EP2924131B1 - Hochmanganhaltiger austenitischer edelstahl - Google Patents

Hochmanganhaltiger austenitischer edelstahl Download PDF

Info

Publication number
EP2924131B1
EP2924131B1 EP14162191.2A EP14162191A EP2924131B1 EP 2924131 B1 EP2924131 B1 EP 2924131B1 EP 14162191 A EP14162191 A EP 14162191A EP 2924131 B1 EP2924131 B1 EP 2924131B1
Authority
EP
European Patent Office
Prior art keywords
stainless steel
manganese
cold
austenitic
austenitic high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14162191.2A
Other languages
English (en)
French (fr)
Other versions
EP2924131A1 (de
Inventor
Arno Breuer
Gabriele BRÜCKNER
Linda Mosecker
Wolfgang Bleck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Oyj
Original Assignee
Outokumpu Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SI201431382T priority Critical patent/SI2924131T1/sl
Application filed by Outokumpu Oyj filed Critical Outokumpu Oyj
Priority to PL14162191T priority patent/PL2924131T3/pl
Priority to ES14162191T priority patent/ES2749234T3/es
Priority to RSP20191231 priority patent/RS59347B1/sr
Priority to LTEP14162191.2T priority patent/LT2924131T/lt
Priority to HUE14162191A priority patent/HUE046585T2/hu
Priority to EP14162191.2A priority patent/EP2924131B1/de
Priority to DK14162191.2T priority patent/DK2924131T3/da
Priority to PT141621912T priority patent/PT2924131T/pt
Priority to KR1020167030176A priority patent/KR101830563B1/ko
Priority to US15/129,502 priority patent/US20170121797A1/en
Priority to MX2016012672A priority patent/MX2016012672A/es
Priority to TW104109969A priority patent/TW201540850A/zh
Priority to PCT/EP2015/056749 priority patent/WO2015144896A2/en
Priority to JP2016559607A priority patent/JP2017512906A/ja
Priority to CN201580016940.2A priority patent/CN106133177B/zh
Publication of EP2924131A1 publication Critical patent/EP2924131A1/de
Priority to ZA2016/06617A priority patent/ZA201606617B/en
Application granted granted Critical
Publication of EP2924131B1 publication Critical patent/EP2924131B1/de
Priority to HRP20191717 priority patent/HRP20191717T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn

Definitions

  • the invention relates to an austenitic high-manganese stainless steel having high strength and high ductility, wherein the stainless steel utilizes the TWIP (TWinning Induced Plasticity) mechanism during the deformation process.
  • TWIP TWinning Induced Plasticity
  • the austenitic stainless steels such as the most versatile and widely used 304 austenitic stainless steel, have a significantly lower strength combined with relatively high residual elongation after cold deformation, such as cold rolling.
  • the ferritic austenitic duplex stainless steels such as the 2304 ferritic austenitic duplex stainless steel, offer a high strength, but loose ductility with even a low cold deformation degree.
  • the austenitic manganese stainless steels with high carbon content are vulnerable to intergranular corrosion after welding in the weld and heat-affected zone due to chromium depletion in this area. Further, the typical manganese stainless steels are in general vulnerable to form martensitic phase after cold deformation, which could lead to delayed cracking.
  • the FR patent 2071667 relates to a nickel-free austenitic stainless steel which contains weight % 0.02 to 0.3 % carbon, 0.1 to 0.3 % silicon, 12.0 to 16.0 % chromium, 8.0 to 17.0 % manganese, 0.05 to 0.3 % nitrogen, 0.1 to 3.0 % copper, 0.1 to 3.0 % molybdenum, the balance being iron and evitable impurities.
  • the object of the FR patent application 2071667 is to have improved softening and better forming properties. However, based on the chemical composition of the FR patent application 2071667 the manganese (Mn) content should not contain more than 17 weight %, because a higher content produces less austenite phase.
  • the EP patent application 1069202 describes a method for manufacturing an austenitic, paramagnetic stainless steel and the steel consists, by weight %, of up to about 0.1 % carbon, about 0.21 to about 0.6 % silicon, about 17 to about 24 % chromium, up to about 2.5 % nickel, greater than about 20 % to less than about 30 % manganese, greater than about 0.6 % to less than about 1.4 % % nitrogen, up to about 0.3 % copper, up to about 1.9 % molybdenum, up to about 0.002 % boron, up to about 0.8 % carbide-forming elements, such as titanium, zirconium, vanadium and niobium, the balance being iron and evitable impurities.
  • Manganese is provided to increase the nitrogen solubility and to stabilize the austenitic and/or ferrite-free microstructure.
  • the material is hot-formed at a temperature of at least 850 °C to a degree of deformation of at least about 3,5 times and actively cooled.
  • the second step it is cold-formed in a deformation of 5 - 20 % below the deposit temperature of nitrides at elevated temperature below 600 °C, but greater than 350 °C.
  • the deformation is in every process step thus carried out at an elevated temperature which increases the manufacturing costs of the produced material.
  • a twinning in the microstructure of a metal material is in general defined as two separate crystals that share some of the same crystal lattice.
  • the TWIP (TWinning Induced Plasticity) stainless steels have austenitic microstructure with face-centered cubic lattice (FCC) along with a relatively low stacking fault energy (SFE) promoting the activation of twinning deformation mechanism, i.e. mechanically induced twinning in the crystal lattice.
  • FCC face-centered cubic lattice
  • SFE stacking fault energy
  • TWIP indicates that twinning often goes along with accomodation plasticity via lattice dislocations.
  • the object of the present invention is to eliminate some drawbacks of the prior art and to achieve an improved austenitic high-manganese stainless steel which utilizes the TWIP (TWinning Induced Plasticity) mechanism in the cold deformation in order to have a high work-hardening rate and good corrosion resistance with low vulnerability for intergranular corrosion after welding and for delayed cracking and stress corrosion cracking.
  • TWIP TWinning Induced Plasticity
  • the austenitic high-manganese stainless steel consists of in weight % 0,03 - 0,1 % carbon, 0,08 - 1,0 % silicon, 14 - 26 % manganese. 10,5 - 18 % chromium, less than 0,8 % nickel, 0,05 - 0,6 % copper, 0,1 - 0,8 % nitrogen and 0,0008 - 0,005 % boron, the rest being iron and inevitable impurities occurred in stainless steels.
  • the austenitic stainless steel of the invention further contains optionally 0,001 - 0,02 % titanium and optionally less than 0,04 % aluminium.
  • the austenitic stainless steel of the invention has a superior ductility and high strength after plastic deformation utilizing in the cold deformation the TWIP (TWinning Induced Plasticity) mechanism.
  • the austenitic stainless steel of the invention combines thus a high strength in the initial annealed state and a high work hardening rate with a high elongation after the cold deformation, such as cold rolling, in connection with a low nickel content.
  • the ranges for the yield strength R p0,2 and the tensile strength R m as well as the elongation to fracture A 80 at the annealed state the austenitic high-manganese stainless steel in accordance with the invention are 470 - 600 MPa for R p0,2 , 800 - 930 MPa for R m and 40 - 60 % for A 80 after annealed at the temperature range of 1000 - 1150 °C.
  • the austenitic high-manganese stainless steel of the invention has a high work-hardening rate of at least 20 % with the deformation degree 10 % and at least 40 % with the deformation degree 20 % for the yield strength R p0,2 . Further, the elongation to fracture A 80 is 25 - 35 % with the deformation degree 10 % and 10 - 20 % with the deformation degree 20 % showing the good ductility.
  • Carbon (C) is a valuable austenite forming and stabilizing element, which enables reduced use of expensive elements nickel and copper.
  • the upper limit for carbon alloying (less than 0,1 %) is set by the risk of carbide precipitation, which deteriorates the corrosion resistance of the stainless steel.
  • the carbon content is low enough to maintain good corrosion resistance. The reduction of the carbon content to low levels by the decarburization process is non-economical, and therefore, the carbon content shall not be less than 0,03 %.
  • Silicon (Si) is added to stainless steels for deoxidizing purposes during melting and should not be below 0,08 %. Because silicon is a ferrite forming element, its content must be limited below 1 %.
  • Manganese (Mn) is a key element of the austenitic stainless steel of the invention, ensuring the stable austenitic crystal structure and enabling the twinning mechanism and, further, the reduction of the use of more expensive nickel. Manganese also increases the solubility of nitrogen to the stainless steel. Plastic deformation accompanied with twinning deformation easily occurs in the case of an amount of manganese of 14 % or more without deformed structure, i.e. the strain-induced martensite. A high manganese content makes the decarburization process of the steel more difficult, impairs the surface quality and reduces the corrosion resistance of the steel. Therefore the manganese content shall be less than 26 %.
  • Chromium (Cr) is responsible of ensuring corrosion resistance of a stainless steel. Therefore, the chromium content in this stainless steel shall be at the minimum 10,5 %. Chromium is important in terms of avoiding the delayed cracking phenomenon. By increasing the content from this level the corrosion resistance of the steel can be improved. However, because chromium is a ferrite forming element, the increasing of the chromium content increases the need for expensive austenite formers, such as nickel and manganese or necessitates impractically high carbon and nitrogen contents. Therefore, the chromium content shall be lower than 18 %. Chromium also increases the solubility of nitrogen.
  • Nickel (Ni) is a strong austenite former and stabilizer, but nickel is an expensive element. However, very low nickel contents would necessitate impractically high alloying with the other austenite forming and stabilizing elements. Therefore, the nickel content shall be preferably lower than 0,8 % but preferably less than 0,5 %.
  • Copper (Cu) is present as a residual of 0,1 - 0,6 %. Copper is a weak stabilizer of the austenite phase but, however, has a strong effect on the resistance to martensite formation. Copper also has a positive effect on ductility and forming properties.
  • Nitrogen (N) is a strong austenite former and stabilizer. Therefore, nitrogen alloying improves the cost efficiency of the steel by enabling lower use of nickel and copper.
  • nitrogen content shall be at least 0,1 %. High nitrogen contents increase the strength of the steel and thus make forming operations more difficult. Furthermore, risk of nitride precipitation increases with increasing nitrogen content. For these reasons, the nitrogen content shall not exceed 0,8 %, preferably the nitrogen content shall be lower than 0,6 %.
  • Nitrogen increases the stacking fault energy (SFE), which is used for the prediction of the TWIP-effect, and thus enables for and facilitates the TWIP-effect.
  • SFE stacking fault energy
  • the austenitic stainless steel according to the invention does not form during cold rolling any deformation martensite at the room temperature or above. Therefore, the stainless steel of the invention has a high ductility.
  • the austenitic stainless steel according to the invention is also free of stress corrosion cracking and delayed cracking, just even after aging process in air and also in 5 % sodium chloride (NaCl) environment.
  • the austenitic stainless steel in accordance with invention was melted in the production scale and then cast into a slab form with the chemical composition in weight %, where the Mo-content of 0.02% is an accidental impurity.
  • Table 2 C Si Mn Cr Mo Ni Ti Cu Al N B 0.08 0.5 20 13 0.02 0.2 0.003 0.5 0.01 0.43 0.0023
  • the slabs were further hot rolled into the thickness of 4,0 mm and then annealed at the temperature 1080 °C.
  • the austenitic stainless steel of the invention was further cold rolled with the rolling degree of 50 % to the thickness of 2,0 mm and annealed at the temperature 1080 °C.
  • the annealed strip product was then tested by determining the yield strength R p0,2 and the tensile strength R m as well as the elongation to fracture A 80 .
  • the stainless steel strip was cold deformed with the reduction degree of 10 % and then determined the yield strength R p0,2 and the tensile strength R m as well as the elongation to fracture A 80 .
  • the respective actions were also made for the cold deformed strip having the reduction degree of 20 %.
  • the results for those test results are described in the following table: Table 3 Reduction degree R p0,2 (MPa) R m (MPa) A 80 (%) 0 % 500 830 48 10 % 800 950 28 20 % 1020 1180 14
  • the austenitic stainless steel in accordance with the invention has high work-hardening rate for the yield strength R p0,2 .
  • the elongation to fracture A 80 is 28 % with the deformation degree 10 % and 14 % with the deformation degree 20 % shows still a good ductility at high strength after cold rolling.
  • the austenitic stainless steel of the invention can be manufactured as slabs, blooms, billets and flat products such as coils, strips, plates, sheets, and long products such as bars, rods, wires, profiles and shapes, and tubular products such as pipes, tubes and can be applied for instance in automotive construction, tanks and crash relevant parts, construction and rail vehicles.
  • the high-manganese austenitic stainless steel in accordance with the invention can be cold deformed in the state of as hot strip annealed, as cold strip annealed and as hot and cold strip annealed and cold rolled in order to utilize the TWIP effect for higher yield and tensile strength values with still high ductility.

Claims (9)

  1. Austenitischer hochmanganhaltiger rostfreier Stahl mit hoher Festigkeit und Duktilität, dadurch gekennzeichnet, dass der rostfreie Stahl, in Gewichts-%, aus 0,03 bis 0,1 % Kohlenstoff, 0,08 bis 1,0 % Silicium, 14 bis 26 % Mangan, 10,5 bis 18 % Chrom, unter 0,8 % Nickel, 0,05 bis 0,6 % Kupfer, 0,1 bis 0,8 % Stickstoff und 0,0008 bis 0,005 % Bor, wobei der Rest Eisen und unvermeidbare Verunreinigungen sind, die in rostfreien Stählen vorkommen, gegebenenfalls 0,001 bis 0,02 % Titan und gegebenenfalls unter 0,04 % Aluminium besteht; und im Zustand des Glühens im Temperaturbereich von 1000 bis 1150 °C die Bereiche für die Streckgrenze Rp0,2 und die Zugfestigkeit Rm sowie die Bruchdehnung A80 470 bis 600 MPa für Rp0,2, 800 bis 930 MPa für Rm und 40 bis 60 % für A80 lauten, und der Stahl unter Verwendung des TWIP-Mechanismus oder Mechanismus der durch Zwillingsbildung induzierten Plastizität kaltverformbar ist, sodass die Kaltverfestigungsgeschwindigkeit auf Grundlage eines Kaltverformungsgrads von 10 % für die Streckgrenze Rp0,2 mindestens 20 % beträgt.
  2. Austenitischer hochmanganhaltiger rostfreier Stahl nach Anspruch 1, dadurch gekennzeichnet, dass die Kaltverfestigungsgeschwindigkeit auf Grundlage des Kaltverformungsgrads von 20 % für die Streckgrenze Rp0,2 mindestens 40 % beträgt.
  3. Austenitischer hochmanganhaltiger rostfreier Stahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bruchdehnung A80 25 bis 35 % beim Kaltverformungsgrad von 10 % beträgt.
  4. Austenitischer hochmanganhaltiger rostfreier Stahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bruchdehnung A80 10 bis 20 % beim Kaltverformungsgrad von 20 % beträgt.
  5. Austenitischer hochmanganhaltiger rostfreier Stahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der rostfreie Stahl im Zustand als warmgewalztes Band, das im Temperaturbereich von 1000 bis 1150 °C geglüht wurde, für den TWIP-Effekt kaltverformbar ist.
  6. Austenitischer hochmanganhaltiger rostfreier Stahl nach einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der rostfreie Stahl im Zustand als kaltgewalztes Band, das im Temperaturbereich von 1000 bis 1150 °C geglüht wurde, für den TWIP-Effekt kaltverformbar ist.
  7. Austenitischer hochmanganhaltiger rostfreier Stahl nach einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der rostfreie Stahl im Zustand als Warm- und Kaltband, das im Temperaturbereich von 1000 bis 1150 °C geglüht wurde, und im Zustand des Kaltwalzens für den TWIP-Effekt kaltverformbar ist.
  8. Austenitischer hochmanganhaltiger rostfreier Stahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der austenitische rostfreie Stahl als Brammen, Blöcke, Knüppel, Flachprodukte wie Bunde, Bänder, Platten, Bleche, Langprodukte wie Stäbe, Stangen, Drähte, Profile und Träger, Rohrprodukte wie Rohre, Röhren hergestellt ist.
  9. Austenitischer hochmanganhaltiger rostfreier Stahl nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der austenitische rostfreie Stahl beispielsweise im Fahrzeugbau, bei Behältern und crashrelevanten Teilen, im Baugewerbe und bei Schienenfahrzeugen angewendet wird.
EP14162191.2A 2014-03-28 2014-03-28 Hochmanganhaltiger austenitischer edelstahl Active EP2924131B1 (de)

Priority Applications (18)

Application Number Priority Date Filing Date Title
PL14162191T PL2924131T3 (pl) 2014-03-28 2014-03-28 Austenityczna wysokomanganowa stal nierdzewna
ES14162191T ES2749234T3 (es) 2014-03-28 2014-03-28 Acero inoxidable austenítico con alto contenido en manganeso
RSP20191231 RS59347B1 (sr) 2014-03-28 2014-03-28 Austenitni nerđajući čelik sa visokim sadržajem mangana
LTEP14162191.2T LT2924131T (lt) 2014-03-28 2014-03-28 Austenitinis manganinis nerūdijantis plienas
HUE14162191A HUE046585T2 (hu) 2014-03-28 2014-03-28 Ausztenites, magas mangántartalmú rozsdamentes acél
EP14162191.2A EP2924131B1 (de) 2014-03-28 2014-03-28 Hochmanganhaltiger austenitischer edelstahl
DK14162191.2T DK2924131T3 (da) 2014-03-28 2014-03-28 Austenitisk rustfrit stål
PT141621912T PT2924131T (pt) 2014-03-28 2014-03-28 Aço inoxidável austenítico com elevado teor em manganês
SI201431382T SI2924131T1 (sl) 2014-03-28 2014-03-28 Avstenitno visokomangansko nerjavno jeklo
MX2016012672A MX2016012672A (es) 2014-03-28 2015-03-27 Acero inoxidable austenitico.
KR1020167030176A KR101830563B1 (ko) 2014-03-28 2015-03-27 오스테나이트계 스테인리스강
TW104109969A TW201540850A (zh) 2014-03-28 2015-03-27 沃斯田鐵系不銹鋼
PCT/EP2015/056749 WO2015144896A2 (en) 2014-03-28 2015-03-27 Austenitic stainless steel
JP2016559607A JP2017512906A (ja) 2014-03-28 2015-03-27 オーステナイト系ステンレス鋼
CN201580016940.2A CN106133177B (zh) 2014-03-28 2015-03-27 奥氏体不锈钢
US15/129,502 US20170121797A1 (en) 2014-03-28 2015-03-27 Austenitic stainless steel
ZA2016/06617A ZA201606617B (en) 2014-03-28 2016-09-23 Austenitic stainless steel
HRP20191717 HRP20191717T1 (hr) 2014-03-28 2019-09-20 Austenitičan nehrđajući čelik s visokim udjelom mangana

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14162191.2A EP2924131B1 (de) 2014-03-28 2014-03-28 Hochmanganhaltiger austenitischer edelstahl

Publications (2)

Publication Number Publication Date
EP2924131A1 EP2924131A1 (de) 2015-09-30
EP2924131B1 true EP2924131B1 (de) 2019-08-21

Family

ID=50389900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14162191.2A Active EP2924131B1 (de) 2014-03-28 2014-03-28 Hochmanganhaltiger austenitischer edelstahl

Country Status (18)

Country Link
US (1) US20170121797A1 (de)
EP (1) EP2924131B1 (de)
JP (1) JP2017512906A (de)
KR (1) KR101830563B1 (de)
CN (1) CN106133177B (de)
DK (1) DK2924131T3 (de)
ES (1) ES2749234T3 (de)
HR (1) HRP20191717T1 (de)
HU (1) HUE046585T2 (de)
LT (1) LT2924131T (de)
MX (1) MX2016012672A (de)
PL (1) PL2924131T3 (de)
PT (1) PT2924131T (de)
RS (1) RS59347B1 (de)
SI (1) SI2924131T1 (de)
TW (1) TW201540850A (de)
WO (1) WO2015144896A2 (de)
ZA (1) ZA201606617B (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3173504A1 (de) * 2015-11-09 2017-05-31 Outokumpu Oyj Verfahren zur herstellung eines austenitischen stahlbauteils und verwendung des bauteils
EP3301197B1 (de) 2016-09-29 2021-10-27 Outokumpu Oyj Verfahren zur kaltverformung eines austenitischen stahls
PL3360981T3 (pl) * 2017-02-10 2020-12-14 Outokumpu Oyj Element stalowy wytworzony przez formowanie na gorąco, sposób wytwarzania i zastosowanie tego elementu
KR102020507B1 (ko) * 2017-12-20 2019-09-10 주식회사 포스코 강도, 표면전도성이 향상된 비자성 오스테나이트계 스테인리스강
CN108103404A (zh) * 2017-12-28 2018-06-01 长沙无道工业设计有限公司 一种高强度不锈钢合金材料及其制备方法
JP7326454B2 (ja) * 2019-01-22 2023-08-15 アペラム 溶接性の改善された鉄-マンガン合金
KR20200092635A (ko) * 2019-01-25 2020-08-04 엘지이노텍 주식회사 디스플레이용 기판
CN110607479B (zh) * 2019-04-24 2021-11-05 上海大学 气门弹簧用不锈钢及其钢丝的制备方法
CN110103530B (zh) * 2019-06-04 2023-03-31 河北工业大学 一种高性能耐蚀twip/不锈钢多层复合材料及制备方法
CN111500942B (zh) * 2020-05-11 2021-08-10 湖南恒基粉末科技有限责任公司 一种高氮含量无磁不锈钢粉末及其制备方法
CN113046534B (zh) * 2021-03-15 2023-02-03 长春工业大学 一种高孪晶密度的高氮无镍奥氏体不锈钢的制备方法
CN113913693A (zh) * 2021-10-08 2022-01-11 赵洪运 一种高强耐蚀海洋工程不锈钢及其制备方法
CN114686784A (zh) * 2022-04-02 2022-07-01 四川罡宸不锈钢有限责任公司 一种节镍型奥氏体不锈钢材料及制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE728159C (de) * 1936-10-09 1942-11-21 Boehler & Co Ag Geb Chrom-Mangan-Stickstoff-Stahl
AT214466B (de) * 1959-06-04 1961-04-10 Schoeller Bleckmann Stahlwerke Stahllegierungen zur Herstellung von Schwerstangen für Tiefbohrgestänge
BE754614A (fr) * 1969-12-27 1971-01-18 Nisshin Steel Co Ltd Aciers inoxydables austenitiques
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
JPH0619110B2 (ja) * 1986-05-19 1994-03-16 株式会社神戸製鋼所 極低温用高Mnオ−ステナイトステンレス鋼の製造方法
JPH0536481A (ja) * 1991-07-31 1993-02-12 Toshiba Lighting & Technol Corp 放電ランプ点灯装置
JP2978427B2 (ja) * 1995-05-22 1999-11-15 株式会社神戸製鋼所 極低温用高Mn非磁性鋼及び製造方法
JPH11209823A (ja) * 1998-01-23 1999-08-03 Kobe Steel Ltd プレス成形性の優れた高強度鋼板の製造方法
AT407882B (de) * 1999-07-15 2001-07-25 Schoeller Bleckmann Oilfield T Verfahren zur herstellung eines paramagnetischen, korrosionsbeständigen werkstoffes u.dgl. werkstoffe mit hoher dehngrenze, festigkeit und zähigkeit
JP5057055B2 (ja) * 2007-07-30 2012-10-24 大同特殊鋼株式会社 非磁性ステンレス鋼の鍛造製品、該鍛造製品を用いたドリルカラー及び該鍛造製品の製造方法
DE102008005803A1 (de) 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Bauteil aus höher kohlnstoffhaltigem austenitischem Stahlformguss, Verfahren zu deren Herstellung und deren Verwendung
CN101250674A (zh) * 2008-04-11 2008-08-27 江苏大学 一种中氮高锰奥氏体不锈钢
JP5444561B2 (ja) * 2009-02-27 2014-03-19 日本冶金工業株式会社 高Mnオーステナイト系ステンレス鋼と服飾用金属部品
DE102009003598A1 (de) * 2009-03-10 2010-09-16 Max-Planck-Institut Für Eisenforschung GmbH Korrosionsbeständiger austenitischer Stahl
DE102010026808B4 (de) * 2010-07-10 2013-02-07 Technische Universität Bergakademie Freiberg Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung
US20120156085A1 (en) * 2010-12-14 2012-06-21 Thompson Peter T Blast Resistant, Non-Magnetic, Stainless Steel Armor
CN102002642A (zh) * 2010-12-31 2011-04-06 上海加宁新技术研究所 一种超高强度无磁不锈钢
CN102560259B (zh) * 2012-01-16 2013-06-19 西南石油大学 一种低成本大膨胀率膨胀管用twip钢的钢管制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HUE046585T2 (hu) 2020-03-30
PT2924131T (pt) 2019-10-30
MX2016012672A (es) 2016-12-14
KR101830563B1 (ko) 2018-02-20
RS59347B1 (sr) 2019-10-31
CN106133177A (zh) 2016-11-16
KR20160140828A (ko) 2016-12-07
US20170121797A1 (en) 2017-05-04
TW201540850A (zh) 2015-11-01
CN106133177B (zh) 2018-04-27
SI2924131T1 (sl) 2019-12-31
ZA201606617B (en) 2018-05-30
HRP20191717T1 (hr) 2019-12-13
WO2015144896A2 (en) 2015-10-01
WO2015144896A3 (en) 2016-03-17
ES2749234T3 (es) 2020-03-19
DK2924131T3 (da) 2019-10-14
LT2924131T (lt) 2019-09-25
EP2924131A1 (de) 2015-09-30
JP2017512906A (ja) 2017-05-25
PL2924131T3 (pl) 2020-02-28

Similar Documents

Publication Publication Date Title
EP2924131B1 (de) Hochmanganhaltiger austenitischer edelstahl
EP2508639B1 (de) Feinkörniges austenitisches edelstahlblech mit hervorragender belastungskorrosionsbruchfestigkeit und verarbeitbarkeit
KR101321681B1 (ko) 중공 부재 및 그 제조 방법
EP3561119B1 (de) Vergüteter martensitischer stahl mit niedrigem streckverhältnis und ausgezeichneter gleichmassdehnung sowie herstellungsverfahren dafür
EP2576848B1 (de) Verfahren zur herstellung eines heissgewalzten stahlprodukts und heissgewalzter stahl
EP3280826B1 (de) Verfahren zur herstellung eines rohrs eines rostfreien duplexstahls
EP2589674A1 (de) Ultrahochfestes kaltgewalztes stahlblech mit hervorragender duktilität und verzögerter bruchfestigkeit sowie herstellungsverfahren dafür
EP2796587A1 (de) Hochfestes nahtloses stahlrohr mit hervorragender beständigkeit gegenüber sulfidbedingter spannungsrissbildung für ölbohrloch und verfahren zu seiner herstellung
CN110678569A (zh) 高强度钢板及其制造方法
EP3239327A1 (de) Hochfeste stahlplatte für druckbehälter mit hervorragender zähigkeit nach einer wärmebehandlung nach dem schweissen und herstellungsverfahren dafür
EP2768989B1 (de) Hochfester feuerverzinkter bandstahl
EP2617852A1 (de) Hochfestes heissgewalztes stahlblech von hervorragender biegbarkeit sowie verfahren zu seiner herstellung
RU2593567C2 (ru) Высокопрочная стальная полоса с высокой ударной вязкостью и пределом текучести 700 мпа и способ ее производства
EP2653582A1 (de) Feuerverzinkte stahlbleche und herstellungsverfahren dafür
CA2918720A1 (en) High-strength steel material for oil well and oil well pipes
EP2551366B1 (de) Hochfestes widerstandsgeschweisstes stahlrohr und herstellungsverfahren dafür
KR20110136840A (ko) 내식성 오스테나이트 강
JP4495064B2 (ja) 熱間プレス用鋼板
US11313006B2 (en) Process of producing an austenitic stainless steel tube
KR102268906B1 (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
EP3699314A1 (de) Ferritischer rostfreier nutzstahl mit ausgezeichneter warmverformbarkeit und verfahren zu seiner herstellung
JP6179609B2 (ja) 冷間加工性に優れた厚肉高強度鋼板の製造方法
EP3822384B1 (de) Austenitischer edelstahl mit verbesserter festigkeit
JP4660363B2 (ja) 靭性に優れた厚鋼板の製造方法
KR101449137B1 (ko) 용접성 및 하이드로포밍 가공성이 우수한 고강도 열연강판 및 그 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160414

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OUTOKUMPU OYJ

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014052036

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0008020000

Ipc: C21D0006000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/44 20060101ALI20190308BHEP

Ipc: C22C 38/50 20060101ALI20190308BHEP

Ipc: C22C 38/54 20060101ALI20190308BHEP

Ipc: C22C 38/02 20060101ALI20190308BHEP

Ipc: C22C 38/58 20060101ALI20190308BHEP

Ipc: C22C 38/06 20060101ALI20190308BHEP

Ipc: C22C 38/42 20060101ALI20190308BHEP

Ipc: C21D 6/00 20060101AFI20190308BHEP

Ipc: C22C 38/00 20060101ALI20190308BHEP

Ipc: C21D 8/02 20060101ALI20190308BHEP

INTG Intention to grant announced

Effective date: 20190329

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014052036

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DENNEMEYER AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1169832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20191717T

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20191010

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2924131

Country of ref document: PT

Date of ref document: 20191030

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191017

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E018164

Country of ref document: EE

Effective date: 20190924

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 32145

Country of ref document: SK

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20191717

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191122

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2749234

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200319

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E046585

Country of ref document: HU

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191717

Country of ref document: HR

Payment date: 20200313

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014052036

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200328

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191717

Country of ref document: HR

Payment date: 20210324

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1169832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190821

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191717

Country of ref document: HR

Payment date: 20220323

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20220218

Year of fee payment: 9

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191717

Country of ref document: HR

Payment date: 20230320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230316

Year of fee payment: 10

Ref country code: LT

Payment date: 20230221

Year of fee payment: 10

Ref country code: IE

Payment date: 20230323

Year of fee payment: 10

Ref country code: FR

Payment date: 20230324

Year of fee payment: 10

Ref country code: FI

Payment date: 20230321

Year of fee payment: 10

Ref country code: DK

Payment date: 20230323

Year of fee payment: 10

Ref country code: CZ

Payment date: 20230316

Year of fee payment: 10

Ref country code: BG

Payment date: 20230322

Year of fee payment: 10

Ref country code: AT

Payment date: 20230322

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230327

Year of fee payment: 10

Ref country code: SK

Payment date: 20230322

Year of fee payment: 10

Ref country code: SI

Payment date: 20230316

Year of fee payment: 10

Ref country code: SE

Payment date: 20230314

Year of fee payment: 10

Ref country code: RS

Payment date: 20230316

Year of fee payment: 10

Ref country code: PT

Payment date: 20230316

Year of fee payment: 10

Ref country code: PL

Payment date: 20230321

Year of fee payment: 10

Ref country code: LV

Payment date: 20230320

Year of fee payment: 10

Ref country code: IT

Payment date: 20230322

Year of fee payment: 10

Ref country code: HU

Payment date: 20230323

Year of fee payment: 10

Ref country code: HR

Payment date: 20230320

Year of fee payment: 10

Ref country code: GB

Payment date: 20230322

Year of fee payment: 10

Ref country code: EE

Payment date: 20230315

Year of fee payment: 10

Ref country code: DE

Payment date: 20220620

Year of fee payment: 10

Ref country code: BE

Payment date: 20230321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230321

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230529

Year of fee payment: 10

Ref country code: CH

Payment date: 20230401

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20230323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20230217

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20240222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 11

Ref country code: IE

Payment date: 20240321

Year of fee payment: 11