EP2909473A1 - Wind turbine - Google Patents
Wind turbineInfo
- Publication number
- EP2909473A1 EP2909473A1 EP13776824.8A EP13776824A EP2909473A1 EP 2909473 A1 EP2909473 A1 EP 2909473A1 EP 13776824 A EP13776824 A EP 13776824A EP 2909473 A1 EP2909473 A1 EP 2909473A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor blade
- vortex generators
- wind turbine
- stagnation
- blade according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000010586 diagram Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
- F03D1/0641—Rotors characterised by their aerodynamic shape of the blades of the section profile of the blades, i.e. aerofoil profile
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/12—Fluid guiding means, e.g. vanes
- F05B2240/122—Vortex generators, turbulators, or the like, for mixing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/306—Surface measures
- F05B2240/3062—Vortex generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/32—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor with roughened surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/96—Preventing, counteracting or reducing vibration or noise
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a wind turbine rotor blade.
- a rotor blade of a wind energy plant has a rotor blade root area, a rotor blade tip, a rotor blade leading edge, a rotor blade trailing edge, a suction side and a pressure side.
- the rotor blade is connected at its rotor blade root area to a hub of a wind energy plant.
- the rotor blades are connected to a rotor of the wind turbine and put the rotor in rotation, as far as sufficient wind is available. This rotation can be converted by an electric generator into electrical power.
- the rotor blade is moved by the principle of aerodynamic lift.
- air passes both above and below the blade.
- the sheet is typically arched so that the air above the sheet has a longer path around the profile and thus must flow faster than the air along the bottom. This creates a negative pressure above the blade (suction side) and below an overpressure (pressure side).
- EP 1 944 505 A1 shows a wind turbine rotor blade with a plurality of vortex generators on the suction side of the rotor blade.
- EP 2 484 898 A1 describes a wind turbine rotor blade with a plurality of vortex generators.
- the vortex generators are provided in the rotor blade root near area.
- WO 2013/014080 A2 shows a wind turbine rotor blade with a plurality of vortex generators. Furthermore, it is described here how a rotor blade can be retrofitted with the vortex generators.
- the vortex generators are provided on the suction side of the rotor blade and in the rotor blade root near area.
- WO 2007/140771 A1 shows a rotor blade of a wind energy plant with a plurality of vortex generators on the suction side of the rotor blade.
- WO 2008/113350 A2 also shows a wind turbine rotor blade with a plurality of vortex generators. The vortex generators are provided on the suction side of the rotor blade.
- WO 2006/122547 A1 shows a rotor blade of a wind energy plant with a plurality of vortex generators on the suction side of the rotor blade.
- WO 2012/082324 A1 shows a wind turbine rotor blade with a plurality of vortex generators, wherein the vortex generators are provided in the rotor blade root near area.
- a wind turbine rotor blade is provided with a suction side, a pressure side, a root near region, a rotor blade tip, a rotor blade leading edge and a rotor blade trailing edge.
- the rotor blade further includes a plurality of stagnation points along the length of the rotor blade, which together may form a stagnation dot line.
- a plurality of vortex generators are provided in the area of the stagnation point line.
- the stagnation point line is located on the underside (generally referred to as the pressure side) of the rotor blade.
- the stagnation point is the point on the surface of the rotor blade at which the velocity of the flow disappears, so that the kinetic energy can be completely converted into a pressure energy.
- the stagnation point is the point at which the flow divides, and part of the flow flows over the suction side and the other part flows over the pressure side of the rotor blade.
- the vortex generators are provided in the longitudinal direction at more than 50%, in particular more than 60% of the length of the rotor blade (ie the last 50% to 40% of the rotor blade in the direction of the rotor blade tip with vortex generators in the range the stagnation point line provided).
- the shape of the vortex generators may be, for example, a semicircle, an oval or an arrowhead in plan view.
- the diameter of the vortex generators is less than 100 mm.
- the distance between adjacent vortex generators is at least once the diameter and at most ten times the diameter of the vortex generators.
- the height of the vortex generators is maximum S of the diameter.
- the 3D shape of the vortex generators can be a constant thickness disk or a spherical base with a round basic shape.
- FIG. 1 shows a schematic representation of a wind energy plant according to the invention
- FIG. 2 shows a schematic representation of a rotor blade according to a first exemplary embodiment
- FIG. 3 shows a schematic sectional view of a rotor blade according to a first exemplary embodiment
- FIG. 4 shows a perspective view of a section of a wind turbine rotor blade according to a second embodiment
- FIG. 5 is a polar diagram for illustrating a course of the FIG.
- Fig. 1 shows a schematic representation of a wind turbine according to the invention.
- the wind energy plant 100 has a tower 102 and a pod 104.
- a rotor 106 with three rotor blades 200 and a spinner 110 is provided on the nacelle 104.
- the rotor 106 is rotated by the wind during operation and then causes a rotation of an electric generator in the nacelle, which generates electrical power from the rotation.
- the pitch of the rotor blades or the angle of attack of the rotor blades 200 can be changed by pitch motors on the rotor blade roots of the respective rotor blades 200.
- 2 shows a schematic representation of a wind turbine rotor blade according to a first exemplary embodiment.
- the rotor blade 200 has a rotor blade leading edge 211, a rotor blade trailing edge 212, a rotor blade tip 213, a rotor blade root region 214. Furthermore, the rotor blade has a longitudinal direction L which extends from the rotor blade root region 214 to the rotor blade tip 213.
- the rotor blade further has a stagnation point line 215 (stagnation point line) which extends on the pressure side of the rotor blade. Since the cross section of the rotor blade changes in the longitudinal direction L, the stagnation point also changes for each section of the rotor blade. From the plurality of stagnation points, a stagnation point line 215 can thus be formed.
- a plurality of vortex generators 300 are provided in the area of the stagnation point line 215.
- the rotor blade 200 is releasably secured by the rotor blade root portion 214 to the rotor 106 of the wind turbine.
- the end of the rotor blade root portion 214, which on the rotor 106 z. B. is attached to the rotor hub, is designed round and can be releasably secured via a plurality of screw to the hub of the rotor 106.
- the vortex generators 300 are in the region of the stagnation point line 215 at a predetermined angle of attack, z. B. the nominal angle of attack provided.
- the vortex generators 300 can be provided starting from the rotor blade root area 214 from a length of 50% to 100% of the rotor blade.
- the vortex generators 300 may be provided between 60% and 100% of the length of the rotor blade from the rotor blade root 214.
- the vortex generators 300 may be circular, oval or arrow-shaped in plan view.
- the diameter of the vortex generators is less than 100 mm (eg 20 mm).
- the distance between adjacent vortex generators 300 is at least once the diameter of the vortex generators and at most 10 times the diameter of the vortex generators.
- the height of the vortex generators is at most the diameter of the vortex generators.
- the three-dimensional shape may correspond to a disc of constant thickness or a spherical cap with a round basic shape.
- An arrow-shaped floor plan can represent a pyramidal shape. While the Oriented in Flow direction is unimportant in round basic shape, the pyramid is oriented with its tip in the flow direction.
- Fig. 3 shows a schematic sectional view of a wind turbine rotor blade according to the first embodiment.
- the rotor blade 200 has a rotor blade leading edge 210, a rotor blade trailing edge 212, a suction side 216 and a pressure side 217.
- the vortex generators 300 are provided in the area of the pressure side 217 as well as in the area of the stagnation point or the stagnation point line 215.
- FIG 4 shows a perspective view of a section of a rotor blade according to a second exemplary embodiment.
- the rotor blade 200 has in this section two vortex generators 300, which are provided in the region of the stagnation dot line 215.
- the vortex generators 300 may be provided in the area of the stagnation point line 215 in such a way that they are located in the area of the stagnation point line during nominal operation.
- the effective angle of attack increases globally or locally (eg with gusty winds or when operating in shear winds), the stagnation point travels past the vortex generators and vortex generators generate vortex filaments 400, which are larger detachment areas Stabilize on the suction side and so even under unfavorable flow conditions still provide an applied flow and the maintenance of buoyancy.
- FIG. 5 shows a polar diagram to illustrate the course of the drive coefficient over the effective angle of attack or pitch angle at a Reynolds number of 6 million.
- the profile of the lift coefficient C L is above the effective flow angle a en for a rotor blade without vortex generators 600 and a rotor blade with vortex generators 500 shown. It can thus be seen from FIG. 5 that the use of the vortex or vortex generators according to the invention leads to a delay of the start of the detachment of the air flow.
- the lift coefficient C L is increased, ie the rotor blade with the vortex generators according to the invention can achieve a higher lift coefficient and can achieve a higher effective angle of attack a e9 .
- the maximum lift coefficient C L is thus postponed to higher angles of attack of the rotor blade. This means for the wind energy plant during operation an improvement of the stationary detachment behavior of the profile while minimizing the negative resistance increase. This explains the reduction in noise Rotor blades in stationary flow conditions, so that the wind turbine according to the invention has a reduced noise emission.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
Description
Windenergieanlage Wind turbine
Die vorliegende Erfindung betrifft ein Windenergieanlagen-Rotorblatt. The present invention relates to a wind turbine rotor blade.
Ein Rotorblatt einer Windenergieanlage weist einen Rotorblattwurzelbereich, eine Rotorblattspitze, eine Rotorblattvorderkante, eine Rotorblatthinterkante, eine Saugseite und eine Druckseite auf. Typischerweise wird das Rotorblatt an seinem Rotorblattwurzelbe- reich mit einer Nabe einer Windenergieanlage verbunden. Damit sind die Rotorblätter mit einem Rotor der Windenergieanlage verbunden und versetzen den Rotor in Rotation, soweit ausreichend Wind vorhanden ist. Diese Rotation kann durch einen elektrischen Generator in elektrische Leistung umgewandelt werden. A rotor blade of a wind energy plant has a rotor blade root area, a rotor blade tip, a rotor blade leading edge, a rotor blade trailing edge, a suction side and a pressure side. Typically, the rotor blade is connected at its rotor blade root area to a hub of a wind energy plant. Thus, the rotor blades are connected to a rotor of the wind turbine and put the rotor in rotation, as far as sufficient wind is available. This rotation can be converted by an electric generator into electrical power.
Das Rotorblatt wird durch das Prinzip des aerodynamischen Auftriebs bewegt. Wenn Wind auf ein Rotorblatt trifft, so wird Luft sowohl oberhalb als auch unterhalb des Blattes entlanggeführt. Das Blatt ist typischerweise so gewölbt, dass die Luft oberhalb des Blattes einen längeren Weg um das Profil herum hat und somit schneller fließen muss als die Luft entlang der Unterseite. Dadurch entsteht oberhalb des Blattes ein Unterdruck (Saugseite) und unterhalb ein Überdruck (Druckseite). EP 1 944 505 A1 zeigt ein Windenergieanlagen-Rotorblatt mit einer Mehrzahl von Vortex- Generatoren auf der Saugseite des Rotorblattes. The rotor blade is moved by the principle of aerodynamic lift. When wind hits a rotor blade, air passes both above and below the blade. The sheet is typically arched so that the air above the sheet has a longer path around the profile and thus must flow faster than the air along the bottom. This creates a negative pressure above the blade (suction side) and below an overpressure (pressure side). EP 1 944 505 A1 shows a wind turbine rotor blade with a plurality of vortex generators on the suction side of the rotor blade.
EP 2 484 898 A1 beschreibt ein Windenergieanlagen-Rotorblatt mit einer Mehrzahl von Vortex-Generatoren. Die Vortex-Generatoren werden im rotorblattwurzelnahen Bereich vorgesehen. WO 2013/014080 A2 zeigt ein Windenergieanlagen-Rotorblatt mit einer Mehrzahl von Vortex-Generatoren. Ferner wird hier beschrieben, wie ein Rotorblatt mit den Vortex- Generatoren nachgerüstet werden kann. Die Vortex-Generatoren werden dabei an der Saugseite des Rotorblattes und im rotorblattwurzelnahen Bereich vorgesehen. EP 2 484 898 A1 describes a wind turbine rotor blade with a plurality of vortex generators. The vortex generators are provided in the rotor blade root near area. WO 2013/014080 A2 shows a wind turbine rotor blade with a plurality of vortex generators. Furthermore, it is described here how a rotor blade can be retrofitted with the vortex generators. The vortex generators are provided on the suction side of the rotor blade and in the rotor blade root near area.
WO 2007/140771 A1 zeigt ein Rotorblatt einer Windenergieanlage mit einer Mehrzahl von Vortex-Generatoren auf der Saugseite des Rotorblattes. WO 2008/113350 A2 zeigt ebenfalls ein Windenergieanlagen-Rotorblatt mit einer Mehrzahl von Vortex-Generatoren. Die Vortex-Generatoren werden auf der Saugseite des Rotorblattes vorgesehen. WO 2007/140771 A1 shows a rotor blade of a wind energy plant with a plurality of vortex generators on the suction side of the rotor blade. WO 2008/113350 A2 also shows a wind turbine rotor blade with a plurality of vortex generators. The vortex generators are provided on the suction side of the rotor blade.
WO 2006/122547 A1 zeigt ein Rotorblatt einer Windenergieanlage mit einer Mehrzahl von Vortex-Generatoren auf der Saugseite des Rotorblattes. WO 2006/122547 A1 shows a rotor blade of a wind energy plant with a plurality of vortex generators on the suction side of the rotor blade.
WO 2012/082324 A1 zeigt ein Windenergieanlagen-Rotorblatt mit einer Mehrzahl von Vortex-Generatoren, wobei die Vortex-Generatoren im rotorblattwurzelnahen Bereich vorgesehen sind. WO 2012/082324 A1 shows a wind turbine rotor blade with a plurality of vortex generators, wherein the vortex generators are provided in the rotor blade root near area.
Im Betrieb der Windenergieanlage kommt es zu einer Lärmemission, welche möglichst zu verringern ist, um die Akzeptanz der Windenergieanlagen in der Bevölkerung zu verbessern. In the operation of the wind turbine, there is a noise emission, which should be reduced as much as possible in order to improve the acceptance of the wind turbines in the population.
Diese Aufgabe wird durch ein Windenergieanlagen-Rotorblatt nach Anspruch 1 gelöst. This object is achieved by a wind turbine rotor blade according to claim 1.
Somit wird ein Windenergieanlagen-Rotorblatt mit einer Saugseite, einer Druckseite, einem wurzelnahen Bereich, einer Rotorblattspitze, einer Rotorblattvorderkante und einer Rotorblatthinterkante vorgesehen. Das Rotorblatt weist ferner eine Mehrzahl von Staupunkten entlang der Länge des Rotorblattes auf, welche zusammen eine Staupunktlinie bilden können. Eine Mehrzahl von Vortex-Generatoren ist im Bereich der Staupunktlinie vorgesehen. Die Staupunktlinie befindet sich auf der Unterseite (allgemein als Druckseite bezeichnet) des Rotorblattes. Der Staupunkt (Stagnation point) ist derjenige Punkt an der Oberfläche des Rotorblattes, an dem die Geschwindigkeit der Strömung verschwindet, sodass die kinetische Energie vollständig in eine Druckenergie umgewandelt werden kann. Durch Änderung des Pitchwinkels kann sich die Lage des Staupunktes verändern. Der Staupunkt ist derjenige Punkt, an dem sich die Strömung aufteilt, und ein Teil der Strömung strömt über die Saugseite und der andere Teil strömt über die Druckseite des Rotorblattes. Thus, a wind turbine rotor blade is provided with a suction side, a pressure side, a root near region, a rotor blade tip, a rotor blade leading edge and a rotor blade trailing edge. The rotor blade further includes a plurality of stagnation points along the length of the rotor blade, which together may form a stagnation dot line. A plurality of vortex generators are provided in the area of the stagnation point line. The stagnation point line is located on the underside (generally referred to as the pressure side) of the rotor blade. The stagnation point is the point on the surface of the rotor blade at which the velocity of the flow disappears, so that the kinetic energy can be completely converted into a pressure energy. By changing the pitch angle, the position of the stagnation point can change. The stagnation point is the point at which the flow divides, and part of the flow flows over the suction side and the other part flows over the pressure side of the rotor blade.
Gemäß einem Aspekt der Erfindung werden die Vortex-Generatoren in Längsrichtung bei mehr als 50 %, insbesondere mehr als 60 % der Länge des Rotorblattes vorgesehen (d. h. die letzten 50 % bis 40 % des Rotorblattes in Richtung der Rotorblattspitze werden mit Vortex-Generatoren im Bereich der Staupunktlinie vorgesehen). Die Form der Vortex-Generatoren kann beispielsweise ein Halbkreis, oval oder in der Draufsicht pfeilförmig sein. Der Durchmesser der Vortex-Generatoren ist kleiner als 100 mm. Der Abstand zwischen benachbarten Vortex-Generatoren ist mindestens einmal der Durchmesser und maximal zehnmal der Durchmesser der Vortex-Generatoren. Die Höhe der Vortex-Generatoren ist maximal S des Durchmessers. Die 3D-Form der Vortex-Generatoren kann eine Scheibe mit konstanter Dicke oder eine Kugelkalotte mit runder Grundform darstellen. According to one aspect of the invention, the vortex generators are provided in the longitudinal direction at more than 50%, in particular more than 60% of the length of the rotor blade (ie the last 50% to 40% of the rotor blade in the direction of the rotor blade tip with vortex generators in the range the stagnation point line provided). The shape of the vortex generators may be, for example, a semicircle, an oval or an arrowhead in plan view. The diameter of the vortex generators is less than 100 mm. The distance between adjacent vortex generators is at least once the diameter and at most ten times the diameter of the vortex generators. The height of the vortex generators is maximum S of the diameter. The 3D shape of the vortex generators can be a constant thickness disk or a spherical base with a round basic shape.
Weitere Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. Further embodiments of the invention are the subject of the dependent claims.
Vorteile und Ausführungsbeispiele der Erfindung werden nachstehend unter Bezugnah- me auf die Zeichnung näher erläutert. Advantages and embodiments of the invention will be explained below with reference to the drawing.
Fig. 1 zeigt eine schematische Darstellung einer Windenergieanlage gemäß der Erfindung, 1 shows a schematic representation of a wind energy plant according to the invention,
Fig. 2 zeigt eine schematische Darstellung eines Rotorblattes gemäß einem ersten Ausführungsbeispiel, 2 shows a schematic representation of a rotor blade according to a first exemplary embodiment,
Fig. 3 zeigt eine schematische Schnittansicht eines Rotorblattes gemäß einem ersten Ausführungsbeispiel, 3 shows a schematic sectional view of a rotor blade according to a first exemplary embodiment,
Fig. 4 zeigt eine perspektivische Ansicht eines Ausschnittes eines Windenergieanlagen-Rotorblattes gemäß einem zweiten Ausführungsbeispiel, und 4 shows a perspective view of a section of a wind turbine rotor blade according to a second embodiment, and
Fig. 5 zeigt ein Polardiagramm zur Veranschaulichung eines Verlaufes des FIG. 5 is a polar diagram for illustrating a course of the FIG
Auftriebsbeiwertes über den effektiven Anstellwinkel für ein Windenergieanlagen-Rotorblatt. Lift coefficient over the effective angle of attack for a wind turbine rotor blade.
Fig. 1 zeigt eine schematische Darstellung einer Windenergieanlage gemäß der Erfindung. Die Windenergieanlage 100 weist einen Turm 102 und eine Gondel 104 auf. An der Gondel 104 ist ein Rotor 106 mit drei Rotorblättern 200 und einem Spinner 110 vorgesehen. Der Rotor 106 wird im Betrieb durch den Wind in eine Drehbewegung versetzt und bewirkt dann dadurch eine Rotation eines elektrischen Generators in der Gondel, der aus der Rotation elektrische Leistung erzeugt. Der Pitch der Rotorblätter bzw. der Anstellwinkel der Rotorblätter 200 kann durch Pitch-Motoren an den Rotorblattwurzeln der jeweili- gen Rotorblätter 200 verändert werden. Fig. 2 zeigt eine schematische Darstellung eines Windenergieanlagen-Rotorblattes gemäß einem ersten Ausführungsbeispiel. Das Rotorblatt 200 weist eine Rotorblattvorderkante 211 , eine Rotorblatthinterkante 212, eine Rotorblattspitze 213, einen Rotorblattwurzelbereich 214 auf. Ferner weist das Rotorblatt eine Längsrichtung L auf, welche sich von dem Rotorblattwurzelbereich 214 zu der Rotorblattspitze 213 erstreckt. Das Rotorblatt weist ferner eine Staupunktlinie 215 (Stagnation point line) auf, welche sich an der Druckseite des Rotorblattes erstreckt. Da sich der Querschnitt des Rotorblattes in Längsrichtung L verändert, verändert sich ebenfalls der Staupunkt (Stagnation point) für jeden Abschnitt des Rotorblattes. Aus der Mehrzahl der Staupunkte kann somit eine Staupunktlinie 215 gebildet werden. Im Bereich der Staupunktlinie 215 ist eine Mehrzahl von Vortex-Generatoren 300 vorgesehen. Das Rotorblatt 200 wird durch den Rotorblattwurzelbereich 214 an dem Rotor 106 der Windenergieanlage lösbar befestigt. Das Ende des Rotorblattwurzelbereichs 214, das an dem Rotor 106 z. B. an der Rotornabe befestigt wird, ist rund ausgestaltet und kann über eine Mehrzahl von Schraubverbindungen an der Nabe des Rotors 106 lösbar befestigt werden. Fig. 1 shows a schematic representation of a wind turbine according to the invention. The wind energy plant 100 has a tower 102 and a pod 104. On the nacelle 104, a rotor 106 with three rotor blades 200 and a spinner 110 is provided. The rotor 106 is rotated by the wind during operation and then causes a rotation of an electric generator in the nacelle, which generates electrical power from the rotation. The pitch of the rotor blades or the angle of attack of the rotor blades 200 can be changed by pitch motors on the rotor blade roots of the respective rotor blades 200. 2 shows a schematic representation of a wind turbine rotor blade according to a first exemplary embodiment. The rotor blade 200 has a rotor blade leading edge 211, a rotor blade trailing edge 212, a rotor blade tip 213, a rotor blade root region 214. Furthermore, the rotor blade has a longitudinal direction L which extends from the rotor blade root region 214 to the rotor blade tip 213. The rotor blade further has a stagnation point line 215 (stagnation point line) which extends on the pressure side of the rotor blade. Since the cross section of the rotor blade changes in the longitudinal direction L, the stagnation point also changes for each section of the rotor blade. From the plurality of stagnation points, a stagnation point line 215 can thus be formed. In the area of the stagnation point line 215, a plurality of vortex generators 300 are provided. The rotor blade 200 is releasably secured by the rotor blade root portion 214 to the rotor 106 of the wind turbine. The end of the rotor blade root portion 214, which on the rotor 106 z. B. is attached to the rotor hub, is designed round and can be releasably secured via a plurality of screw to the hub of the rotor 106.
Die Vortex-Generatoren 300 werden im Bereich der Staupunktlinie 215 bei einem vorbestimmten Anstellwinkel, z. B. dem Nenn-Anstellwinkel, vorgesehen. The vortex generators 300 are in the region of the stagnation point line 215 at a predetermined angle of attack, z. B. the nominal angle of attack provided.
Optional können die Vortex-Generatoren 300 ab einer Länge von 50 % bis 100 % des Rotorblattes ab dem Rotorblattwurzelbereich 214 vorgesehen werden. Insbesondere können die Vortex-Generatoren 300 zwischen 60 % und 100 % der Länge des Rotorblattes ab dem Rotorblattwurzelbereich 214 vorgesehen werden. Optionally, the vortex generators 300 can be provided starting from the rotor blade root area 214 from a length of 50% to 100% of the rotor blade. In particular, the vortex generators 300 may be provided between 60% and 100% of the length of the rotor blade from the rotor blade root 214.
Durch das Vorsehen der Vortex-Generatoren im Bereich der Staupunkte des Rotorblattes kann eine Ablösung der Strömung an der Rotorblatthinterkante positiv beeinflusst werden. Die Vortex-Generatoren 300 können in der Draufsicht kreisförmig, oval oder pfeilförmig ausgestaltet sein. Der Durchmesser der Vortex-Generatoren ist kleiner als 100 mm (z. B. 20 mm). Der Abstand zwischen benachbarten Vortex-Generatoren 300 beträgt mindestens einmal den Durchmesser der Vortex-Generatoren und maximal 10 Mal den Durchmesser der Vortex-Generatoren. Die Höhe der Vortex-Generatoren beträgt maximal des Durchmessers der Vortex-Generatoren. Die dreidimensionale Form kann einer Scheibe konstanter Dicke oder einer Kugelkalotte bei runder Grundform entsprechen. Ein pfeilförmiger Grundriss kann eine Pyramidenform darstellen. Während die Orientierte in Strömungsrichtung bei runder Grundform unwichtig ist, ist die Pyramide mit ihrer Spitze in Strömungsrichtung orientiert. By providing the vortex generators in the area of the stagnation points of the rotor blade, a separation of the flow at the rotor blade trailing edge can be positively influenced. The vortex generators 300 may be circular, oval or arrow-shaped in plan view. The diameter of the vortex generators is less than 100 mm (eg 20 mm). The distance between adjacent vortex generators 300 is at least once the diameter of the vortex generators and at most 10 times the diameter of the vortex generators. The height of the vortex generators is at most the diameter of the vortex generators. The three-dimensional shape may correspond to a disc of constant thickness or a spherical cap with a round basic shape. An arrow-shaped floor plan can represent a pyramidal shape. While the Oriented in Flow direction is unimportant in round basic shape, the pyramid is oriented with its tip in the flow direction.
Fig. 3 zeigt eine schematische Schnittansicht eines Windenergieanlagen-Rotorblattes gemäß dem ersten Ausführungsbeispiel. Das Rotorblatt 200 weist eine Rotorblattvorder- kante 210, eine Rotorblatthinterkante 212, eine Saugseite 216 und eine Druckseite 217 auf. Die Vortex-Generatoren 300 werden im Bereich der Druckseite 217 sowie im Bereich des Staupunktes bzw. der Staupunktlinie 215 vorgesehen. Fig. 3 shows a schematic sectional view of a wind turbine rotor blade according to the first embodiment. The rotor blade 200 has a rotor blade leading edge 210, a rotor blade trailing edge 212, a suction side 216 and a pressure side 217. The vortex generators 300 are provided in the area of the pressure side 217 as well as in the area of the stagnation point or the stagnation point line 215.
Fig. 4 zeigt eine perspektivische Ansicht eines Ausschnittes eines Rotorblattes gemäß einem zweiten Ausführungsbeispiel. Das Rotorblatt 200 weist in diesem Abschnitt zwei Vortex-Generatoren 300 auf, welche im Bereich der Staupunktlinie 215 vorgesehen sind. Optional können die Vortex-Generatoren 300 so im Bereich der Staupunktlinie 215 vorgesehen sein, dass sie sich im Nennbetrieb im Bereich der Staupunktlinie befinden. Steigt durch sich verändernde Windbedingung der effektive Anstellwinkel global oder lokal an (z. B. mit böigem Wind oder bei Betrieb im Scherwind), wandert der Staupunkt hinter die Vortex-Generatoren, und es entstehen an den Vortex-Generatoren Wirbelfäden 400, welche größere Ablösegebiete auf der Saugseite stabilisieren und so auch unter ungünstigen Anströmbedingungen noch für eine anliegende Strömung und den Erhalt des Auftriebs sorgen. In Fig. 4 ist die Mittellinie 215b zwischen Saug- und Druckseite, die Staupunktlinie 215a bei effektivem Anstellwinkel aeff bei Nenngeschwindigkeit (Nennbe- reich) und die Staupunktlinie 215c bei effektivem Anstellwinkel aeff im Stallbereich gezeigt. 4 shows a perspective view of a section of a rotor blade according to a second exemplary embodiment. The rotor blade 200 has in this section two vortex generators 300, which are provided in the region of the stagnation dot line 215. Optionally, the vortex generators 300 may be provided in the area of the stagnation point line 215 in such a way that they are located in the area of the stagnation point line during nominal operation. As a result of changing wind conditions, the effective angle of attack increases globally or locally (eg with gusty winds or when operating in shear winds), the stagnation point travels past the vortex generators and vortex generators generate vortex filaments 400, which are larger detachment areas Stabilize on the suction side and so even under unfavorable flow conditions still provide an applied flow and the maintenance of buoyancy. In FIG. 4, the center line 215b between the suction and pressure side of the stagnation point line 215a in effective angle of attack A eff at nominal speed (nominal range) and the dew point line 215c in effective angle of attack a e ff shown in the stable area.
Fig. 5 zeigt ein Polardiagramm zur Veranschaulichung des Verlaufes des Antriebsbeiwertes über den effektiven Anstellwinkel bzw. Pitchwinkel bei einer Reynoldszahl von 6 Mio. Damit ist der Verlauf des Auftriebsbeiwertes CL über dem effektiven Strömungswinkel aen für ein Rotorblatt ohne Vortex-Generatoren 600 und für ein Rotorblatt mit Vortex- Generatoren 500 dargestellt. Aus Fig. 5 ist somit erkennbar, dass der Einsatz der erfindungsgemäßen Vortex- bzw. Wirbel-Generatoren zu einer Verzögerung des Ablösebeginns der Luftströmung führt. Der Auftriebsbeiwert CL wird erhöht, d. h. das Rotorblatt mit den erfindungsgemäßen Vortex-Generatoren kann einen höheren Auftriebsbeiwert errei- chen und kann einen höheren effektiven Anstellwinkel ae9 erreichen. Der maximale Auftriebsbeiwert CL wird damit zu höheren Anstellwinkeln des Rotorblattes hinausgeschoben. Dies bedeutet für die Windenergieanlage im laufenden Betrieb eine Verbesserung des stationären Ablöseverhaltens des Profils bei gleichzeitiger Minimierung des negativen Widerstandsanstieges. Damit erklärt sich die Reduzierung des Lärms bei Rotorblättern in stationären Anströmbedingungen, sodass die erfindungsgemäße Windenergieanlage eine reduzierte Schallemission aufweist. 5 shows a polar diagram to illustrate the course of the drive coefficient over the effective angle of attack or pitch angle at a Reynolds number of 6 million. Thus, the profile of the lift coefficient C L is above the effective flow angle a en for a rotor blade without vortex generators 600 and a rotor blade with vortex generators 500 shown. It can thus be seen from FIG. 5 that the use of the vortex or vortex generators according to the invention leads to a delay of the start of the detachment of the air flow. The lift coefficient C L is increased, ie the rotor blade with the vortex generators according to the invention can achieve a higher lift coefficient and can achieve a higher effective angle of attack a e9 . The maximum lift coefficient C L is thus postponed to higher angles of attack of the rotor blade. This means for the wind energy plant during operation an improvement of the stationary detachment behavior of the profile while minimizing the negative resistance increase. This explains the reduction in noise Rotor blades in stationary flow conditions, so that the wind turbine according to the invention has a reduced noise emission.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012020198 | 2012-10-16 | ||
DE102013207640.1A DE102013207640B4 (en) | 2012-10-16 | 2013-04-26 | Wind turbine rotor blade |
PCT/EP2013/071574 WO2014060446A1 (en) | 2012-10-16 | 2013-10-16 | Wind turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2909473A1 true EP2909473A1 (en) | 2015-08-26 |
Family
ID=50383378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13776824.8A Withdrawn EP2909473A1 (en) | 2012-10-16 | 2013-10-16 | Wind turbine |
Country Status (16)
Country | Link |
---|---|
US (1) | US20150252778A1 (en) |
EP (1) | EP2909473A1 (en) |
JP (1) | JP6067130B2 (en) |
KR (1) | KR20150070342A (en) |
CN (1) | CN104736844A (en) |
AR (1) | AR094628A1 (en) |
AU (1) | AU2013333950A1 (en) |
BR (1) | BR112015007517A2 (en) |
CA (1) | CA2886493C (en) |
CL (1) | CL2015000933A1 (en) |
DE (1) | DE102013207640B4 (en) |
MX (1) | MX2015004600A (en) |
RU (1) | RU2601017C1 (en) |
TW (1) | TW201428181A (en) |
WO (1) | WO2014060446A1 (en) |
ZA (1) | ZA201502888B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150361951A1 (en) * | 2014-06-17 | 2015-12-17 | Siemens Energy, Inc. | Pressure side stall strip for wind turbine blade |
DE102015120113A1 (en) * | 2015-11-20 | 2017-05-24 | Wobben Properties Gmbh | Wind turbine rotor blade and wind turbine |
US10400744B2 (en) | 2016-04-28 | 2019-09-03 | General Electric Company | Wind turbine blade with noise reducing micro boundary layer energizers |
DE102017107465A1 (en) * | 2017-04-06 | 2018-10-11 | Teg Tubercle Engineering Group Gmbh | Profile body for generating dynamic buoyancy, rotor blade with the profile body and method for profiling the profile body |
DE102017107459A1 (en) * | 2017-04-06 | 2018-10-11 | Teg Tubercle Engineering Group Gmbh | Rotor blade for a wind turbine and the wind turbine |
DE102017107464A1 (en) * | 2017-04-06 | 2018-10-11 | Teg Tubercle Engineering Group Gmbh | Retrofit body for a rotor blade of a wind turbine, retrofitted rotor blade and method for retrofitting the rotor blade |
DE102018121190A1 (en) * | 2018-08-30 | 2020-03-05 | Wobben Properties Gmbh | Rotor blade, wind turbine and method for optimizing a wind turbine |
DE102019113044A1 (en) * | 2019-05-17 | 2020-11-19 | Wobben Properties Gmbh | Process for the design and operation of a wind energy installation, wind energy installation and wind farm |
GB2588258A (en) * | 2020-03-26 | 2021-04-21 | Lm Wind Power As | Wind turbine blade with a flow controlling element |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1714869B1 (en) * | 2005-04-21 | 2008-12-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Lifting surface with improved separation behaviour under strongly variable angle of incidence |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07179198A (en) * | 1992-05-19 | 1995-07-18 | General Electric Co <Ge> | Jet engine fan nacelle |
WO1998022711A1 (en) * | 1996-11-18 | 1998-05-28 | Lm Glasfiber A/S | The use of a turbulator for damping stall vibrations in the blades of a wind turbine |
NL1012949C2 (en) * | 1999-09-01 | 2001-03-06 | Stichting Energie | Blade for a wind turbine. |
JP4151940B2 (en) * | 2002-02-05 | 2008-09-17 | タマティーエルオー株式会社 | Vertical axis windmill |
JP2004060646A (en) * | 2002-06-05 | 2004-02-26 | Furukawa Co Ltd | Starting wind speed reducing device for wind mill |
ES2627790T3 (en) | 2005-05-17 | 2017-07-31 | Vestas Wind Systems A/S | Pitch controlled wind turbine blade that has turbulence generation means, wind turbine and use of it |
GB0514338D0 (en) * | 2005-07-13 | 2005-08-17 | Univ City | Control of fluid flow separation |
US7604461B2 (en) * | 2005-11-17 | 2009-10-20 | General Electric Company | Rotor blade for a wind turbine having aerodynamic feature elements |
DK2007981T3 (en) * | 2006-04-02 | 2021-03-01 | Wobben Properties Gmbh | Windmill with slim wing |
ATE537356T1 (en) | 2006-06-09 | 2011-12-15 | Vestas Wind Sys As | WIND TURBINE ROTOR BLADE AND PITCH CONTROLLED WIND TURBINE |
ES2396702T3 (en) | 2007-01-12 | 2013-02-25 | Siemens Aktiengesellschaft | Wind turbine rotor blade with vortex generators |
CN101680423B (en) | 2007-03-20 | 2012-01-11 | 维斯塔斯风力系统有限公司 | Wind turbine blades with vortex generators |
DK2017467T3 (en) | 2007-07-20 | 2010-06-28 | Siemens Ag | Wind turbine blade and wind turbine with pitch control |
ES2343397B1 (en) | 2008-03-07 | 2011-06-13 | GAMESA INNOVATION & TECHNOLOGY, S.L. | AN AIRWOOD SHOVEL. |
GB2466478A (en) | 2008-12-02 | 2010-06-30 | Aerovortex Mills Ltd | Suction generation device |
RU2406872C1 (en) * | 2009-06-18 | 2010-12-20 | Цзя-Юань ЛИ | Wind turbine |
US8061986B2 (en) | 2010-06-11 | 2011-11-22 | General Electric Company | Wind turbine blades with controllable aerodynamic vortex elements |
UA60418U (en) * | 2010-09-07 | 2011-06-25 | Николай Илларионович Трегуб | Blade of wind-driven power plant |
US8746053B2 (en) | 2010-12-16 | 2014-06-10 | Inventus Holdings, Llc | Method for determining optimum vortex generator placement for maximum efficiency on a retrofitted wind turbine generator of unknown aerodynamic design |
US9039381B2 (en) | 2010-12-17 | 2015-05-26 | Vestas Wind Systems A/S | Wind turbine blade and method for manufacturing a wind turbine blade with vortex generators |
DK2484898T3 (en) | 2011-02-04 | 2014-07-21 | Lm Wp Patent Holding As | A vortex generator device with tapered parts |
EP2548800A1 (en) | 2011-07-22 | 2013-01-23 | LM Wind Power A/S | Method for retrofitting vortex generators on a wind turbine blade |
PT2834517T (en) * | 2012-03-13 | 2020-07-27 | Wobben Properties Gmbh | Twisted blade root |
-
2013
- 2013-04-26 DE DE102013207640.1A patent/DE102013207640B4/en active Active
- 2013-10-16 RU RU2015118322/06A patent/RU2601017C1/en not_active IP Right Cessation
- 2013-10-16 EP EP13776824.8A patent/EP2909473A1/en not_active Withdrawn
- 2013-10-16 TW TW102137339A patent/TW201428181A/en unknown
- 2013-10-16 AR ARP130103752A patent/AR094628A1/en active IP Right Grant
- 2013-10-16 KR KR1020157012786A patent/KR20150070342A/en not_active Application Discontinuation
- 2013-10-16 CN CN201380053930.7A patent/CN104736844A/en active Pending
- 2013-10-16 CA CA2886493A patent/CA2886493C/en not_active Expired - Fee Related
- 2013-10-16 BR BR112015007517A patent/BR112015007517A2/en not_active Application Discontinuation
- 2013-10-16 WO PCT/EP2013/071574 patent/WO2014060446A1/en active Application Filing
- 2013-10-16 MX MX2015004600A patent/MX2015004600A/en unknown
- 2013-10-16 AU AU2013333950A patent/AU2013333950A1/en not_active Abandoned
- 2013-10-16 JP JP2015537232A patent/JP6067130B2/en not_active Expired - Fee Related
- 2013-10-16 US US14/435,402 patent/US20150252778A1/en not_active Abandoned
-
2015
- 2015-04-14 CL CL2015000933A patent/CL2015000933A1/en unknown
- 2015-04-28 ZA ZA2015/02888A patent/ZA201502888B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1714869B1 (en) * | 2005-04-21 | 2008-12-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Lifting surface with improved separation behaviour under strongly variable angle of incidence |
Non-Patent Citations (3)
Title |
---|
BENJAMIN HEINE ET AL: "Dynamic stall control by passive disturbance generators", AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS. AIAA CONFERENCE PAPERS, 1 January 2011 (2011-01-01), Reston, XP055288496 * |
HOLGER MAI ET AL: "Dynamic Stall Control by Leading Edge Vortex Generators", JOURNAL OF THE AMERICAN HELICOPTER SOCIETY., vol. 53, no. 1, 11 May 2006 (2006-05-11), US, pages 26 - 36, XP055288483, ISSN: 0002-8711, DOI: 10.4050/JAHS.53.26 * |
See also references of WO2014060446A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20150252778A1 (en) | 2015-09-10 |
RU2601017C1 (en) | 2016-10-27 |
CL2015000933A1 (en) | 2015-08-28 |
CN104736844A (en) | 2015-06-24 |
AU2013333950A1 (en) | 2015-05-21 |
KR20150070342A (en) | 2015-06-24 |
BR112015007517A2 (en) | 2017-07-04 |
WO2014060446A1 (en) | 2014-04-24 |
DE102013207640B4 (en) | 2024-06-20 |
JP2015532391A (en) | 2015-11-09 |
JP6067130B2 (en) | 2017-01-25 |
MX2015004600A (en) | 2016-06-21 |
CA2886493A1 (en) | 2014-04-24 |
AR094628A1 (en) | 2015-08-19 |
ZA201502888B (en) | 2016-01-27 |
CA2886493C (en) | 2018-05-01 |
TW201428181A (en) | 2014-07-16 |
DE102013207640A1 (en) | 2014-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102013207640B4 (en) | Wind turbine rotor blade | |
EP2337950B1 (en) | Profile of a rotor blade and rotor blade of a wind power plant | |
EP1514023B1 (en) | Wind power plant | |
DE102011051831B4 (en) | Rotor blade for a wind turbine with a suction side winglet | |
EP2280163B1 (en) | Wind power plant and rotor blade for a wind power plant | |
DE202015000665U1 (en) | Device for a safety system and / or resource / energy efficiency improvement system for influencing the flow of an aerodynamic or hydrodynamic body (3), according to the principle of a return flow flap (4) | |
DE112012005432T5 (en) | Wind turbine with gondola fence | |
DE102008002930A1 (en) | Rotor wing tip vortex breaker | |
DE102012100593A1 (en) | Controllable surface features for rotor blades of wind turbines | |
EP2984334B1 (en) | Rotor blade of a wind turbine and wind turbine | |
DE102016117012A1 (en) | Wind turbine rotor blade | |
EP3399183B1 (en) | Rotor blade of a wind turbine | |
EP3665384A1 (en) | Rotor blade of a wind turbine rotor, wind turbine and method for improving the efficiency of a wind turbine rotor | |
DE202012005356U1 (en) | Rotor blade for wind turbines with profiles in tandem arrangement | |
DE102011122140A1 (en) | Delta eddy current generator for generating eddies at rotor blade of wind power plant, has support provided with wing such that eddies are producible over main surface, where eddies comprise axis that is directed parallel to surface | |
EP2976524B1 (en) | Rotor blade of a wind power plant, wind power plant and method for operating a wind power plant | |
EP3824176B1 (en) | Rotor blade for a wind turbine and wind turbine | |
EP3844384A1 (en) | Rotor blade, wind turbine, and method for optimising a wind turbine | |
DE102012107250B4 (en) | Rotor of a vertical axis wind turbine | |
EP3280910A1 (en) | Wind turbine rotor blade | |
DE102010016086A1 (en) | Rotor blade for H rotor | |
WO2012156352A1 (en) | Wind turbine system | |
EP3735530B1 (en) | Rotor blade for a wind turbine and method | |
EP3553306B1 (en) | Wind energy turbine engine blade with a vortex generator | |
AT12099U1 (en) | ROTOR BLADE FOR A 3-LEAF DARRIEUS ROTOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150518 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAX | Requested extension states of the european patent have changed |
Extension state: BA Payment date: 20150720 Extension state: ME Payment date: 20150720 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ALTMIKUS, ANDREE Inventor name: KAMRUZZAMAN, MOHAMMAD |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: WOBBEN PROPERTIES GMBH |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
17Q | First examination report despatched |
Effective date: 20160722 |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20171212 |