeignete keramisierende Materialien, wie Zinkborat, oder Mischungen hiervon handeln. Der keramisierende Kunststoff wird z.B. als Schmelze direkt auf die Oberfläche des Aderleiters aufgebracht, und umschließt die Aderleiter im Querschnitt ringförmig. Wenn im Brandfall der Kunststoff der Aderisolierung abbrennt, bildet der keramisierende Zusatzstoff die besagte isolierende Kruste, die dann noch eine gewisse elektrische Isolation gewährleistet.
  • Weiterhin umfasst das Flachkabel einen Zwischenmantel aus Kunststoff, der die Außenseite der Aderisolierungen umhüllt, z.B. kann der Zwischenmantel auf die Aderisolierungen extrudiert sein, und die Adern insgesamt umschließen. Dadurch entsteht ein im Wesentlichen rechteckiger Kunststoffblock, in den die einzelnen Adern eingelassen sind. Durch den im Wesentlichen rechteckigen Kunststoffblock entsteht zwischen den parallel angeordneten Adern ein Durchgriff aus Kunststoff. Der Durchgriff erstreckt sich zwischen jeweils zwei der Adern von einer der Flachseiten des Kunststoffblocks zur anderen Flachseite. Der Durchgriff stellt eine Beabstandung zwischen den Zentren der einzelnen Adern sicher, die größer ist als der Durchmesser einer Ader. Somit berühren sich die Adern nicht, sondern verlaufen unter einem Abstand voneinander, und werden vom durchgreifenden Zwischenmantel definiert in diesem Abstand gehalten. Die hierdurch sichergestellte Beabstandung der Adern wirkt bei Brandeinwirkung gegen Kurzschluss vorbeugend, da die Adern schon von vorneherein auseinander liegen und sich so im Brandfall weniger leicht berühren, d.h. im elektrischen Kontakt zueinander stehen, können. Der durch den Durchgriff sichergestellte, relativ große Aderabstand wirkt somit mit den anderen beschriebenen Maßnahmen zur Kurzschlussvermeidung (keramisierende Aderisolierung, feuerbeständige isolierende Schicht außerhalb des Zwischenmantels) zusammen.
  • Aufgrund der eingangs genannten, für Brand-Funktionserhalt günstigen Eigenschaften eines Flachkabels ist diese Ausführung mit beabstandeten Adern mit im Brandfall keramisierenden Aderisolierungen zur Vermeidung von Kurzschlüssen zwischen zwei Aderleitern ausreichend ausgerüstet. Zwischen zwei spannungsführenden Aderleitern liegen im Brandfall zwei keramisierte Aderisolierungen. Es wurde jedoch erkannt, dass es bei Flachkabeln, die auf metallischen Kabeltragsystemen verlaufen, zu Kurzschlüssen auch zwischen einem oder mehreren Aderleitern und den elektrisch leitenden Tragkörpern kommen kann. Zwischen einem Aderleiter und einem solchen elektrisch leitenden Tragkörper liegt im Brandfall nur eine keramisierte Aderisolierung. Um einerseits die Dicke der keramisierenden Aderisolierungen möglichst gering halten zu können und anderseits eine ausreichende elektrische Isolierung im Brandfall nach unten zu einem elektrisch leitenden Tragkörper zu gewährleisten, wurde erkannt, dass es günstig ist, eine hierauf gerichtete weitere kurzschlussvermeidende Maßnahme für den Brandfall vorzusehen.
  • Als zusätzliche Absicherung vor Kurzschlüssen im Brandfall durch Kontakt von Aderleitern mit einem elektrisch leitenden Tragkörper des Flachkabels, z.B. einer Kabelpritsche aus Metall, umfasst das Flachkabel wenigstens eine feuerbeständige Isolierschicht.
  • Bei manchen Ausgestaltungen umfasst das Flachkabel eine einzelne feuerbeständige Isolierschicht, bei anderen Ausgestaltungen umfasst es mehr als eine solche Isolierschicht, wobei die mehreren Schichten z.B. unmittelbar aufeinanderliegen und damit einen Schichtenaufbau bilden.
  • Die wenigstens eine Isolierschicht ist nicht brennbar und bei Brandeinwirkung formstabil, d.h. sie behält ihre isolierende Eigenschaft auch im Brandfall, beispielsweise in einem Ofenversuch bei 750°C über wenigstens 15 min, bei.
  • Die feuerbeständige Isolierschicht ist bzw. die mehreren feuerbeständigen Isolierschichten sind außerhalb des Zwischenmantels angeordnet; sie gewährleistet (bzw. gewährleisten) damit auch im Brandfall eine elektrische Isolation zwischen den Adern und dem metallischen Tragkörper des Flachkabels. Die feuerbeständige Isolierschicht erstreckt sich z.B. über die gesamte Fläche zwischen den jeweils äußeren Adern des Flachkabels und überdeckt damit alle Adern des Flachkabels samt den Ader-Zwischenräumen.
  • Umgeben ist dieser Aufbau von einer äußeren Schutzschicht, dem Außenmantel, die die Außenkontur des Flachkabels definiert und dem Kabel im Normalbetrieb ggf. Beständigkeit gegen aggressive Substanzen und mechanische Beschädigung verleiht und farbig markiert und beschriftet sein kann.
  • Das beschriebene Kabel vermeidet somit im Brandfall nicht nur direkte Kurzschlüsse zwischen benachbarten Adern, sondern aufgrund der verstärkten feuerbeständigen Ausrüstung zur Flachseite auch solche zu einem metallischen Tragkörper. Es ist dabei wegen des relativ sparsamen Einsatzes von keramisierendem Kunststoff kostengünstiger als bekannte Kabel herstellbar.
  • Wie bereits ausgeführt wurde, umfasst das keramisierende Isolationsmaterial der Aderisolierungen bei manchen Ausgestaltungen einen Kunststoff, der mit keramiserendem Zusatzstoff versetzt ist. Hierbei kann der Kunststoff ein flexibles, nicht-halogenisiertes thermoplastisches Polymer, wie z.B. Polyethylen, Polypropylen, Ethylen-Propylen-Dien (EPDM), Acrylnitril-Butadien-Styrol, Polyamide, Polylactat, Polymethylmethacrylat, Polycarbonat, Polyethylenterephthalat, Polystyrol, Polyetheretherketon, oder Mischungen hiervon sein, welches mit dem keramisierenden Zusatzstoff versetzt ist. Die Aderleiter können mit einer Schmelze aus dem mit keramisierendem Zusatzstoff versetzten Kunststoff umspritzt werden, um so die Adern einschließlich der keramisierenden Aderisolierung zu erhalten. Wie oben erwähnt, sind geeignete, im Brandfall keramisierende Zusatzstoffe bekannt; siehe zum Beispiel P. Eyerer et al., Polymer Engineering Technologien und Praxis, Springer-Verlag, 2008, S. 111, Stichwort "Keramisierende Polymere", und K. W. Thomson et al., In the firing line, European Coatings Journal, 2006, 12, S. 34-39. Es handelt sich bei den keramisierenden Zusatzstoffen beispielsweise um Silicatmaterial, Metall- oder Halbmetalloxid (wie SiO2, Al2O3), oder anderes geeignetes keramisierendes Material, wie Zinkborat, oder Mischungen hiervon.
  • In manchen Ausgestaltungen bildet der keramisierende Zusatzstoff im Brandfall, d.h. bei Temperaturen bei denen der Kunststoff in dem sich der Zusatzstoff befindet abbrennt, eine isolierende Kruste. Mit anderen Worten, der Kunststoff ist mit einem oder mehreren Krustenbildnern versetzt, die im Brandfall eine stabile, nicht leitende Asche hinterlassen. -
  • Bei manchen Ausgestaltungen ist bei der wenigstens einen Ader, die mit im Brandfall keramisierendem Isoliermaterial ausgerüstet ist, die Aderisolierung in ihrer gesamtem Dicke aus dem aufextrudierten, im Brandfall keramisierendem Isoliermaterial hergestellt. Dies führt im Brandfall zu einer relativ dicken isolierenden Kruste.
  • Bei anderen Ausgestaltungen ist die Aderisolierung bei der wenigstens einen Ader mit im Brandfall keramisierendem Isoliermaterial hingegen zweischichtig aufgebaut. Nur ein innerer Teil der Aderisolierung ist aus dem aufextrudierten, im Brandfall keramisierendem Isoliermaterial hergestellt, während ein äußerer Teil der Aderisolierung aus nicht feuerbeständigem Kunststoff hergestellt ist, also im Brandfall abbrennt. Wie oben erwähnt, hat ein Flachkabel von Haus aus günstige Funktionserhalteigenschaften bei Brand (wegen der Abwesenheit von Leiterüberkreuzungen und inneren Spannungen); aufgrund dieser Eigenschaften und durch Zusammenwirken mit der feuerbeständigen Isolierschicht außerhalb des Zwischenmantels reicht es aus, nur einen Teil der Aderisolierung feuerbeständig auszubilden. Damit die bei Brand entstehende isolierende Kruste direkt am Aderleiter liegt, ist es die innere Schicht der zweischichtigen Aderisolierung, die aus dem im Brandfall keramisierendem Isoliermaterial hergestellt ist. Durch diese Maßnahme wird daher die benötigte Menge keramisierenden Isoliermaterials minimiert. Andererseits erleichtert die Ausrüstung der Adern mit einer nicht feuerbeständigen Kunststoffumhüllung zusätzlich zu der feuerbeständigen, dass die an eine Aderisolierung zu stellenden Bedingungen für den Normalbetrieb (Nicht-Brandfall), wie Festigkeit, Elastizität, Beständigkeit gegen aggressive Substanzen, etc.) leichter erfüllt werden können, als allein mit einer feuerbeständigen Umhüllung.
  • Aus den bisherigen Ausführungen geht hervor, dass bei wenigstens einer der Adern des Flachkabels die Aderisolierung ein im Brandfall keramisierendes Isoliermaterial umfasst. Dies bringt zum Ausdruck, dass nicht alle Adern des Flachkabels mit diesem feuerbeständigen Isoliermaterial ausgerüstet sein müssen, schließt aber die Möglichkeit einer feuerbeständigen Ausrüstung aller Adern ein.
  • Bei manchen Ausgestaltungen sind sämtliche Adern des Flachkabels mit im Brandfall keramisierendem Isoliermaterial ausgerüstet.
  • Bei anderen Ausgestaltungen ist hingegen nur ein Teil der Adern des Flachkabels mit im Brandfall keramisierendem Isoliermaterial ausgerüstet, während bei einer oder mehrerer Adern des Flachkabels die Aderisolierung insgesamt aus nicht feuerbeständigem Kunststoff hergestellt ist, so dass sie im Brandfall vollständig abbrennt. Bei der bzw. den nicht feuerbeständig ausgerüsteten Adern kann es sich um diejenigen Adern handeln, die dazu bestimmt sind, keine Spannung zu führen, also beispielsweise um die den Schutzleiter bildende Ader. Eine feuerbeständige Isolierung ist bei einer solchen Ader nämlich nicht erforderlich, da sie auf demselben (Erd-)Potential wie z.B. eine elektrisch leitende Kabelpritsche liegt, und daher bei Verlust der Isolation im Brandfall eine Leiterberührung z.B. mit der Kabelpritsche keinen Kurzschluss zur Folge hat. Durch diese Maßnahme wird daher die benötigte Menge keramisierenden Isoliermaterials minimiert.
  • Die den Neutralleiter bildende Ader liegt strenggenommen nicht genau auf Erdpotential, da bei einem nicht genau phasenkompensierten Dreiphasensystem (und erst recht bei einem Einphasensystem) ein Stromfluss im Neutralleiter stattfindet, der i.A. zu einer von Null verschiedenen Spannung des Neutralleiters gegenüber Erde führt. Bei manchen Ausgestaltungen ist daher auch die den Neutralleiter bildende Ader mit im Brandfall keramisierendem Isoliermaterial ausgerüstet. Bei anderen Ausgestaltungen wird hingegen die am Neutralleiter anliegende Spannung als vernachlässigbar angesehen, so dass (auch) die den Neutralleiter bildende Ader nicht feuerbeständig ausgerüstet ist.
  • Bei manchen Ausführungen ist auch der Zwischenmantel aus einem im Brandfall keramisierenden Isoliermaterial bzw. Kunststoff hergestellt.
  • Durch die Ausrüstung des Flachkabels mit der feuerbeständigen Isolierschicht außerhalb des Zwischenmantel kann aber auf eine solche keramisierende Ausführung des Zwischenmantels verzichtet werden. Bei manchen Ausgestaltungen ist der Kunststoff des Zwischenmantels also ein nicht feuerbeständiger Kunststoff, der im Brandfall abbrennt. Der Zwischenmantel hinterlässt also, im Gegensatz zu den Aderisolierungen der spannungsführende Adern, keine isolierende Kruste, oder sonstige isolierende Schicht. Der Zwischenmantel erbringt also im Brandfall auch keine feuerbeständige Isolierung (etwa eine zusätzliche Verkrustung) im Bereich des Durchgriffs zwischen den Adern, zusätzlich zu derjenigen der Aderisolierungen. Der Zwischenmantel leistet also keinen Beitrag zum Brandschutz; er dient vielmehr (nur) der Stabilisierung des Flachkabels und der Beabstandung der Adern im Normalbetrieb (d.h. im Nicht-Brandfall). Im Falle eines Brandes kommen die Adern mit der aus den Aderisolierungen gebildeten isolierenden Kruste auf der feuerbeständigen Isolierschicht zu liegen.
  • Entsprechendes gilt für den Außenmantel: Dieser kann ebenfalls aus einem im Brandfall keramisierenden Isoliermaterial bzw. Kunststoff hergestellt sein. Durch die Ausrüstung des Flachkabels mit der feuerbeständigen Isolierschicht außerhalb des Zwischenmantels kann auf eine solche keramisierende Ausführung des Außenmantels verzichtet werden. Bei manchen Ausgestaltungen ist der Kunststoff des Außenmantels also ein nicht feuerbeständiger Kunststoff, der im Brandfall abbrennt. Der Außenmantel hinterlässt also, im Gegensatz zu den Aderisolierungen, keine isolierende Kruste, oder sonstige isolierende Schicht.
  • In manchen Ausgestaltungen ist der Zwischenmantel direkt und ohne Zwischenschicht auf die Außenseite, also die Oberfläche, der Aderisolierungen extrudiert. Eine Kunststoffschmelze wird direkt auf die parallel nebeneinander geführten Adern extrudiert und formt dadurch den oben beschriebenen Durchgriff zwischen je zwei Adern und sorgt für deren Beabstandung. Somit befindet sich zwischen zwei Adern außerhalb der im Querschnitt ringförmigen Aderisolierung nur der Kunststoff des Durchgriffs des Zwischenmantels. Die hierdurch sicher gestellte Beabstandung der Adern wirkt bei Brandeinwirkung gegen Kurzschluss vorbeugend, da die Adern schon von vorneherein weit auseinander liegen und sich so weniger leicht berühren, d.h. im elektrischen Kontakt zueinander stehen, können.
  • In manchen Ausgestaltungen entspricht der Abstand benachbarter Adern von Außenseite zu Außenseite der benachbarten Aderisolierungen wenigstens dem Aderradius. Für den Fall, dass die benachbarten Adern unterschiedlich große Radien aufweisen, wird unter dem "Aderradius" der mittlere Radius der beiden Adern verstanden. Dieser relativ große Aderabstand ist besonders gegen Kurzschluss vorbeugend, und wirkt somit mit den anderen beschriebenen Maßnahmen zur Kurzschlussvermeidung zusammen.
  • In manchen Ausgestaltungen umgibt die feuerbeständige Isolierschicht den Zwischenmantel vollständig in Form von einer oder mehreren Wicklungen, ist also an beiden Flachseiten des Flachkabels vorhanden.
  • Bei anderen Ausgestaltungen ist die feuerbeständige Isolierschicht als zweigeteilte Einlage an den beiden Flachseiten jeweils zwischen Zwischenmantel und Außenmantel ausgebildet. Dabei kann die feuerbeständige Isolierschicht nur an den Flächseiten des Flachkabels (d.h. nicht an dessen Schmalseiten) vorgesehen sein, oder sie kann sich auch in den Bereich der Schmalseiten erstrecken.
  • In noch anderen Ausgestaltungen weist das Flachkabel hingegen nur auf einer Seite eine feuerbeständige Isolierschicht auf. Auch bei diesen Ausgestaltungen kann die feuerbeständige Isolierschicht nur an der einen Flachseite des Flachkabels (d.h. nicht an dessen Schmalseiten) vorgesehen sein, oder sie kann sich auch in den Bereich der Schmalseiten erstrecken.
  • In den Ausgestaltungen mit feuerbeständiger Isolierschicht auf nur einer der beiden Flachseiten des Flachkabels ist bei der Verlegung des Flachkabels auf einem elektrisch leitenden Tragkörper des Flachkabels, z.B. Metallpritschen, dafür Sorge zu tragen, dass das Kabel mit der besagten Flachseite mit der feuerbeständigen Isolierschicht zu dem elektrisch leitenden Tragkörper, d.h. nach unten orientiert ist. Damit ist sichergestellt, dass sich die feuerbeständige Isolierschicht im Brandfall zwischen den Aderleitern und dem elektrisch leitenden Tragkörper befindet.
  • Um bei letzteren Ausgestaltungen die besagte Orientierung des Flachkabels mit der feuerbeständigen Isolierschicht nach unten zu erleichtern, weist der Außenmantel bei manchen dieser Ausgestaltungen keine 180°-Symmetrie auf, um die Seite mit der wenigstens einen feuerbeständigen Isolierschicht durch eine asymmetrische Ausgestaltung der Außenkontur des Außenmantels von außen erkennbar zu machen.
  • Hierzu folgende Erläuterung: Ein Flachkabel, bei dem die beiden möglichen Orientierungen von außen ununterscheidbar wären, wiese eine 180°-Symmetrie um eine Symmetrieachse in der Kabelmitte in Kabellängsrichtung auf (weil die beiden Orientierungen einer Drehung des Kabels um 180° um die besagte Symmetrieachse entsprechen). 180°-Symmetrie bedeutet also, dass ein Flachkabel um diese Achse gewendet werden kann, ohne dass sich seine äußere Querschnittsform in diesen beiden Orientierungen unterscheiden würde.
  • Zur Brechung der 180°-Symmetrie können bei diesen Ausgestaltungen beispielsweise verschiedenartige Kantenverrundungen der im Wesentlichen rechteckigen Kontur des Flachkabels und/oder eine Indexnase und/oder eine Einbuchtung an einer oder mehreren der Außenseiten des Außenmantels dienen. Durch eine derartige Brechung der Symmetrie ist von außen erkennbar, wie das Flachkabel zu orientieren ist, damit die feuerbeständige Isolierschicht unten liegt.
  • Bei manchen Ausgestaltungen umfasst die wenigstens eine feuerbeständige Isolierschicht einen feuerbeständigen und elektrisch isolierenden Mineralstoff, der elektrischen Kontakt zwischen den Aderleitern und dem Tragkörper für das Flachkabel im Brandfall verhindert. Bei manchen Ausgestaltungen handelt es sich bei dem Mineralstoff um ein Silicat.
  • Beispielsweise umfasst die feuerbeständige Isolierschicht eine Glimmerschicht. Glimmer ist ein spaltbares Tonerdesilicat, welches elektrisch isolierend und feuerbeständig ist.
  • Zwecks leichterer Verarbeitung kann bei manchen der Ausgestaltungen mit Glimmerschicht die feuerbeständige Isolierschicht ein flexibles Trägerband, z.B. ein Glasgewebeband umfassen. Die Glimmerschicht kann auf das flexible Trägerband geklebt sein. Das flexible Trägerband wird z.B. zusammen mit der Glimmerschicht bei der Herstellung des Flachkabels auf den Zwischenmantel aufgebracht, z.B. aufgebügelt.
  • Die vorliegende Beschreibung betrifft auch eine Verwendung des Flachkabels, bei der es auf einem elektrisch leitenden Tragkörper ausgelegt wird. Dabei wird es so orientiert, dass die wenigstens eine feuerbeständige Isolierschicht zwischen den Adern und dem Tragkörper zu liegen kommt. Hat das Flachkabel eine feuerbeständige Isolierschicht auf beiden Flachseiten, so ist es unerheblich, mit welcher Orientierung das Flachkabel verlegt wird. Hat es hingegen die feuerbeständige Isolierschicht nur auf einer Flachseite wird das Kabel - wie oben erwähnt - mit der Isolierschicht zum Trägerkörper orientiert.
  • Es ist auch möglich, mehrere Flachkabel parallel übereinander zu legen, d.h. die Flachkabel auf dem Tragkörper zu stapeln. Auch bei dieser Verwendung wird bei Ausgestaltungen mit nur auf einer Flachseite vorhandener feuerbeständiger Isolierschicht die Orientierung der gestapelten Flachkabel so gewählt, dass jeweils die Seite mit der feuerbeständigen Isolierschicht auf der Unterseite des Flachkabels liegt.
  • In der vorliegenden Beschreibung ist auch ein Beispiel eines geeigneten Verfahrens zum Herstellen des oben beschriebenen Flachkabels angegeben. Das Verfahren umfasst das Umspritzen von Aderleitern mit im Brandfall keramisierendem Isoliermaterial, mit einem Extruder. Die so gewonnene Aderisolierung umschließt die Leiter daher mit ringförmigem Querschnitt direkt an deren Oberfläche und stellt damit bezüglich der Leiteroberfläche eine durchgehende feuerbeständige Schutzschicht dar.
  • Dann wird der Zwischenmantel hergestellt. Bei manchen Ausgestaltungen des Verfahrens erfolgt dies ebenfalls durch Extrusion, indem z.B. die einzelnen Adern parallel nebeneinander in einer Ebene voneinander mit einem Extruder mit einem Kunststoffüberzug versehen werden, so dass der Kunststoff die Adern insgesamt umhüllt. Die Kunststoffschmelze wird z.B. direkt auf die Außenseite der Aderisolierungen extrudiert und erzeugt einen im Wesentlichen rechteckigen Kunststoffblock in dem die Adern eingegossen sind, den Zwischenmantel. Dabei sind, wie oben beschrieben, die Adern so weit voneinander beabstandet, dass der Zwischenmantel die Adern von einer seiner Flachseiten zur gegenüberliegenden Flachseite hin durchgreift.
  • Dann wird die wenigstens eine feuerbeständige Isolierschicht außen auf den Zwischenmantel aufgebracht. Die feuerbeständige Isolierschicht kann mit dem Zwischenmantel verbunden werden, beispielsweise indem sie auf den Zwischenmantel geklebt oder gebügelt wird. Es ist auch möglich, Isolierschicht und Zwischenmantel zunächst ohne derartige Verbindung nur zu fügen, d.h. aufeinander zu legen, und für eine Verbindung zwischen beiden nur durch den Außenmantel zu sorgen, der z.B. ebenfalls aufextrudiert werden kann.
  • Abschließend wird der Außenmantel auf den Zwischenmantel samt der feuerbeständigen Isolierschicht aufgebracht; er definiert die Außenkontur des Flachkabels, abhängig von der Anordnung der feuerbeständigen Isolierschicht zwischen Zwischenmantel und Außenmantel. Wie erwähnt kann dies bei manchen Ausgestaltungen des Verfahrens ebenfalls durch Extrusion erfolgen, indem der Zwischenmantel samt den darin liegenden Adern zusammen mit der feuerbeständigen Isolierschicht mit einem Extruder mit einem Kunststoffüberzug versehen werden, der den Außenmantel bildet.
  • KURZE BESCHREIBUNG DER ZEICHNUNG
  • Im Folgenden werden Beispiele der vorliegenden Erfindung auch anhand der beiliegenden Zeichnung erläutert, wobei:
  • Fig. 1
    einen schematischen Aufbau einer Ausführungsform des Flachkabels in einer schrägen Seitenansicht zeigt,
    Fig. 2
    schematisch einen Querschnitt der Ausführungsform von Fig. 1 zeigt,
    Fig. 3
    eine Ausführungsform einer Kabelpritsche zur Verlegung des Flachkabels zeigt,
    Fig. 4
    schematisch einen Querschnitt einer Ausführungsform des Flachkabels mit zweischichtigen Aderisolierungen bei einem Teil der Adern auf einer Kabelpritsche im Nicht-Brandfall zeigt,
    Fig. 5
    schematisch einen Querschnitt der Ausführungsform des Flachkabels von Fig. 4 auf der Kabelpritsche während bzw. nach einem Brandfall zeigt,
    Fig. 6
    schematisch eine beispielhafte Ausführungsform eines Verfahrens zur Herstellung des Flachkabels zeigt.
  • Die Zeichnungen und die Beschreibung der Zeichnungen beziehen sich auf Beispiele der Erfindung und nicht auf die Erfindung selbst.
  • BESCHREIBUNG BEISPIELHAFTER AUSFÜHRUNGSFORMEN ANHAND DER ZEICHNUNG
  • Fig. 1 zeigt eine beispielhafte Ausführungsform eines Flachkabels 1 mit Kurzschlussvermeidung im Brandfall auch bei Verlegung auf einem elektrisch leitenden Tragkörper.
  • Das Flachkabel 1 weist bei dem hier beispielhaft gezeigten Drei-Phasen-System z.B. fünf parallele Adern 7 auf, die nebeneinander in einer Ebene in einem fest definierten Abstand zueinander verlaufen. Jede dieser fünf Adern 7 besteht aus einem metallischen Aderleiter 2 in der Mitte und einer diesen ringförmig umgebenden Aderisolierung 3. Bei dem in Fig. 1 gezeigten Beispiel sind die Aderisolierungen 3 jeweils aus einer einzelnen Schicht Isoliermaterial aufgebaut. Bei dem Isoliermaterial handelt es sich um mit Mineralstoffen versetzten Kunststoff. Die Mineralstoffe bilden bei brandtypischen Temperaturen, über der normalen Betriebstemperatur, wenn die Kunststoffmatrix in der sie sich befinden, abbrennt (oberhalb 200° - 300° C), eine keramische Kruste, welche einen Kurzschluss zwischen den Aderleitern 2 verhindert. Entsprechendes gilt bei zweischichtigen Aderisolierungen gemäß dem Ausführungsbeispiel der Fig. 4 und 5 für die innere Schicht.
  • Die drei links gelegenen Adern 7 dienen bei dem in den Fig. 1, 2, 4, 5 gezeigten Flachkabel 1 beispielsweise als Phasenleiter, während die rechts der Mitte liegende Ader 7 z.B. der Neutralleiter und die rechts außen gelegene Ader 7 z.B. der Schutzleiter sind. Bei manchen der durch die Fig. 1 und 2 veranschaulichten Ausführungsformen sind alle Adern 7 gleichartig ausgebildet, d.h. sie haben gleichen Leiterquerschnitt, die gleiche feuerbeständige (keramisierende) Aderisolierung und gleiche Aderabstände. Bei anderen der durch die Fig. 1 und 2 veranschaulichten Ausführungsformen sind hingegen nur die drei spannungsführenden Adern, d.h. die Phasenleiter mit feuerbeständiger (keramisierender) Aderisolierung ausgerüstet, während die Aderisolierung des Schutzleiters insgesamt aus nicht feuerbeständigem Kunststoff hergestellt ist. Der Neutralleiter ist i.A. nicht völlig spannungslos; er hat bei manchen Ausführungsformen eine feuerbeständige Aderisolierung (wie die Phasenleiter), bei anderen Ausführungsformen hingegen eine nicht feuerbeständige Aderisolierung (wie der Schutzleiter).
  • Die einzelnen Adern 7 sind in einen nicht brandfesten Zwischenmantel 4 aus Kunststoff gebettet. Der Zwischenmantel 4 umgibt die Adern 7 an allen Seiten und bildet jeweils einen Durchgriff zwischen den einzelnen Adern 7 von einer der Flachseiten des Flachkabels 1 zur anderen Flachseite.
  • Der Durchgriff des Zwischenmantels 4 stellt im Normalbetrieb die parallele Beabstandung der Adern 7 sicher und sorgt im Brandfall aufgrund des Abstandes zwischen den Adern 7 für zusätzliche Kurzschlussvermeidung zwischen den einzelnen Aderleiter 2.
  • Durch diesen kompakten Aufbau des Kabelinneren mit einem durch den Zwischenmantel 4 gebildeten durchgehenden Kunststoffblock, in den die einzelnen Adern 7 eingelassen sind, wird eine Stützstruktur erzeugt, die dem gesamten Flachkabel 1 Stabilität verleiht. Durch den Verbund der beiden Flachseiten über den Durchgriff wird ein Abheben, d.h. Ablösen, der Ober- bzw. Unterseite des Flachkabels 1 verhindert.
  • Auf einer der beiden Flachseiten des Flachkabels 1, der Unterseite des Flachkabels 1, befindet sich außerhalb des Zwischenmantels 4 eine feuerbeständige Isolierschicht 5, z.B. aus Glimmer, ggf. auf einem Glasgewebeband. Im Brandfall, wenn der Zwischenmantel 4 und der unten genannte Außenmantel 6 vollständig abgebrannt sind, stellt diese Isolierschicht 5 eine verbleibende elektrische Isolation zwischen den Adern 7 und der ggf. leitenden Auflagefläche des Flachkabels 1 bereit.
  • Der gesamte beschriebene Aufbau ist schließlich von einem nicht brandfesten Außenmantel 6 aus Kunststoff umgeben, der das Flachkabel 1 vor aggressiven Substanzen und mechanischer Beschädigung schützt.
  • Der Außenmantel 6 gibt dem Flachkabel 1 seine äußere Kontur. Das Flachkabel 1 weist an einer der beiden schmalen Seiten des Außenmantels 6 eine Indexnase 8 auf. Die asymmetrische Außenkontur des Flachkabels 1 sorgt beim späteren Verlegen des Flachkabels 1 dafür, dass die Seite mit der feuerbeständigen Isolierschicht 5, d.h. der Glimmerschicht, von außen erkennbar ist, so dass das Flachkabel 1 mit dieser Schicht 5 nach unten verlegt wird.
  • Fig. 2 zeigt einen schematischen Querschnitt der beispielhaften Ausführungsform eines Flachkabels 1 mit Kurzschlussvermeidung im Brandfall auch bei Verlegung auf einem elektrisch leitenden Tragkörper, die oben beschrieben ist.
  • Das Flachkabel 1 weist z.B. fünf Adern 7 auf, wobei die Adern 7 einen mit "21" bezeichneten Durchmesser aufweisen. Der mit "22" bezeichnete Abstand zwischen den Mittelpunkten zweier benachbarter Aderleiter 2 beträgt wenigstens das 1,5-fache des Aderdurchmessers 21.
  • Der Zwischenraum zweier benachbarter Adern 7 ist vom Durchgriff des Zwischenmantels 4 von einer Flachseite des Flachkabels 1 zur anderen ausgefüllt. Der Zwischenmantel 4 umgibt alle Aderisolierungen 3 vollständig. An den Seitenkanten kann der Zwischenmantel 4 Verrundungen 25 aufweisen.
  • Auf einer Flachseite des Flachkabels 1 befindet sich außen am Zwischenmantel 4 eine feuerbeständige Isolierschicht 5 in Form einer Glimmerschicht mit einer Breite 28, welche sich wenigstens vom äußeren Rand einer der beiden äußeren Adern 7 zu demjenigen der anderen äußeren Ader 7 erstreckt und so eine elektrische Isolation zwischen den Adern 7 und einer elektrisch leitenden Unterlage im Brandfall (d.h. bei abgebranntem Zwischenmantel 4 und Außenmantel 6) gewährleistet.
  • Der genannte elektrisch leitende Tragkörper für das Flachkabel 1 kann z.B. eine metallische Kabelpritsche 9 gemäß Fig. 3 sein. Bei dem gezeigten Beispiel handelt es sich um eine Lochblech-Kabelpritsche aus Metall mit gebördelten Oberkanten.
  • Die Fig. 4 und 5 zeigen einen schematischen Querschnitt einer Ausführungsform des Flachkabels 1 mit zweischichtiger Aderisolierung auf der Kabelpritsche 9 im Normalzustand, d.h. im Nicht-Brandfall (Fig. 4) bzw. im Brandfall (Fig. 5). Die Fig. 4 und 5 samt zugehöriger Beschreibung treffen in analoger Weise auch auf die einschichtige Ausführungsform der Fig. 1 und 2 zu. Die Fig. 4 und 5 veranschaulichen damit auch die Verwendung der Ausführungsform der Fig. 1 und 2 auf einer elektrisch leitfähigen Kabelunterlage vor und nach einem Brand.
  • Bei der in Fig. 4 beispielhaft dargestellten zweischichtigen Aderisolierung weist die Aderisolierung der spannungsführenden Adern 7 (hier der Phasenleiter und des Neutralleiters) eine innere Schicht der Aderisolierung 3 auf, die aus im Brandfall keramisierendem, d.h. feuerbeständigem Kunststoff hergestellt ist, sowie eine äußere Schicht der Aderisolierung 10 aus nicht feuerbeständigen Kunststoff. Die feuerbeständige innere Schicht 3 ist unmittelbar auf den Aderleiter 2 aufextrudiert, während die nicht feuerbeständige äußere Schicht 10 die innere Schicht 3 umgibt.
  • Diese feuerbeständige Ausbildung der Aderisolierung kann bei allen Adern 7 vorgesehen sein, kann aber auch auf die auf spannungsführenden Adern (ggf. einschließlich des Neutralleiters) beschränkt sein. Letzteres ist in den Fig. 4 und 5 beispielhaft dargestellt, bei der der (im Bild rechts außen liegende) Schutzleiter 7a eine einheitliche (d.h. einschichtige) Aderisolierung aus nicht brandfestem Kunststoff 10 aufweist.
  • Das Flachkabel 1 liegt im Nicht-Brandfall flach auf der Kabelpritsche 9, wobei die feuerbeständige Isolierschicht 5 nach unten, d.h. zur Auflagefläche des Flachkabels 1 orientiert ist.
  • In dem in Fig. 5 veranschaulichten Brandfall, d.h. nach dem im Wesentlichen rückstandslosen Abbrennen der nicht brandfesten Schicht 10 der Aderisolierungen (bzw. der gesamten Aderisolierung 10 des Schutzleiters 7a), des Zwischenmantels 4 und des Außenmantels 6 bleibt von der brandfesten (keramisierenden) Schicht der Aderisolierung 3, dem Zwischenmantel 4, der feuerbeständigen Isolierschicht 5 und dem Außenmantel 6 nur eine isolierende Kruste 3' jeweils um die spannungsführenden Aderleiter 2 sowie die Isolierschicht 5 übrig. Die Adern 7' liegen dann mit der isolierenden Kruste 3' direkt auf der feuerbeständigen Isolierschicht 5. Der Schutzleiter 7a' bildet keine derartige Kruste; der Leiter 2 des Schutzleiters 7a' liegt daher unmittelbar auf der feuerbeständigen Isolierschicht 5.
  • Für die Isolierung der Adern 7' untereinander sorgen die isolierenden Krusten 3'. Für die Isolierung gegenüber der metallischen Kabelpritsche 9 sorgen die isolierenden Krusten 3' und zusätzlich die Isolierschicht 5. Wie bereits erwähnt, erstreckt sich die feuerbeständige Isolierschicht 5 mit der Breite 28 (Fig. 2) wenigstens unterhalb der gesamten Fläche, in der die Adern 7', 7a' des Flachkabels 1 verlaufen. Mit anderen Worten, die feuerbeständige Isolierschicht 5 erstreckt sich wenigstens über die gesamte Breite des Flachkabels 1, in der bei Brandeinwirkung Adern 7', 7a' aufliegen.
  • Entsprechendes gilt im Brandfall für die Ausführungsform der Fig. 1 und 2 in der Variante mit einschichtigen Aderisolierungen mit der Maßgabe, dass nicht nur die innere Schicht der Aderisolierungen eine isolierende Kruste bildet, sondern die gesamte Dicke der Aderisolierungen, da diese über ihre gesamte Dicke mit keramisierenden Zusatzstoffen versetzt sind.
  • Die Figuren 6 A bis C veranschaulichen Schritte eines beispielhaften Herstellungsverfahrens des Flachkabels 1 für beide Ausführungsformen der Fig. 1/2 und Fig. 4/5. Die Figuren 6 A und 6 C zeigen eine hierfür verwendbare Extrusionsvorrichtung in Seitenansicht; Fig. 6 B zeigt eine solche in Draufsicht. Der Einfachheit halber ist das Herstellungsverfahren hier anhand eines Kabels mit nur drei Adern 7 dargestellt.
  • Zunächst wird die feuerbeständige Aderisolierung 3 bzw. die feuerbeständige innere Schicht 3 der Aderisolierung auf die Aderleiter 2 aufgespritzt. Fig. 6 A zeigt die Herstellung einer einzelnen Ader 7. Die weiteren benötigten Adern 7 werden entsprechend hergestellt. Das Aufspritzen der Aderisolierung 3 bzw. der inneren Schicht 3 der Aderisolierung erfolgt durch Extrusion einer mit im Brandfall keramisierenden Zusatzstoff versetzten Kunststoffschmelze unmittelbar auf den Aderleiter 2. Hierzu wird der Aderleiter 2, z.B. Kupferdraht, mechanisch gespannt von einer Abwickeltrommel 31 durch einen Extruder 37, nämlich mittig durch eine formgebende Extruderdüse 35 gezogen. Die Extruderdüse 35 ist kreisförmig und hat einen Durchmesser, der im Wesentlichen dem Ader-Außendurchmesser 21 bzw. dem Außendurchmesser der inneren Schicht 3 entspricht. So entsteht ein im Querschnitt ringförmiger Kunststoffüberzug auf dem Aderleiter 2. Die Menge der pro Zeiteinheit extrudierten Kunststoffschmelze und die Vorschubgeschwindigkeit des Kupferdrahts sind aufeinander abgestimmt, so dass der Außendurchmesser der aufgespritzten Aderisolierung im Wesentlichen dem gewünschten Wert, nämlich dem Düsendurchmesser (Ader-Außendurchmesser 21 bzw. Außendurchmesser der inneren Schicht 3) entspricht. Der Kunststoffüberzug erstarrt durch Abkühlung nach dem Austritt aus der Extruderdüse 35, und bildet so die im Brandfall keramisierende Aderisolierung 3. Die Ader 7 wird auf einer Aufwickeltrommel 33 aufgewickelt. Die besage mechanische Spannung wird mit Hilfe der Ab- und Aufwickeltrommel 31 bzw. 33 erzielt.
  • Bei Ausführungsformen mit zweischichtiger Aderisolierung (Fig. 4 und 5) wird in einem weiteren, analogen Extrusionsvorgang die äußere Schicht der Aderisolierung 10 aus nicht feuerbeständigem Kunststoff auf die innere Schicht 3 extrudiert.
  • Nicht brandfest ausgerüstete Adern 7a werden auf analoge Weise in einem Extrusionsvorgang hergestellt, indem die Aderisolierung 10 aus nicht feuerbeständigem Kunststoff unmittelbar auf den Aderleiter 2 extrudiert wird.
  • Sodann erfolgt gemäß Fig. 6 B das Aufspritzen des (z.B. nicht feuerbeständigen) Zwischenmantels 4 auf die Adern 7 bzw. 7a, hier drei Adern 7. Es erfolgt durch Extrusion einer Kunststoffschmelze (die z.B. keine keramisierenden Zusatzstoffe enthält) unmittelbar auf die Adern 7. Hierzu wird die benötigte Anzahl von Adern 7 (hier drei Adern 7) parallel zueinander in einer Ebene in demjenigen Abstand, der dem späteren Abstand im herzustellenden Flachkabel 1 entspricht (Abstand 22 in Fig. 2), mechanisch gespannt von jeweils einer Abwickeltrommel 41, 41', 41" durch einen weiteren Extruder 47, nämlich mittig durch eine formgebende Extruderdüse 45 gezogen. Die Extruderdüse 45 entspricht in ihrer Form im Wesentlichen der Außenkontur des herzustellenden Zwischenmantels 4. So entsteht der die Aderzwischenräume durchgreifende, und die Adern 7 vollständig einbettende Zwischenmantel 4. Die Menge der pro Zeiteinheit extrudierten Kunststoffschmelze und die Vorschubgeschwindigkeit der Adern 7 sind wiederum so aufeinander abgestimmt, dass die Außenabmessungen des aufgespritzten Zwischenmantels 4 im Wesentlichen den gewünschten Werten, nämlich den Düsenabmessungen bzw. der Dicke und Breite des Zwischenmantels 4 entsprechen. Der Kunststoffüberzug erstarrt durch Abkühlung nach dem Austritt aus der Extruderdüse 45, und bildet so den Zwischenmantel 4 auf den Adern. Das so entstandene Zwischenprodukt 50 (Zwischenmantel 4 mit den eingebetteten Adern 7) wird auf eine Aufwickeltrommel 43 aufgewickelt. Die besagte mechanische Spannung wird mit Hilfe der Ab- und Aufwickeltrommeln 41, 41', 41" bzw. 43 erzielt.
  • Schließlich erfolgt das Aufspritzen des (z.B. nicht feuerbeständigen) Außenmantels 6 auf das Zwischenprodukt 50 und eine feuerbeständige Isolierschicht 5. Dies erfolgt wiederum durch Extrusion einer Kunststoffschmelze (die z.B. keine keramisierenden Zusatzstoffe enthält) auf das Zwischenprodukt 50 und die feuerbeständige Isolierschicht 5 gemäß Fig. 6 C. Hierzu wird das das Zwischenprodukt 50 mit der aufgelegten Isolierschicht 5 mechanisch gespannt von jeweils einer Abwickeltrommel 51, 58 durch einen weiteren Extruder 57, nämlich mittig durch eine formgebende Extruderdüse 55 gezogen. Bei dem zeichnerisch dargestellten Ausführungsbeispiel wird die feuerbeständige Isolierschicht 5 nur einseitig auf das Zwischenprodukt 50 aufgelegt. Bei anderen Ausführungsformen Varianten wird die feuerbeständige Isolierschicht 5 beidseitig auf das Zwischenprodukt 50 aufgelegt; dies kann beispielsweise durch Abwickeln zweier feuerbeständiger Isolierbänder von Abwickelspulen nach Art der gezeigten Abwickelspule 58 erfolgen, oder indem das Zwischenprodukt 50 vor diesem dritten Extrusionsvorgang mit einem feuerbeständigen Isolierband umwickelt wird. Die Extruderdüse 55 entspricht in ihrer Form im Wesentlichen der Außenkontur des herzustellenden Flachkabels 1. So entsteht der den Zwischenmantel 4 samt der feuerbeständigen Isolierschicht 5 einbettende Außenmantel 6. Die Menge der pro Zeiteinheit extrudierten Kunststoffschmelze und die Vorschubgeschwindigkeit von Zwischenprodukt 50 und Isolierschicht 5 sind wiederum so aufeinander abgestimmt, dass die Außenabmessungen des Außenmantels 6 im Wesentlichen den gewünschten Werten, nämlich den Düsenabmessungen bzw. der Dicke und Breite des Flachkabel 1 entspricht. Der Kunststoffüberzug erstarrt durch Abkühlung nach dem Austritt aus der Extruderdüse 55, und bildet so den Außenmantel 6. Das so entstandene fertige Flachkabel 1 wird auf eine Aufwickeltrommel 53 aufgewickelt. Die besagte mechanische Spannung wird mit Hilfe der Ab- und Aufwickeltrommeln 51 bzw. 53 erzielt.
  • Alle Publikationen, die in dieser Beschreibung genannt sind, werden per Bezugnahme in diese einbezogen.
  • Obwohl bestimmte Produkte und Verfahren in Übereinstimmung mit den Lehren der Erfindung hierin beschrieben wurden, wird der Geltungsbereich dieses Patents nicht darauf beschränkt. Im Gegenteil deckt dieses Patent alle Ausführungsformen der Lehren der Erfindung die im Rahmen der beigefügten Ansprüche entweder wörtlich oder unter der Äquivalenzlehre unter die Ansprüche fallen ab.

Claims (18)

  1. Flachkabel (1) mit Kurzschlussvermeidung im Brandfall auch bei Verlegung auf einem elektrisch leitenden Tragkörper, umfassend:
    wenigstens zwei Adern (7, 7a), die parallel nebeneinander in einer Ebene verlaufen;
    wobei die Adern (7, 7a) jeweils einen Aderleiter (2) und eine im Querschnitt ringförmige Aderisolierung (3, 10) aufweisen, wobei bei wenigstens einer der Adern (7) die Aderisolierung (3, 10) unmittelbar auf den Aderleiter (2) extrudiertes, im Brandfall keramisierendes Isoliermaterial umfasst;
    einen Zwischenmantel (4), welcher die Adern (7, 7a) insgesamt umschließt und dabei die Aderisolierungen (3, 10) unmittelbar an deren Außenseite umhüllt, wobei der Zwischenmantel (4) zwischen jeweils zwei Adern (7, 7a) von einer Flachseite des Flachkabels zur anderen Flachseite durchgreift;
    einen Außenmantel (6), welcher den Zwischenmantel (4) umgibt und die Außenkontur des Flachkabels (1) definiert;
    wenigstens eine feuerbeständige Isolierschicht (5), die außen auf dem Zwischenmantel (4) angeordnet ist und zwischen dem Zwischenmantel (4) und dem Außenmantel (6) liegt.
  2. Flachkabel (1) nach Anspruch 1, wobei das keramisierende Isolationsmaterial Kunststoff und wenigstens einen keramisierbaren Zusatzstoff umfasst.
  3. Flachkabel (1) nach Anspruch 2, wobei der keramisierbare Zusatzstoff im Brandfall, wenn der Kunststoff abbrennt, eine isolierende Kruste bildet.
  4. Flachkabel (1) nach einem der Ansprüche 1 bis 3, wobei bei der wenigstens einen Ader (7) mit im Brandfall keramisierendem Isoliermaterial die Aderisolierung in ihrer gesamten Dicke (3) aus dem aufextrudierten, im Brandfall keramisierenden Isoliermaterial hergestellt ist.
  5. Flachkabel (1) nach einem der Ansprüche 1 bis 3, wobei bei der wenigstens einen Ader (7) mit im Brandfall keramisierendem Isoliermaterial ein innerer Teil (3) der Aderisolierung aus dem aufextrudierten, im Brandfall keramisierenden Isoliermaterial hergestellt ist, während ein äußerer Teil (10) der Aderisolierung aus nicht feuerbeständigem Kunststoff hergestellt ist.
  6. Flachkabel (1) nach einem der Ansprüche 1 bis 5, bei dem
    - sämtliche Adern (7) mit im Brandfall keramisierendem Isoliermaterial ausgerüstet sind; oder
    - nur ein Teil der Adern (7) mit im Brandfall keramisierendem Isoliermaterial ausgerüstet sind, während bei einer oder mehreren Adern (7a), die dazu bestimmt sind, keine Spannung zu führen, die Aderisolierung (10) aus nicht feuerbeständigem Kunststoff hergestellt ist, der im Brandfall abbrennt.
  7. Flachkabel (1) nach einem der Ansprüche 1 bis 6, wobei der Zwischenmantel (4) aus nicht feuerbeständigem Kunststoff hergestellt ist, der im Brandfall abbrennt, ohne eine isolierende Kruste oder isolierende Schicht zu hinterlassen.
  8. Flachkabel (1) nach einem der Ansprüche 1 bis 7, wobei der Zwischenmantel (4) unmittelbar auf die Außenseite der Aderisolierungen (3, 10) extrudiert ist.
  9. Flachkabel (1) nach einem der Ansprüche 1 bis 8, wobei der Abstand benachbarter Adern (7, 7a), durch den der Zwischenmantel (4) greift, gemessen von Außenseite zu Außenseite der Aderisolierungen (3, 10) wenigstens dem Radius der Adern (7, 7a) entspricht.
  10. Flachkabel (1) nach einem der Ansprüche 1 bis 7, wobei die wenigstens eine feuerbeständige Isolierschicht (5) an beiden Flachseiten des Flachkabels (1) angeordnet ist.
  11. Flachkabel (1) nach einem der Ansprüche 1 bis 10, wobei die wenigstens eine feuerbeständige Isolierschicht (5) nur an einer der beiden Flachseiten des Flachkabels (1) angeordnet ist.
  12. Flachkabel (1) nach einem der Ansprüche 1 bis 11, wobei der Außenmantel (6) des Flachkabels (1) eine Formgebung hat, die keine 180°-Symmetrie hat, so dass hierdurch diejenige Flachseite des Kabels, an der die wenigstens eine feuerbeständige Isolierschicht (5) angeordnet ist, von außen erkennbar ist.
  13. Flachkabel (1) nach einem der Ansprüche 1 bis 12, wobei die wenigstens eine feuerbeständige Isolierschicht (5) einen feuerbeständigen isolierenden Mineralstoff umfasst.
  14. Flachkabel (1) nach einem der Ansprüche 1 bis 13, wobei die wenigstens eine feuerbeständige Isolierschicht (5) Silicat umfasst.
  15. Flachkabel (1) nach einem der Ansprüche 1 bis 14, wobei die wenigstens eine feuerbeständige Isolierschicht (5) eine Glimmerschicht ist.
  16. Verwendung eines Flachkabels (1) nach einem der Ansprüche 1 bis 15, derart, dass das Flachkabel (1) auf einem elektrisch leitenden Tragkörper ausgelegt wird, wobei das Flachkabel (1) so orientiert wird, dass zwischen den Adern (7, 7a) und dem Tragkörper die wenigstens eine feuerbeständige Isolierschicht (5) zu liegen kommt.
  17. Verfahren zur Herstellung eines Flachkabels (1) mit Kurzschlussvermeidung im Brandfall auch bei Verlegung auf einer elektrisch leitenden Kabelunterlage, umfassend:
    Herstellen von Adern (7) mit einer unmittelbar auf einem Aderleiter (2) angeordneten, im Querschnitt ringförmigen Aderisolierung (3, 10), wobei das Herstellen der Aderisolierung (3, 10) ein Umspritzen eines Aderleiters (2) mit einem im Brandfall keramisierenden Isoliermaterial mit einem Extruder (37) umfasst;
    Aufbringen eines Zwischenmantels (4) auf mehreren Adern (7, 7a), von denen wenigstens eine Ader (7) mit dem im Brandfall keramisierenden Isoliermaterial ausgerüstet ist, wobei die Adern (7, 7a) parallel nebeneinander in einer Ebene verlaufen, wobei der Zwischenmantel (4) die Adern (7, 7a) insgesamt umschließt und dabei die Aderisolierungen (3, 10) unmittelbar an deren Außenseite umhüllt, und jeweils zwischen zwei Adern (7, 7a) von einer Flachseite des Flachkabels zur anderen Flachseite durchgreift;
    Aufbringen wenigstens einer feuerbeständigen Isolierschicht (5) außen auf den Zwischenmantel (4);
    Aufbringen eines Außenmantels (6) auf den Zwischenmantel (4) samt feuerbeständiger Isolierschicht (5), der die Außenkontur des Flachkabels (1) definiert.
  18. Verfahren zur Herstellung eines Flachkabels (1) nach Anspruch 17, mit weiteren Merkmalen nach einem der Ansprüche 1 bis 15.
EP15000414.1A 2014-03-31 2015-02-11 Flachkabel mit kurzschlussvermeidung im brandfall sowie verwendung und herstellung eines solchen flachkabels Active EP2927912B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014004678.8A DE102014004678A1 (de) 2014-03-31 2014-03-31 FLACHKABEL MIT KURZSCHLUSSVERMElDUNG IM BRANDFALL SOWIE VERWENDUNG UND HERSTELLUNG EINES SOLCHEN FLACHKABELS

Publications (2)

Publication Number Publication Date
EP2927912A1 true EP2927912A1 (de) 2015-10-07
EP2927912B1 EP2927912B1 (de) 2016-06-22

Family

ID=52544250

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15000414.1A Active EP2927912B1 (de) 2014-03-31 2015-02-11 Flachkabel mit kurzschlussvermeidung im brandfall sowie verwendung und herstellung eines solchen flachkabels

Country Status (2)

Country Link
EP (1) EP2927912B1 (de)
DE (1) DE102014004678A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108986970A (zh) * 2018-09-03 2018-12-11 上海贝恩科电缆有限公司 柔性耐火随动电缆
EP3453813A1 (de) * 2017-09-11 2019-03-13 Woertz Engineering AG Handlaufinstallation mit notbeleuchtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117204A (ja) 1987-10-30 1989-05-10 Hitachi Cable Ltd 積層布設平形ケーブル
DE20011862U1 (de) * 2000-07-10 2000-10-26 Kabelwerk Eupen Ag Eupen Brandsicherheitskabel
US20090078446A1 (en) 2005-07-29 2009-03-26 Jean-Louis Pons Fire-resistant safety cable provided with a single insulating covering
EP2375505A1 (de) 2010-04-10 2011-10-12 Woertz AG Anschlussvorrichtung und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859903B2 (en) * 2005-07-29 2014-10-14 Prysmian Energie Cables Et Systemes France Substantially flat fire-resistant safety cable
DE102010014532A1 (de) * 2010-04-10 2011-10-13 Woertz Ag Brand-Funktionserhaltkabel und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117204A (ja) 1987-10-30 1989-05-10 Hitachi Cable Ltd 積層布設平形ケーブル
DE20011862U1 (de) * 2000-07-10 2000-10-26 Kabelwerk Eupen Ag Eupen Brandsicherheitskabel
US20090078446A1 (en) 2005-07-29 2009-03-26 Jean-Louis Pons Fire-resistant safety cable provided with a single insulating covering
EP2375505A1 (de) 2010-04-10 2011-10-12 Woertz AG Anschlussvorrichtung und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
US20110250781A1 (en) * 2010-04-10 2011-10-13 Woertz Ag Connection Device and Installation Kit for Electrical Installation with Circuit Integrity in Case of Fire

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K. W. THOMSON ET AL., EUROPEAN COATINGS JOURNAL, vol. 12, 2006, pages 34 - 39
K. W. THOMSON ET AL.: "In the firing line", EUROPEAN COATINGS JOURNAL, vol. 12, 2006, pages 34 - 39
P. EYERER ET AL.: "Polymer Engineering Technologien und Praxis", 2008, SPRINGER-VERLAG, article "Keramisierende Polymere", pages: 111

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453813A1 (de) * 2017-09-11 2019-03-13 Woertz Engineering AG Handlaufinstallation mit notbeleuchtung
US10480777B2 (en) 2017-09-11 2019-11-19 Woertz Engineering Ag Handrail installation with emergency lighting
CN108986970A (zh) * 2018-09-03 2018-12-11 上海贝恩科电缆有限公司 柔性耐火随动电缆

Also Published As

Publication number Publication date
EP2927912B1 (de) 2016-06-22
DE102014004678A1 (de) 2015-10-15

Similar Documents

Publication Publication Date Title
EP0503129A1 (de) Koaxiales elektrisches Hochfrequenzkabel
EP2385532B1 (de) Brand-Funktionserhaltkabel und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
DE3115242A1 (de) Heizkabel, insbesondere fuer elektrische heizdecken
DE4344044A1 (de) Elektrisches Isoliermaterial und Verfahren zur Herstellung eines elektrisch isolierten Leiters
DE102010014530A1 (de) Flachkabel-Umlenkvorrichtung und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
EP2367177B1 (de) Elektrisches Kabel und Extruderdüse zu dessen Herstellung
EP2375505B1 (de) Anschlussvorrichtung und Installationssatz für eine elektrische Installation mit Funktionserhalt im Brandfall
WO2007045345A1 (de) Dreileiterkabel
EP2068426B1 (de) Elektrischer Wickelleiter mit rechteckigem Querschnitt
DE2423602A1 (de) Magnetwicklungsdraht
EP2927912B1 (de) Flachkabel mit kurzschlussvermeidung im brandfall sowie verwendung und herstellung eines solchen flachkabels
WO2016193022A1 (de) Datenkabel
DE3522335A1 (de) Elektrisches kabel und verfahren zu seiner herstellung
EP0264633B1 (de) Verfahren zur gleichzeitigen Herstellung von mindestens zwei elektrischen Leitern
DE3137956C2 (de)
WO2002011156A1 (de) Kabel, insbesondere unterwasserkabel
DE2646373A1 (de) Elektrische flachleitung
EP2842141B1 (de) Selbsttragende elektrische leitung
DE2153968A1 (de) Schichtmaterial für Abschirmungen elektrischer Kabel
EP0457944B1 (de) Formplatte für die Herstellung eines Kabelbodens
EP4261849A1 (de) Stromschiene
EP1619694A1 (de) Isolierter elektrischer Leiter mit Funktionserhalt im Brandfall
DE19620963A1 (de) Brandsicheres elektrisches Kabel oder brandsichere elektrische Leitung und Verfahren zur Herstellung
DE677583C (de) Isolierte elektrische Leitung mit einer aus OEllackfaserstoffgewebe hergestellten Isolierschicht
DE915103C (de) Elektrisches Kabel mit einem vorzugsweise aus Werkstoffen geringer mechanischer Festigkeit bestehenden Kabelmantel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20151119

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160212

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WOERTZ ENGINEERING AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 808087

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015000059

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161022

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015000059

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240216

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 10

Ref country code: GB

Payment date: 20240222

Year of fee payment: 10

Ref country code: CH

Payment date: 20240301

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240229

Year of fee payment: 10

Ref country code: FR

Payment date: 20240221

Year of fee payment: 10

Ref country code: BE

Payment date: 20240219

Year of fee payment: 10