EP2909473A1 - Éolienne - Google Patents

Éolienne

Info

Publication number
EP2909473A1
EP2909473A1 EP13776824.8A EP13776824A EP2909473A1 EP 2909473 A1 EP2909473 A1 EP 2909473A1 EP 13776824 A EP13776824 A EP 13776824A EP 2909473 A1 EP2909473 A1 EP 2909473A1
Authority
EP
European Patent Office
Prior art keywords
rotor blade
vortex generators
wind turbine
stagnation
blade according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13776824.8A
Other languages
German (de)
English (en)
Inventor
Andree Altmikus
Mohammad Kamruzzaman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wobben Properties GmbH
Original Assignee
Wobben Properties GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wobben Properties GmbH filed Critical Wobben Properties GmbH
Publication of EP2909473A1 publication Critical patent/EP2909473A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • F03D1/0641Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/306Surface measures
    • F05B2240/3062Vortex generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/32Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a wind turbine rotor blade.
  • a rotor blade of a wind energy plant has a rotor blade root area, a rotor blade tip, a rotor blade leading edge, a rotor blade trailing edge, a suction side and a pressure side.
  • the rotor blade is connected at its rotor blade root area to a hub of a wind energy plant.
  • the rotor blades are connected to a rotor of the wind turbine and put the rotor in rotation, as far as sufficient wind is available. This rotation can be converted by an electric generator into electrical power.
  • the rotor blade is moved by the principle of aerodynamic lift.
  • air passes both above and below the blade.
  • the sheet is typically arched so that the air above the sheet has a longer path around the profile and thus must flow faster than the air along the bottom. This creates a negative pressure above the blade (suction side) and below an overpressure (pressure side).
  • EP 1 944 505 A1 shows a wind turbine rotor blade with a plurality of vortex generators on the suction side of the rotor blade.
  • EP 2 484 898 A1 describes a wind turbine rotor blade with a plurality of vortex generators.
  • the vortex generators are provided in the rotor blade root near area.
  • WO 2013/014080 A2 shows a wind turbine rotor blade with a plurality of vortex generators. Furthermore, it is described here how a rotor blade can be retrofitted with the vortex generators.
  • the vortex generators are provided on the suction side of the rotor blade and in the rotor blade root near area.
  • WO 2007/140771 A1 shows a rotor blade of a wind energy plant with a plurality of vortex generators on the suction side of the rotor blade.
  • WO 2008/113350 A2 also shows a wind turbine rotor blade with a plurality of vortex generators. The vortex generators are provided on the suction side of the rotor blade.
  • WO 2006/122547 A1 shows a rotor blade of a wind energy plant with a plurality of vortex generators on the suction side of the rotor blade.
  • WO 2012/082324 A1 shows a wind turbine rotor blade with a plurality of vortex generators, wherein the vortex generators are provided in the rotor blade root near area.
  • a wind turbine rotor blade is provided with a suction side, a pressure side, a root near region, a rotor blade tip, a rotor blade leading edge and a rotor blade trailing edge.
  • the rotor blade further includes a plurality of stagnation points along the length of the rotor blade, which together may form a stagnation dot line.
  • a plurality of vortex generators are provided in the area of the stagnation point line.
  • the stagnation point line is located on the underside (generally referred to as the pressure side) of the rotor blade.
  • the stagnation point is the point on the surface of the rotor blade at which the velocity of the flow disappears, so that the kinetic energy can be completely converted into a pressure energy.
  • the stagnation point is the point at which the flow divides, and part of the flow flows over the suction side and the other part flows over the pressure side of the rotor blade.
  • the vortex generators are provided in the longitudinal direction at more than 50%, in particular more than 60% of the length of the rotor blade (ie the last 50% to 40% of the rotor blade in the direction of the rotor blade tip with vortex generators in the range the stagnation point line provided).
  • the shape of the vortex generators may be, for example, a semicircle, an oval or an arrowhead in plan view.
  • the diameter of the vortex generators is less than 100 mm.
  • the distance between adjacent vortex generators is at least once the diameter and at most ten times the diameter of the vortex generators.
  • the height of the vortex generators is maximum S of the diameter.
  • the 3D shape of the vortex generators can be a constant thickness disk or a spherical base with a round basic shape.
  • FIG. 1 shows a schematic representation of a wind energy plant according to the invention
  • FIG. 2 shows a schematic representation of a rotor blade according to a first exemplary embodiment
  • FIG. 3 shows a schematic sectional view of a rotor blade according to a first exemplary embodiment
  • FIG. 4 shows a perspective view of a section of a wind turbine rotor blade according to a second embodiment
  • FIG. 5 is a polar diagram for illustrating a course of the FIG.
  • Fig. 1 shows a schematic representation of a wind turbine according to the invention.
  • the wind energy plant 100 has a tower 102 and a pod 104.
  • a rotor 106 with three rotor blades 200 and a spinner 110 is provided on the nacelle 104.
  • the rotor 106 is rotated by the wind during operation and then causes a rotation of an electric generator in the nacelle, which generates electrical power from the rotation.
  • the pitch of the rotor blades or the angle of attack of the rotor blades 200 can be changed by pitch motors on the rotor blade roots of the respective rotor blades 200.
  • 2 shows a schematic representation of a wind turbine rotor blade according to a first exemplary embodiment.
  • the rotor blade 200 has a rotor blade leading edge 211, a rotor blade trailing edge 212, a rotor blade tip 213, a rotor blade root region 214. Furthermore, the rotor blade has a longitudinal direction L which extends from the rotor blade root region 214 to the rotor blade tip 213.
  • the rotor blade further has a stagnation point line 215 (stagnation point line) which extends on the pressure side of the rotor blade. Since the cross section of the rotor blade changes in the longitudinal direction L, the stagnation point also changes for each section of the rotor blade. From the plurality of stagnation points, a stagnation point line 215 can thus be formed.
  • a plurality of vortex generators 300 are provided in the area of the stagnation point line 215.
  • the rotor blade 200 is releasably secured by the rotor blade root portion 214 to the rotor 106 of the wind turbine.
  • the end of the rotor blade root portion 214, which on the rotor 106 z. B. is attached to the rotor hub, is designed round and can be releasably secured via a plurality of screw to the hub of the rotor 106.
  • the vortex generators 300 are in the region of the stagnation point line 215 at a predetermined angle of attack, z. B. the nominal angle of attack provided.
  • the vortex generators 300 can be provided starting from the rotor blade root area 214 from a length of 50% to 100% of the rotor blade.
  • the vortex generators 300 may be provided between 60% and 100% of the length of the rotor blade from the rotor blade root 214.
  • the vortex generators 300 may be circular, oval or arrow-shaped in plan view.
  • the diameter of the vortex generators is less than 100 mm (eg 20 mm).
  • the distance between adjacent vortex generators 300 is at least once the diameter of the vortex generators and at most 10 times the diameter of the vortex generators.
  • the height of the vortex generators is at most the diameter of the vortex generators.
  • the three-dimensional shape may correspond to a disc of constant thickness or a spherical cap with a round basic shape.
  • An arrow-shaped floor plan can represent a pyramidal shape. While the Oriented in Flow direction is unimportant in round basic shape, the pyramid is oriented with its tip in the flow direction.
  • Fig. 3 shows a schematic sectional view of a wind turbine rotor blade according to the first embodiment.
  • the rotor blade 200 has a rotor blade leading edge 210, a rotor blade trailing edge 212, a suction side 216 and a pressure side 217.
  • the vortex generators 300 are provided in the area of the pressure side 217 as well as in the area of the stagnation point or the stagnation point line 215.
  • FIG 4 shows a perspective view of a section of a rotor blade according to a second exemplary embodiment.
  • the rotor blade 200 has in this section two vortex generators 300, which are provided in the region of the stagnation dot line 215.
  • the vortex generators 300 may be provided in the area of the stagnation point line 215 in such a way that they are located in the area of the stagnation point line during nominal operation.
  • the effective angle of attack increases globally or locally (eg with gusty winds or when operating in shear winds), the stagnation point travels past the vortex generators and vortex generators generate vortex filaments 400, which are larger detachment areas Stabilize on the suction side and so even under unfavorable flow conditions still provide an applied flow and the maintenance of buoyancy.
  • FIG. 5 shows a polar diagram to illustrate the course of the drive coefficient over the effective angle of attack or pitch angle at a Reynolds number of 6 million.
  • the profile of the lift coefficient C L is above the effective flow angle a en for a rotor blade without vortex generators 600 and a rotor blade with vortex generators 500 shown. It can thus be seen from FIG. 5 that the use of the vortex or vortex generators according to the invention leads to a delay of the start of the detachment of the air flow.
  • the lift coefficient C L is increased, ie the rotor blade with the vortex generators according to the invention can achieve a higher lift coefficient and can achieve a higher effective angle of attack a e9 .
  • the maximum lift coefficient C L is thus postponed to higher angles of attack of the rotor blade. This means for the wind energy plant during operation an improvement of the stationary detachment behavior of the profile while minimizing the negative resistance increase. This explains the reduction in noise Rotor blades in stationary flow conditions, so that the wind turbine according to the invention has a reduced noise emission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne une pale d'éolienne comprenant un extrados (216), un intrados (217), une zone proche de la racine (214), une pointe de pale (213), un bord d'attaque de la pale (211) et un bord de fuite de la pale (212). La pale comporte en outre sur la longueur de la pale une pluralité de points de stagnation qui peuvent former ensemble une ligne de stagnation (215). Une pluralité de générateurs de vortex est disposée dans la zone de la ligne de stagnation (215). La ligne de stagnation (215) se trouve sur le dessous (généralement appelé intrados) de la pale.
EP13776824.8A 2012-10-16 2013-10-16 Éolienne Withdrawn EP2909473A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012020198 2012-10-16
DE102013207640.1A DE102013207640A1 (de) 2012-10-16 2013-04-26 Windenergieanlagen-Rotorblatt
PCT/EP2013/071574 WO2014060446A1 (fr) 2012-10-16 2013-10-16 Éolienne

Publications (1)

Publication Number Publication Date
EP2909473A1 true EP2909473A1 (fr) 2015-08-26

Family

ID=50383378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13776824.8A Withdrawn EP2909473A1 (fr) 2012-10-16 2013-10-16 Éolienne

Country Status (16)

Country Link
US (1) US20150252778A1 (fr)
EP (1) EP2909473A1 (fr)
JP (1) JP6067130B2 (fr)
KR (1) KR20150070342A (fr)
CN (1) CN104736844A (fr)
AR (1) AR094628A1 (fr)
AU (1) AU2013333950A1 (fr)
BR (1) BR112015007517A2 (fr)
CA (1) CA2886493C (fr)
CL (1) CL2015000933A1 (fr)
DE (1) DE102013207640A1 (fr)
MX (1) MX2015004600A (fr)
RU (1) RU2601017C1 (fr)
TW (1) TW201428181A (fr)
WO (1) WO2014060446A1 (fr)
ZA (1) ZA201502888B (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150361951A1 (en) * 2014-06-17 2015-12-17 Siemens Energy, Inc. Pressure side stall strip for wind turbine blade
DE102015120113A1 (de) * 2015-11-20 2017-05-24 Wobben Properties Gmbh Windenergieanlagen-Rotorblatt und Windenergieanlage
US10400744B2 (en) 2016-04-28 2019-09-03 General Electric Company Wind turbine blade with noise reducing micro boundary layer energizers
DE102017107464A1 (de) * 2017-04-06 2018-10-11 Teg Tubercle Engineering Group Gmbh Nachrüstkörper für ein Rotorblatt einer Windkraftanlage, nachgerüstetes Rotorblatt und Verfahren zum Nachrüsten des Rotorblatts
DE102017107465A1 (de) * 2017-04-06 2018-10-11 Teg Tubercle Engineering Group Gmbh Profilkörper zum Erzeugen von dynamischem Auftrieb, Rotorblatt mit dem Profilkörper und Verfahren zum Profilieren des Profilkörpers
DE102017107459A1 (de) * 2017-04-06 2018-10-11 Teg Tubercle Engineering Group Gmbh Rotorblatt für eine Windkraftanlage und die Windkraftanlage
DE102018121190A1 (de) * 2018-08-30 2020-03-05 Wobben Properties Gmbh Rotorblatt, Windenergieanlage und Verfahren zum Optimieren einer Windenergieanlage
DE102019113044A1 (de) * 2019-05-17 2020-11-19 Wobben Properties Gmbh Verfahren zum Auslegen und Betreiben einer Windenergieanlage, Windenergieanlage sowie Windpark
GB2588258A (en) * 2020-03-26 2021-04-21 Lm Wind Power As Wind turbine blade with a flow controlling element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1714869B1 (fr) * 2005-04-21 2008-12-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Surface de sustentation avec comportement de séparation amélioré sous angle d'incidence fortement variable

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179198A (ja) * 1992-05-19 1995-07-18 General Electric Co <Ge> ジェットエンジン・ファンナセル
WO1998022711A1 (fr) * 1996-11-18 1998-05-28 Lm Glasfiber A/S Utilisation d'un dispositif provoquant des turbulences pour amortir les vibrations de decrochage des pales d'une eolienne
NL1012949C2 (nl) * 1999-09-01 2001-03-06 Stichting Energie Blad voor een windturbine.
JP4151940B2 (ja) * 2002-02-05 2008-09-17 タマティーエルオー株式会社 垂直軸風車
JP2004060646A (ja) * 2002-06-05 2004-02-26 Furukawa Co Ltd 風車の起動風速低減装置
ES2627790T3 (es) 2005-05-17 2017-07-31 Vestas Wind Systems A/S Pala de turbina eólica controlada por cabeceo que tiene medios de generación de turbulencia, turbina eólica y uso de la misma
GB0514338D0 (en) * 2005-07-13 2005-08-17 Univ City Control of fluid flow separation
US7604461B2 (en) * 2005-11-17 2009-10-20 General Electric Company Rotor blade for a wind turbine having aerodynamic feature elements
EP3617496A1 (fr) * 2006-04-02 2020-03-04 Wobben Properties GmbH Éolienne à pales effilées
ATE537356T1 (de) 2006-06-09 2011-12-15 Vestas Wind Sys As Windturbinenrotorblatt und pitchgeregelte windturbine
DK1944505T3 (da) 2007-01-12 2013-01-07 Siemens Ag Vindmøllerotorblad med hvirvelgeneratorer
ATE490404T1 (de) 2007-03-20 2010-12-15 Vestas Wind Sys As Windturbinenschaufel mit wirbelerzeugern
ES2339883T3 (es) * 2007-07-20 2010-05-26 Siemens Aktiengesellschaft Pala de rotor de turbina eolica y turbina eolica con regulacion de paso.
ES2343397B1 (es) * 2008-03-07 2011-06-13 GAMESA INNOVATION &amp; TECHNOLOGY, S.L. Una pala de aerogenerador.
RU2406872C1 (ru) * 2009-06-18 2010-12-20 Цзя-Юань ЛИ Ветряная турбина
US8061986B2 (en) * 2010-06-11 2011-11-22 General Electric Company Wind turbine blades with controllable aerodynamic vortex elements
UA60418U (en) * 2010-09-07 2011-06-25 Николай Илларионович Трегуб Blade of wind-driven power plant
US8746053B2 (en) 2010-12-16 2014-06-10 Inventus Holdings, Llc Method for determining optimum vortex generator placement for maximum efficiency on a retrofitted wind turbine generator of unknown aerodynamic design
EP2484898B1 (fr) 2011-02-04 2014-04-23 LM WP Patent Holding A/S Dispositif générateur de vortex doté de sections biseautées pour une éolienne
EP2548800A1 (fr) 2011-07-22 2013-01-23 LM Wind Power A/S Procédés pour rééquiper des générateurs de vortex sur une pale d'éolienne
CN104364517B (zh) * 2012-03-13 2017-10-24 柯尔顿控股有限公司 扭转的叶片根部

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1714869B1 (fr) * 2005-04-21 2008-12-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Surface de sustentation avec comportement de séparation amélioré sous angle d'incidence fortement variable

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BENJAMIN HEINE ET AL: "Dynamic stall control by passive disturbance generators", AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS. AIAA CONFERENCE PAPERS, 1 January 2011 (2011-01-01), Reston, XP055288496 *
HOLGER MAI ET AL: "Dynamic Stall Control by Leading Edge Vortex Generators", JOURNAL OF THE AMERICAN HELICOPTER SOCIETY., vol. 53, no. 1, 11 May 2006 (2006-05-11), US, pages 26 - 36, XP055288483, ISSN: 0002-8711, DOI: 10.4050/JAHS.53.26 *
See also references of WO2014060446A1 *

Also Published As

Publication number Publication date
CL2015000933A1 (es) 2015-08-28
US20150252778A1 (en) 2015-09-10
TW201428181A (zh) 2014-07-16
BR112015007517A2 (pt) 2017-07-04
JP2015532391A (ja) 2015-11-09
CA2886493A1 (fr) 2014-04-24
AR094628A1 (es) 2015-08-19
RU2601017C1 (ru) 2016-10-27
AU2013333950A1 (en) 2015-05-21
CA2886493C (fr) 2018-05-01
KR20150070342A (ko) 2015-06-24
CN104736844A (zh) 2015-06-24
DE102013207640A1 (de) 2014-04-17
ZA201502888B (en) 2016-01-27
MX2015004600A (es) 2016-06-21
JP6067130B2 (ja) 2017-01-25
WO2014060446A1 (fr) 2014-04-24

Similar Documents

Publication Publication Date Title
EP2909473A1 (fr) Éolienne
EP2337950B1 (fr) Profil d&#39;une pale de rotor et pale de rotor d&#39;une éolienne
EP1671030B1 (fr) Pale de rotor pour une éolienne
EP1514023B1 (fr) Eolienne
DE102011051831B4 (de) Rotorblatt für eine Windkraftanlage mit einem Saugseitenwinglet
DE202015000665U1 (de) Vorrichtung eines Sicherheitssystems und/oder Ressourcen-/Energieeffizienz-Verbesserungs - Systems zur Stömungsbeeinflussung eines Aero- oder Hydrodynamischen Körpers (3), nach dem Prinzip einer Rückstromklappe (4)
EP2280163B1 (fr) Eolienne et pale de rotor d&#39;une eolienne
DE102012100593A1 (de) Steuerbare Oberflächenmerkmale für Rotorblätter von Windkraftanlagen
DE102012100650A1 (de) Steuerbare Oberflächenmerkmale für Windkraftanlagenrotorblätter
DE102011055377A1 (de) Rotorblattanordnung mit einem Hilfsblatt
EP2984334B1 (fr) Pale de rotor d&#39;éolienne et éolienne
DE112012005432T5 (de) Windturbine mit Gondelzaun
EP3625454A1 (fr) Pale de rotor d&#39;éolienne
EP3399183B1 (fr) Pale de rotor d&#39;une éolienne
DE202012005356U1 (de) Rotorblatt für Windturbinen mit Profilen in Tandemanordnung
DE102011122140A1 (de) Delta-Wirbelstromgeneratoren
DE102016117012A1 (de) Windenergieanlagen-Rotorblatt
EP2976524B1 (fr) Pale de rotor d&#39;une éolienne, éolienne, et procédé pour faire fonctionner une éolienne
EP3665384A1 (fr) Pale de rotor d&#39;un rotor d&#39;un aérogénérateur, aérogénérateur et procédé d&#39;amélioration du taux de rendement d&#39;un rotor d&#39;un aérogénérateur
EP3844384A1 (fr) Pale de rotor, éolienne et procédé d&#39;optimisation d&#39;une éolienne
DE202013101386U1 (de) Rotorblatt mit einem Winglet, Windenergieanlage und Windenergieanlagenpark
DE102010016086A1 (de) Rotorblatt für H-Rotor
EP3280910A1 (fr) Pale de rotor d&#39;éolienne
WO2012156352A1 (fr) Éolienne
EP3735530B1 (fr) Pale de rotor pour éolienne et procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20150720

Extension state: ME

Payment date: 20150720

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ALTMIKUS, ANDREE

Inventor name: KAMRUZZAMAN, MOHAMMAD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WOBBEN PROPERTIES GMBH

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20160722

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171212