EP2917787A2 - Clock movement having a balance and a hairspring - Google Patents
Clock movement having a balance and a hairspringInfo
- Publication number
- EP2917787A2 EP2917787A2 EP13812065.4A EP13812065A EP2917787A2 EP 2917787 A2 EP2917787 A2 EP 2917787A2 EP 13812065 A EP13812065 A EP 13812065A EP 2917787 A2 EP2917787 A2 EP 2917787A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- spiral
- hairspring
- stiffened portion
- stiffened
- amplitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010355 oscillation Effects 0.000 claims description 26
- 238000011161 development Methods 0.000 claims description 25
- 230000005021 gait Effects 0.000 claims description 10
- 230000003534 oscillatory effect Effects 0.000 abstract 1
- 238000006073 displacement reaction Methods 0.000 description 11
- 230000005484 gravity Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/26—Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses
Definitions
- the present invention relates to a clockwork comprising a sprung-balance type oscillator and an escapement, more particularly such a movement whose isochronism is improved.
- Isochronism is understood to mean the variations of the gait as a function of the oscillation amplitude of the balance and as a function of the position of the watch.
- the oscillator is disturbed by the escapement, which, in particular in the case of a Swiss lever escapement, induces a delay. Indeed, during the release phase, the oscillator undergoes a resisting torque before the center line, which causes a delay. During the impulse phase, the oscillator 5 undergoes a motor torque first before the center line, which causes an advance, then after the center line, which causes a delay. Overall, the escapement thus produces a delay and this disturbance caused by the escapement is greater at small oscillation amplitudes of the pendulum than at large.
- the present invention aims to further improve the isochronism of a watch movement and proposes for this purpose a watch movement comprising a balance-balance oscillator and an escapement cooperating with the oscillator, the outer coil of the spiral comprising a portion stiffened, characterized in that the stiffened portion is arranged to at least partially compensate for the variation of the movement of the movement as a function of the oscillation amplitude of the balance due to the exhaust, and in that the spiral further comprises at minus any of the following:
- the stiffened portion of the outer turn is arranged so that the hairspring produce a clearance, typically an advance, due to the lack of concentricity of the development of the hairspring of at least 2 s / d, or at least 4 s / d, or at least 6 s / d, or at least 8 s / d, at an amplitude of 150 ° with respect to an amplitude of 300 °, at least partially compensating for said variation in operation due to the exhaust.
- the stiffened portion of the outer turn is closer to the outer end of the hairspring that a theoretical stiffened portion that would make the development of the hairspring substantially perfectly concentric, the thickness and the extent of the portion stiffened may be substantially identical to those of said theoretical stiffened portion.
- the stiffened portion of the outer turn is less thick than a theoretical stiffened portion that would make the development of the spiral substantially perfectly concentric, the position and the extent of the stiffened portion can be substantially identical to those of said theoretical stiffened portion.
- the stiffened portion of the outer turn is less extensive than a theoretical stiffened portion that would make the development of the spiral substantially perfectly concentric, the position and the thickness of the stiffened portion can be substantially identical to those of said theoretical stiffened portion.
- FIG. 1 shows a spiral stiffened outer turn portion of the prior art, a ferrule associated with the spiral being shown schematically by a dotted line;
- FIG. 2 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the spiral illustrated in FIG. 1, the oscillator of which this spiral is considered to be considered as free, that is to say not subject to the action of an exhaust;
- FIG. 3 shows global isochronism measurement results obtained on a real movement comprising a spiral as illustrated in FIG. 1;
- FIG. 4 shows a hairspring of the type of that of FIG. 1, but whose stiffened outer turn portion has been displaced;
- FIG. 5 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the spiral illustrated in FIG. 4, the oscillator of which this spiral is considered to be considered as free, that is to say not subject to the action of an exhaust;
- FIG. 6 shows global isochronism measurement results obtained on a real movement comprising a spiral as shown in FIG. 4;
- FIG. 7 shows a hairspring of the type of Figure 1 but the thickness of the stiffened outer turn portion has been modified
- FIG. 8 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the spiral illustrated in FIG. 7, the oscillator of which this spiral is considered to be considered as free, that is to say not subjected to the action of an exhaust;
- FIG. 10 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the spiral illustrated in FIG. 9, the oscillator of which this spiral is considered to be considered as free, that is to say not subject to the action of an exhaust;
- FIG. 11 shows isochronism curves corresponding to different horizontal and vertical positions of a spiral with a stiffened outer turn portion;
- - Figure 12 shows the spiral whose isochronism curves are shown in Figure 11;
- FIG. 13 shows a spiral with a stiffened outer turn portion and a small ferrule diameter constituting an exemplary embodiment of the invention
- FIG. 14 shows isochronism curves corresponding to different horizontal and vertical positions of the spiral illustrated in FIG. 13;
- FIG. 15 shows a spiral with a stiffened external turn portion with a small ring diameter and a Grossmann inner curve constituting another embodiment of the invention
- FIG. 16 shows isochronism curves corresponding to different horizontal and vertical positions of the spiral illustrated in FIG. 15;
- FIG. 17 shows a spiral with a stiffened outer turn portion, with a small ferrule diameter and with a stiffened inner turn portion constituting yet another embodiment of the invention
- FIG. 18 shows isochronism curves corresponding to different horizontal and vertical positions of the spiral illustrated in FIG. 17;
- FIG. 19 schematically shows a movement in which can be integrated a spiral as shown in Figure 13, 15 or 17.
- FIG. 1 shows a planar hairspring of the type described in patent EP 1473604 for a pendulum-balance oscillator of a watch movement.
- This spiral indicated by the reference numeral 1, is in the form of an Archimedean spiral and is fixed by its inner end 2 to a ferrule 3 mounted on the balance shaft and by its outer end 4 to a stud (not shown) mounted on a fixed piece of movement such as the rooster.
- the spiral assembly 1 - ferrule 3 can be made in one piece, in a crystalline material such as silicon or diamond, by a micro-etching technique.
- the outer coil 5 of the spiral 1 locally comprises a portion 6 of greater thickness e than the rest of the blade forming the spiral.
- This thickness e which can be variable along the portion 6 as shown, stiffens the portion 6 and thus makes it substantially inactive 5 during the development of the hairspring.
- the position and the extent of the stiffened portion 6 are chosen so that the center of deformation of the spiral, substantially corresponding to the center of gravity of the portion of the spiral other than the stiffened portion 6, is substantially coincident with the center of rotation O of the spiral and ferrule 3, which coincides with the geometric center of the spiral. In this way, the development of the hairspring is concentric or almost concentric.
- the stiffened portion 6 ends before the outer end 4 of the spiral. This outer end 4, more precisely an end portion 7 of the outer turn 5 including the stiffened portion 6, is spaced radially outwardly relative to the pattern of the spiral Archimedes to ensure that the penultimate
- the end portion 7 is in the form of a circular arc of center C.
- the angular extent ⁇ of the stiffened portion 6 and its angular position a are defined from this center C.
- the radius R of the shell 3, or distance between the inner end 2 of the hairspring and the center of rotation O of the hairspring, is defined as being the radius of the circle (shown in dotted lines) of center O and passing through the middle (at half the thickness e 0 ) of the inner end 2 of the spiral. In the example shown, this radius R is equal to 5 565 ⁇ .
- FIG. 2 is an isochronism diagram obtained with the spiral illustrated in FIG. 1 by numerical simulation. More precisely, the diagram of FIG. 2 is obtained by considering the fixed outer end 4 and the shaft on which are fixed the ferrule 3 and the free balance (that is to say not mounted in bearings). by calculating by finite elements the displacement of the center of rotation of the spiral during oscillations of the balance, then interpolating and integrating the displacement curve as a function of the amplitude of oscillation. Analytical equations connecting the displacement of the center of rotation O of the spring to the step according to the amplitude of oscillation of the balance are proposed for example in the book
- the step decreases gradually as oscillation amplitude decreases, in all positions of the watch, and there is further a difference in the path between the different vertical positions.
- a curve was interpolated and the gapping difference between the oscillation amplitude of 150 ° and the amplitude of oscillation of 300 ° was determined. The average of the deviations of all positions
- the present inventor has observed that the reduction of the gait due to the exhaust could, at least in part, be compensated by modifying the arrangement of the stiffened portion 6, namely for example its position a and / or its extent ⁇ and / or its thickness e, with respect to the arrangement of FIG. 1, which gives the turns of the spiral a perfect or almost perfect concentricity.
- FIG. 5 shows results of measuring the movement of a movement identical to that on which the measurements of FIG. 3 have been made, but equipped with the spiral illustrated in FIG. 4 instead of that of FIG. 1.
- Another parameter of the stiffened portion 6 having an influence on isochronism is its thickness e.
- a small amplitude advance is created with respect to the large oscillation amplitudes of the balance.
- FIG. 7 shows the hairspring obtained, with its stiffened outer turn portion 5 designated by the reference numeral 6 "
- FIG. 8 shows the isochronism curve 17 corresponding to such a hairspring.
- Yet another parameter of the stiffened portion having an influence on isochronism is its extent ⁇ .
- ⁇ By decreasing the span ⁇ , a small amplitude advance is created with respect to the large oscillation amplitudes of the balance beam.
- FIG. 9 shows the hairspring obtained, with its stiffened outer turn portion denoted by the reference numeral 6 "', and FIG. 10 shows the isochronism curve 19 corresponding to such a hairspring.
- FIG. 11 shows isochronism curves, denoted by J1 to J5, of a spiral whose external turn comprises a stiffened portion arranged to compensate for the variation in travel due to the escapement, as described above.
- the curve J1 represents the isochronism of the spiral in the horizontal position, that is to say the variations of step due to the non concentric development of the spiral, and is obtained in the same manner as the curves of Figures 2, 5, 8 and 10.
- the stiffened portion of the outer coil of the spiral is arranged so that the spiral produces a gait of 5.3 s / j at the amplitude of 150 ° with respect to the amplitude of 300 °.
- the curves J2 to J5 represent the isochronism of the spiral in the four vertical positions VG, VH, VB and VD respectively, and are obtained taking into account both the non-concentric development of the spiral and the effect of the gravity, in other terms by adding up the variations of step due to the non concentric development of the spiral and the gravity.
- To determine the variation in speed due to gravity, in a given vertical position it is possible to calculate by finite elements the displacement of the center of gravity of the hairspring under the effect of the oscillations of the hairspring (the center of rotation of the hairspring being fixed), then use analytical equations linking this displacement and the position of the balance to the gait as a function of the amplitude.
- the operating gap between the vertical positions is 3.2 s / d at an oscillation amplitude of the balance of 250 °.
- the spiral corresponding to the isochronism curves J1 to J5 shown in Figure 11 is shown in Figure 12. It comprises 14 turns.
- the angular extent and the angular position of its stiffened portion 9 are respectively 60 ° and 75 °.
- the radius R of its shell, or distance between the inner end of the hairspring and the center of rotation of said hairspring, measured in the same manner as in FIG. 1, is equal to 565 pm. It has been found that by decreasing the radius R to a value R ', the operating gap between the vertical positions was reduced.
- the radius R ' is advantageously chosen to be less than 400 ⁇ m.
- FIG. 14 represents the isochronism curves of a spiral (shown in FIG.
- FIG. 15 shows a hairspring whose ferrule radius R 'is equal to 300 ⁇ m and whose inner turn 10 is shaped according to a Grossmann curve.
- FIG. 16 it can be seen that the operating gap between the vertical positions for this hairspring is only 0.6 s / d at an amplitude of oscillation of 250 °.
- the stiffened portion 9 "of the outer turn is arranged so that the hairspring produces a march advance due to the concentricity of the spiral development of 4.2 s / d between the amplitudes of 150 ° and 300 °, to compensate for a delay due to the escape of the same order of magnitude.
- the hairspring of FIG. 1 the inner stiffened portion 1 having, like the outer stiffened portion 9 "', a greater thickness than the rest of the turns
- the stiffened portion 9 "'of the outer turn is arranged so that the hairspring produce a march advance due to the lack of concentricity of the hairspring development of 5.4 s / d between the amplitudes. 150 ° and 300 °, to compensate for a run delay due to the escape of the same order of magnitude.
- a Grossmann curve or a stiffened inner turn portion with a small ferrule radius R ' is particularly advantageous, it should be noted that the Grossmann curve 10 or the stiffened inner turn portion could also be used with a ferrule of larger radius R. Alternatively, a small ferrule radius R ', a Grossmann curve and a stiffened inner turn portion could be combined. In all cases, the stiffened outer turn portion may be arranged according to any of the principles set forth in connection with Figures 4, 7 and 9 or a combination of these principles. Moreover, it goes without saying that one could apply
- the spirals described above are each intended to be part of an oscillator of a movement-type clockwork movement illustrated in the form of a block diagram in FIG. 19.
- the movement 12 comprises, in the traditional way, a motor member 13 such as a cylinder, a gear train 14, an escapement 15 and a display 17.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Springs (AREA)
- Geophysics And Detection Of Objects (AREA)
- Micromachines (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH02282/12A CH707165B1 (en) | 2012-11-07 | 2012-11-07 | Watch movement with sprung balance. |
PCT/IB2013/002355 WO2014072781A2 (en) | 2012-11-07 | 2013-10-22 | Clock movement having a balance and a hairspring |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2917787A2 true EP2917787A2 (en) | 2015-09-16 |
EP2917787B1 EP2917787B1 (en) | 2020-08-19 |
Family
ID=49880836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13812065.4A Active EP2917787B1 (en) | 2012-11-07 | 2013-10-22 | Clock movement having a balance and a hairspring |
Country Status (8)
Country | Link |
---|---|
US (1) | US9323223B2 (en) |
EP (1) | EP2917787B1 (en) |
JP (1) | JP6334548B2 (en) |
CN (1) | CN104756019B (en) |
CH (1) | CH707165B1 (en) |
HK (1) | HK1208739A1 (en) |
SG (1) | SG11201501727QA (en) |
WO (1) | WO2014072781A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4293428A1 (en) | 2022-06-14 | 2023-12-20 | Patek Philippe SA Genève | Hairspring for timepiece resonator |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3098669A1 (en) * | 2014-03-05 | 2016-11-30 | Nivarox-FAR S.A. | Hairspring intended for being clamped by a spring washer |
EP3159748B1 (en) * | 2015-10-22 | 2018-12-12 | ETA SA Manufacture Horlogère Suisse | Compact hairspring with variable cross-section |
SG11201806735QA (en) | 2016-03-23 | 2018-09-27 | Patek Philippe Sa Geneve | Balance-hairspring oscillator for a timepiece |
CN110308635B (en) * | 2018-03-20 | 2022-03-01 | 精工电子有限公司 | Reset spring, gear train mechanism, movement for clock and mechanical clock |
EP3913441B1 (en) | 2020-05-22 | 2024-05-01 | Patek Philippe SA Genève | Oscillator for a timepiece |
JP7476768B2 (en) * | 2020-11-13 | 2024-05-01 | セイコーエプソン株式会社 | Balance, movement, mechanical watch and balance manufacturing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH327796A (en) | 1954-02-22 | 1958-02-15 | Horlogerie Suisse S A Asuag | Flat hairspring |
EP1445670A1 (en) * | 2003-02-06 | 2004-08-11 | ETA SA Manufacture Horlogère Suisse | Balance-spring resonator spiral and its method of fabrication |
EP2224293B1 (en) * | 2003-04-29 | 2012-07-18 | Patek Philippe SA Genève | Balance and flat hairspring regulator for a watch movement |
EP1612627B1 (en) * | 2004-07-02 | 2009-05-06 | Nivarox-FAR S.A. | Bi-material autocompensating hairspring |
EP2151722B8 (en) * | 2008-07-29 | 2021-03-31 | Rolex Sa | Hairspring for balance-spring resonator |
CH701783B1 (en) * | 2009-09-07 | 2015-01-30 | Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S A | spiral spring watch movement. |
CH701846B8 (en) | 2009-09-21 | 2015-06-15 | Rolex Sa | Flat spiral for clockwork pendulum and balance-sprung assembly. |
DE102009048733A1 (en) | 2009-10-08 | 2011-04-14 | Konrad Damasko | Spiral spring for mechanical oscillating system of watches, particularly for wrist watches, comprises number of windings between inner spring end and outer spring end, where winding section is provided at outer winding |
US9658598B2 (en) * | 2012-07-17 | 2017-05-23 | Master Dynamic Limited | Hairspring for a time piece and hairspring design for concentricity |
-
2012
- 2012-11-07 CH CH02282/12A patent/CH707165B1/en not_active IP Right Cessation
-
2013
- 2013-10-22 JP JP2015540224A patent/JP6334548B2/en active Active
- 2013-10-22 CN CN201380056637.6A patent/CN104756019B/en active Active
- 2013-10-22 SG SG11201501727QA patent/SG11201501727QA/en unknown
- 2013-10-22 WO PCT/IB2013/002355 patent/WO2014072781A2/en active Application Filing
- 2013-10-22 US US14/437,065 patent/US9323223B2/en active Active
- 2013-10-22 EP EP13812065.4A patent/EP2917787B1/en active Active
-
2015
- 2015-09-17 HK HK15109127.0A patent/HK1208739A1/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2014072781A2 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4293428A1 (en) | 2022-06-14 | 2023-12-20 | Patek Philippe SA Genève | Hairspring for timepiece resonator |
WO2023242746A1 (en) | 2022-06-14 | 2023-12-21 | Patek Philippe Sa Geneve | Balance spring for a timepiece resonator |
Also Published As
Publication number | Publication date |
---|---|
SG11201501727QA (en) | 2015-04-29 |
CH707165A2 (en) | 2014-05-15 |
EP2917787B1 (en) | 2020-08-19 |
CN104756019B (en) | 2017-08-04 |
CH707165B1 (en) | 2016-12-30 |
WO2014072781A3 (en) | 2014-06-26 |
US20150248113A1 (en) | 2015-09-03 |
HK1208739A1 (en) | 2016-03-11 |
WO2014072781A2 (en) | 2014-05-15 |
CN104756019A (en) | 2015-07-01 |
JP2015533423A (en) | 2015-11-24 |
JP6334548B2 (en) | 2018-05-30 |
US9323223B2 (en) | 2016-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2917787B1 (en) | Clock movement having a balance and a hairspring | |
EP2363762B1 (en) | Timepiece including a high-frequency mechanical movement | |
EP2104006B1 (en) | Single-body double spiral and method for manufacturing same | |
EP2613206B1 (en) | Hairspring with two spiral springs with improved isochronism | |
EP4009115A1 (en) | Hairspring for timepiece resonator mechanism provided with a means for adjusting rigidity | |
EP2257856A1 (en) | Integral adjusting member and method for making same | |
WO2008080570A2 (en) | Mechanical oscillator for timepiece | |
WO2011006617A1 (en) | Tourbillon with fixed escape wheel | |
WO2014016094A1 (en) | Horology hairspring | |
EP2753985B1 (en) | Clock movement having a balance-wheel and hairspring | |
EP2690506A1 (en) | Anti-tripping clock hairspring | |
CH707742A2 (en) | sprung balance system, part of clockwork and timepiece. | |
EP2631721A1 (en) | Diamond-covered titanium clock components | |
CH700747A1 (en) | Mechanical oscillator for use in mechanical resonator of horological movement of wristwatch, has balance wheels associated with respective hairsprings, where balance wheels are toothed and arranged in engagement with each other | |
EP2771743B1 (en) | Oscillator for clockwork movement | |
CH713409A2 (en) | Spiral balance of the thermocompensated type, movement and timepiece. | |
EP3234701B1 (en) | Oscillator for a clock movement | |
EP2309345B1 (en) | Method for manufacturing clock movements operating at different frequencies | |
CH718113A2 (en) | Hairspring for clock resonator mechanism provided with means for adjusting the rigidity. | |
CH702799B1 (en) | Timepiece including a high-frequency mechanical motion. | |
EP3391154B1 (en) | Oscillating system for timepiece | |
CH719658B1 (en) | Mechanical watch movement | |
CH704239A2 (en) | Single block watch making mobile e.g. escape mechanism, for use during movement of mechanical watch, has guide surface located close to plane so as to maintain mobile in recessed or overhang manner, where mobile does not have guide shaft | |
CH712265B1 (en) | Timepiece movement and timepiece comprising such a movement. | |
WO2017067955A1 (en) | Silicon hairspring for mechanical timepiece movement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150324 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1208739 Country of ref document: HK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200318 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013071814 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1304644 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201119 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201119 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201120 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201221 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1304644 Country of ref document: AT Kind code of ref document: T Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201219 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013071814 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201022 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201031 |
|
26N | No opposition filed |
Effective date: 20210520 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201022 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200819 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230521 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230830 Year of fee payment: 11 Ref country code: CH Payment date: 20231102 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240829 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240923 Year of fee payment: 12 |