EP2902589A1 - Impact cooled component for a gas turbine - Google Patents

Impact cooled component for a gas turbine Download PDF

Info

Publication number
EP2902589A1
EP2902589A1 EP14153066.7A EP14153066A EP2902589A1 EP 2902589 A1 EP2902589 A1 EP 2902589A1 EP 14153066 A EP14153066 A EP 14153066A EP 2902589 A1 EP2902589 A1 EP 2902589A1
Authority
EP
European Patent Office
Prior art keywords
component
cooling
wall
impingement cooling
impingement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14153066.7A
Other languages
German (de)
French (fr)
Inventor
Fathi Ahmad
Tobias Buchal
Daniela Koch
Marco Schüler
Nihal Kurt
Radan RADULOVIC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14153066.7A priority Critical patent/EP2902589A1/en
Publication of EP2902589A1 publication Critical patent/EP2902589A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to an impingement-cooled component for a gas turbine, with a component wall, along the outside of which a hot gas can be flowed and to whose outside opposite the inside an impingement cooling wall with a number of grid-shaped arranged impingement cooling openings is spaced.
  • such components are known in particular as turbine blades, which are used in particular in stationary gas turbines.
  • cooling on the inside of the blade is carried out as impingement cooling.
  • a perforated plate is usually positioned at a small distance from the inner wall. The air jet passing through the holes in the sheet metal meets perpendicular to the inside of the blade wall to be cooled and thus leads to a particularly efficient cooling.
  • the object of the invention is therefore to provide an aforementioned component in which the problem described is largely avoided.
  • the component designated at the beginning has flow resistances in the region between the inside and the impact cooling wall, which are arranged in a star shape around at least one of the impact cooling openings.
  • the flow resistances Due to the flow resistances which are distributed around the impingement cooling opening, the flow downstream of the impingement cooling jet can be guided in a targeted manner.
  • the flow resistances can have different shapes. Their contour can be, for example, rectangular, triangular, lancet-shaped, curved or non-curved drop-shaped or sickle-shaped. Other forms are conceivable.
  • the resistors are designed either monolithic with the impingement cooling wall or with the component wall. Overall, a planar pattern of flow resistance, which is offset from the grid of the impact cooling holes. In addition to the targeted guidance of the flow, undesired crossflows to adjacent impingement cooling openings are avoided, which increases the efficiency of the impingement cooling. Due to the grid-shaped arrangement of flow resistances, a better convective cooling analogous to a grid-like arrangement of sockets - also known as pin-fin array in the art - is achieved.
  • each flow resistance is designed in the form of a spatial body monolithic with the component wall. Consequently, a more effective cooling effect due to increased component area is achieved by the grid-shaped arrangement of physical flow resistance and thus achieved a lower cooling air consumption.
  • the lower cooling air consumption in turn has a positive effect on the efficiency of a gas turbine, in which the component according to the invention is used during operation.
  • a component for a gas turbine is specified, with a component wall, along the outside of which a hot gas is flowable and to the outside of the outside opposite an impingement cooling wall with a Number of raster-shaped impingement cooling openings is spaced.
  • flow resistances are arranged in the region between the inside and the baffle cooling wall, which are arranged in a star shape around at least one of the baffle cooling holes.
  • FIG. 1 shows a known from the prior art turbine blade, which is in the form of a vane one embodiment of a baffled component 10.
  • the component 10 is intended for use in a stationary gas turbine.
  • the component 10 has a turbine blade as an airfoil 12, which extends from a front edge 14 to a trailing edge 16 and along the outer sides 18 when used in a gas turbine, a hot gas is flowable.
  • so-called film cooling holes 15 are provided in the front edge.
  • the component 10 is hollow and comprises a hollow insert 20, which is to be referred to as an impact-cooling insert.
  • the insert 20 in turn comprises a baffle cooling wall 22, which is opposite to an inner side 24 of the blade 12 at a distance, wherein the inner side 24 itself is part of a component wall 14.
  • the component wall 14 is defined as it were by the outside 18 and the inside 24.
  • a plurality of impingement cooling openings 26 are distributed over the span of the airfoil 12, provided by the cooling air 28 supplied on the foot side out of the cavity of the insert 20 in the form of impingement cooling blasts 30 can escape.
  • the jets 30 strike the inside 24 of the component wall 14 and efficiently cool it during operation of a gas turbine.
  • a part of the thus warmed cooling air flows around the insert 20. This partial flow is then guided to the trailing edge 16 of the airfoil 12, where it can escape there through trailing edge openings 34.
  • Another part of the cooling air exits through the film cooling openings 15 arranged in the front edge 14.
  • Other options for the discharge of the heated cooling air from the component 10 out are conceivable.
  • FIGS. 2 and 3 show a plan view of the inside of the component wall 14, on the monolithic flow resistances 38, 40 according to the invention are arranged.
  • the flow resistances 38, 40 preferably have a height starting from the inside 24, which is smaller than the distance between the impingement cooling wall 22 and the inside 24.
  • the flow resistances 38, 40 are therefore not used as spacers for the impingement cooling wall 22 or for holding or closing Positioning of the impact cooling insert.
  • FIGS. 2 and 3 shown schematically.
  • the flow resistances 38, 40 can, as from the FIGS. 2 and 3 be seen, have different contours, thereby to form between them passages for the cooling air 32 already used for impingement cooling, can flow through said cooling air 32.
  • the flow resistances 38 are preferably arranged so that they do not lie next to, but on an imaginary connecting straight line of two immediately adjacent impingement cooling openings 26. This reduces the occurrence of cross flows which could weaken impingement jets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Insgesamt wird in der Erfindung ein Bauteil (10) für eine Gasturbine angegeben, mit einer Bauteilwand (14), entlang deren Außenseite (18) ein Heißgas strömbar ist und zu dessen der Außenseite (18) gegenüberliegenden Innenseite (24) eine Prallkühlwand (22) mit einer Anzahl von rasterförmig angeordneten Prallkühlöffnungen (26) beabstandet ist. Um ein prallgekühltes Bauteil (10) bereitzustellen, bei dem die konvektive Kühlung verbessert ist und Querströmungen vermieden werden, wird vorgeschlagen, dass Strömungswiderstände (40) im Bereich zwischen der Innenseite (24) und der Prallkühlwand (22) angeordnet sind, die um zumindest eines der Prallkühllöcher (26) herum sternförmig angeordnet sind.Overall, a component (10) for a gas turbine is specified in the invention, with a component wall (14), along the outside (18) of which a hot gas can flow and to the outside (18) of the opposite inner side (24) an impact cooling wall (22). with a number of grid-like arranged impingement cooling openings (26) is spaced. In order to provide a baffled component (10) in which the convective cooling is improved and transverse flows are avoided, it is proposed that flow resistances (40) are arranged in the region between the inside (24) and the baffle cooling wall (22), which is at least one the impingement cooling holes (26) are arranged around in a star shape.

Description

Die Erfindung betrifft ein prallgekühltes Bauteil für eine Gasturbine, mit einer Bauteilwand, entlang deren Außenseite ein Heißgas strömbar ist und zu dessen der Außenseite gegenüberliegenden Innenseite eine Prallkühlwand mit einer Anzahl von rasterförmig angeordneten Prallkühlöffnungen beabstandet ist.The invention relates to an impingement-cooled component for a gas turbine, with a component wall, along the outside of which a hot gas can be flowed and to whose outside opposite the inside an impingement cooling wall with a number of grid-shaped arranged impingement cooling openings is spaced.

Aus dem Stand der Technik sind derartige Bauteile insbesondere als Turbinenschaufeln bekannt, die insbesondere in stationären Gasturbinen Verwendung finden. Zur besseren Kühlung von den thermisch besonders hoch beanspruchten Turbinenschaufeln wird die Kühlung auf der Innenseite der Schaufel als Prallkühlung ausgeführt. Hierzu wird in geringem Abstand zur Innenwand zumeist ein gelochtes Blech positioniert. Der durch die Löcher im Blech hindurchtretende Luftstrahl trifft senkrecht auf die Innenseite der zu kühlenden Schaufelwand und führt so zu einer besonders effizienten Kühlung.From the prior art, such components are known in particular as turbine blades, which are used in particular in stationary gas turbines. For better cooling of the turbine blades subjected to particularly high thermal stresses, cooling on the inside of the blade is carried out as impingement cooling. For this purpose, a perforated plate is usually positioned at a small distance from the inner wall. The air jet passing through the holes in the sheet metal meets perpendicular to the inside of the blade wall to be cooled and thus leads to a particularly efficient cooling.

Im Stand der Technik wird es als nachteilig empfunden, dass die nach der Prallkühlung abströmende Luft nicht weiter geführt oder gelenkt wird. Somit können Kreuzströmungen an den Löchern des Prallkühlblechs entstehen, die die Kühlwirkung der Prallkühlstrahlen vermindert.In the prior art, it is considered disadvantageous that the air flowing out after the impingement cooling air is not continued to be guided or steered. Thus, cross flows can occur at the holes of the baffle plate, which reduces the cooling effect of the baffles.

Aufgabe der Erfindung ist daher die Bereitstellung eines eingangs genannten Bauteils, bei dem das beschriebene Problem weitestgehend vermieden wird.The object of the invention is therefore to provide an aforementioned component in which the problem described is largely avoided.

Die der Erfindung zugrundeliegende Aufgabe wird mit einem Bauteil gemäß den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen des Bauteils sind in den Unteransprüchen angegeben.The problem underlying the invention is achieved with a component according to the features of claim 1. Advantageous embodiments of the component are specified in the subclaims.

Erfindungsgemäß ist vorgesehen, dass das eingangs bezeichnete Bauteil Strömungswiderstände im Bereich zwischen Innenseite und Prallkühlwand aufweist, die um zumindest eine der Prallkühlöffnungen herum sternförmig angeordnet sind.According to the invention, the component designated at the beginning has flow resistances in the region between the inside and the impact cooling wall, which are arranged in a star shape around at least one of the impact cooling openings.

Durch die Strömungswiderstände, die um die Prallkühlöffnung verteilt sind, kann die Strömung stromab des Prallkühlstrahls gezielt geführt werden. Die Strömungswiderstände können unterschiedliche Formen aufweisen. Ihre Kontur kann beispielsweise rechteckig, dreieckig, lanzettenförmig, gekrümmt oder ungekrümmt tropfenförmig oder auch sichelförmig sein. Weitere Formen sind denkbar. Zudem sind die Widerstände sind entweder mit der Prallkühlwand oder mit der Bauteilwand monolithisch ausgeführt. Insgesamt entsteht ein flächiges Muster an Strömungswiderständen, welches zu dem Raster der Prallkühlöffnungen versetzt ist. Neben der gezielten Führung der Strömung werden unerwünschte Querströmungen zu benachbarten Prallkühlöffnungen vermieden, was die Effizienz der Prallkühlung steigen lässt. Durch die rasterförmige Anordnung von Strömungswiderständen wird zudem eine bessere konvektive Kühlung analog zu einer rasterförmigen Anordnung von Sockeln - im Stand der Technik auch als Pin-Fin-Array bekannt - erreicht.Due to the flow resistances which are distributed around the impingement cooling opening, the flow downstream of the impingement cooling jet can be guided in a targeted manner. The flow resistances can have different shapes. Their contour can be, for example, rectangular, triangular, lancet-shaped, curved or non-curved drop-shaped or sickle-shaped. Other forms are conceivable. In addition, the resistors are designed either monolithic with the impingement cooling wall or with the component wall. Overall, a planar pattern of flow resistance, which is offset from the grid of the impact cooling holes. In addition to the targeted guidance of the flow, undesired crossflows to adjacent impingement cooling openings are avoided, which increases the efficiency of the impingement cooling. Due to the grid-shaped arrangement of flow resistances, a better convective cooling analogous to a grid-like arrangement of sockets - also known as pin-fin array in the art - is achieved.

Letzteres gilt insbesondere dann, wenn jeder Strömungswiderstand in Gestalt eines räumlichen Körpers monolithisch mit der Bauteilwand ausgeführt ist. Mithin wird durch die rasterförmige Anordnung von körperlichen Strömungswiderständen eine effektivere Kühlwirkung aufgrund vergrößerter Bauteilfläche erreicht und somit ein geringerer Kühlluftverbrauch erzielt. Der geringere Kühlluftverbrauch wirkt sich wiederum positiv auf den Wirkungsgrad einer Gasturbine aus, in der das erfindungsgemäße Bauteil während des Betriebs verwendet wird.The latter is especially true when each flow resistance is designed in the form of a spatial body monolithic with the component wall. Consequently, a more effective cooling effect due to increased component area is achieved by the grid-shaped arrangement of physical flow resistance and thus achieved a lower cooling air consumption. The lower cooling air consumption in turn has a positive effect on the efficiency of a gas turbine, in which the component according to the invention is used during operation.

Insgesamt wird in der Erfindung ein Bauteil für eine Gasturbine angegeben, mit einer Bauteilwand, entlang deren Außenseite ein Heißgas strömbar ist und zu dessen der Außenseite gegenüberliegenden Innenseite eine Prallkühlwand mit einer Anzahl von rasterförmig angeordneten Prallkühlöffnungen beabstandet ist. Um ein prallgekühltes Bauteil bereitzustellen, bei dem die konvektive Kühlung verbessert ist und Querströmungen vermieden werden, wird vorgeschlagen, dass Strömungswiderstände im Bereich zwischen der Innenseite und der Prallkühlwand angeordnet sind, die um zumindest eines der Prallkühllöcher herum sternförmig angeordnet sind.Overall, in the invention, a component for a gas turbine is specified, with a component wall, along the outside of which a hot gas is flowable and to the outside of the outside opposite an impingement cooling wall with a Number of raster-shaped impingement cooling openings is spaced. In order to provide a baffled component in which the convective cooling is improved and transverse flows are avoided, it is proposed that flow resistances are arranged in the region between the inside and the baffle cooling wall, which are arranged in a star shape around at least one of the baffle cooling holes.

Weitere Vorteile und Merkmale der Erfindung werden anhand eines Ausführungseispiels wiedergegeben. Dazu zeigt:

FIG 1
den Längsschnitt durch eine Turbinenleitschaufel nach dem Stand der Technik und
FIG 2 u. 3
unterschiedliche Muster von Prallkühlöffnungen und Strömungswiderständen, die auf einer Innenseite der Turbinenschaufel angeordnet sind.
Further advantages and features of the invention will be described with reference to an embodiment example. This shows:
FIG. 1
the longitudinal section through a turbine guide vane according to the prior art and
FIG. 2 u. 3
different patterns of impingement cooling holes and flow resistances, which are arranged on an inner side of the turbine blade.

FIG 1 zeigt eine aus dem Stand der Technik bekannte Turbinenschaufel, welche in Form einer Leitschaufel ein Ausführungsbeispiel eines prallgekühlten Bauteils 10 ist. Das Bauteil 10 ist zur Verwendung in einer stationären Gasturbine bestimmt. Das Bauteil 10 weist als Turbinenschaufel ein Schaufelblatt 12 auf, welches sich von einer Vorderkante 14 zu einer Hinterkante 16 erstreckt und entlang dessen Außenseiten 18 bei Verwendung in einer Gasturbine ein Heißgas strömbar ist. Zudem sind in der Vorderkante so genannte Filmkühllöcher 15 vorgesehen. Das Bauteil 10 ist hohl ausgeführt und umfasst einen hohlen Einsatz 20, welcher als Prallkühleinsatz zu bezeichnen ist. Der Einsatz 20 umfasst wiederum eine Prallkühlwand 22, die einer Innenseite 24 des Schaufelblatts 12 unter Abstand gegenüberliegt, wobei die Innenseite 24 selber Teil einer Bauteilwand 14 ist. Die Bauteilwand 14 ist sozusagen von der Außenseite 18 und der Innenseite 24 begrenzt. In der Prallkühlwand 22 sind über die Spannweite des Schaufelblattes 12 verteilt eine Vielzahl von Prallkühlöffnungen 26 vorgesehen, durch die fußseitig zugeführte Kühlluft 28 aus dem Hohlraum des Einsatzes 20 heraus in Form von Prallkühlstrahlen 30 austreten kann. Die Strahlen 30 treffen auf die Innenseite 24 der Bauteilwand 14 und kühlen diese während des Betriebs einer Gasturbine effizient. Anschließend umströmt ein Teil der somit aufgewärmten Kühlluft den Einsatz 20. Dieser Teilstrom wird anschließend bis zur Hinterkante 16 des Schaufelblattes 12 geführt, wo sie dort durch Hinterkantenöffnungen 34 austreten kann. Ein anderer Teil der Kühlluft tritt durch die in der Vorderkante 14 angeordneten Filmkühlöffnungen 15 aus. Andere Möglichkeiten zur Ausleitung der aufgewärmten Kühlluft aus dem Bauteil 10 heraus sind falls denkbar. FIG. 1 shows a known from the prior art turbine blade, which is in the form of a vane one embodiment of a baffled component 10. The component 10 is intended for use in a stationary gas turbine. The component 10 has a turbine blade as an airfoil 12, which extends from a front edge 14 to a trailing edge 16 and along the outer sides 18 when used in a gas turbine, a hot gas is flowable. In addition, so-called film cooling holes 15 are provided in the front edge. The component 10 is hollow and comprises a hollow insert 20, which is to be referred to as an impact-cooling insert. The insert 20 in turn comprises a baffle cooling wall 22, which is opposite to an inner side 24 of the blade 12 at a distance, wherein the inner side 24 itself is part of a component wall 14. The component wall 14 is defined as it were by the outside 18 and the inside 24. In the impingement cooling wall 22 a plurality of impingement cooling openings 26 are distributed over the span of the airfoil 12, provided by the cooling air 28 supplied on the foot side out of the cavity of the insert 20 in the form of impingement cooling blasts 30 can escape. The jets 30 strike the inside 24 of the component wall 14 and efficiently cool it during operation of a gas turbine. Subsequently, a part of the thus warmed cooling air flows around the insert 20. This partial flow is then guided to the trailing edge 16 of the airfoil 12, where it can escape there through trailing edge openings 34. Another part of the cooling air exits through the film cooling openings 15 arranged in the front edge 14. Other options for the discharge of the heated cooling air from the component 10 out are conceivable.

Die Figuren 2 und 3 zeigen eine Draufsicht auf die Innenseite der Bauteilwand 14, an der monolithisch erfindungsgemäße Strömungswiderstände 38, 40 angeordnet sind. Die Strömungswiderstände 38, 40 weisen vorzugsweise eine Höhe ausgehend von der Innenseite 24 auf, die geringer ist als der Abstand zwischen der Prallkühlwand 22 und der besagten Innenseite 24. Mithin dienen die Strömungswiderstände 38, 40 nicht als Abstandselemente für die Prallkühlwand 22 oder zur Halterung bzw. Positionierung des Prallkühleinsatzes. Zur besseren Veranschaulichung der Anordnung der Prallkühlöffnungen 26 in Bezug auf die rasterförmig angeordneten Strömungswiderstände 38 und 40 sind diese in den Figuren 2 und 3 schematisch dargestellt.The FIGS. 2 and 3 show a plan view of the inside of the component wall 14, on the monolithic flow resistances 38, 40 according to the invention are arranged. The flow resistances 38, 40 preferably have a height starting from the inside 24, which is smaller than the distance between the impingement cooling wall 22 and the inside 24. The flow resistances 38, 40 are therefore not used as spacers for the impingement cooling wall 22 or for holding or closing Positioning of the impact cooling insert. For better illustration of the arrangement of the impingement cooling openings 26 with respect to the grid-shaped flow resistors 38 and 40, these are in the FIGS. 2 and 3 shown schematically.

Die Strömungswiderstände 38, 40 können, wie aus den Figuren 2 und 3 ersichtlich, unterschiedliche Konturen aufweisen, um dadurch zwischen ihnen Passagen für die bereits zur Prallkühlung eingesetzten Kühlluft 32 zu bilden, durch die besagte Kühlluft 32 abströmen kann. Gemäß Figur 2 sind die Strömungswiderstände 38 vorzugsweise so angeordnet, dass sie nicht neben, sondern auf einer gedachten Verbindungsgeraden von zwei unmittelbar benachbarten Prallkühlöffnungen 26 liegen. Dies vermindert das Auftreten von Querströmungen, welche Prallkühlstrahlen schwächen könnten.The flow resistances 38, 40 can, as from the FIGS. 2 and 3 be seen, have different contours, thereby to form between them passages for the cooling air 32 already used for impingement cooling, can flow through said cooling air 32. According to FIG. 2 For example, the flow resistances 38 are preferably arranged so that they do not lie next to, but on an imaginary connecting straight line of two immediately adjacent impingement cooling openings 26. This reduces the occurrence of cross flows which could weaken impingement jets.

Im Unterschied dazu sind gemäß Figur 3 die Strömungswiderstände 40 abseits einer gedachten Verbindungsgeraden von einer Prallkühlöffnungen 26 zu einer Filmkühlöffnung 15. Diese Anordnung unterstützt eine zielgerichtete Strömung der durch Aufprall erhitzten Kühlluft zu den Filmkühlöffnungen 15.In contrast, according to FIG. 3 the flow resistances 40 away from an imaginary straight line connecting a baffle cooling openings 26 to a film cooling opening 15. This arrangement supports a targeted flow of the impact-heated cooling air to the film cooling openings 15th

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been further illustrated and described in detail by the preferred embodiment, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.

Claims (3)

Bauteil (10) für einer Gasturbine,
mit einer Bauteilwand (14), entlang deren Außenseite (18) ein Heißgas strömbar ist und zu dessen der Außenseite (18) gegenüberliegenden Innenseite (24) eine Prallkühlwand (22) mit einer Anzahl von rasterförmig angeordneten Prallkühlöffnungen (26) beabstandet ist,
dadurch gekennzeichnet, dass
Strömungswiderstände (38, 40) im Bereich zwischen Innenseite (24) und Prallkühlwand (22) um zumindest eines der Prallkühlöffnungen (26) herum sternförmig angeordnet sind.
Component (10) for a gas turbine,
with a component wall (14) along the outer side (18) of which a hot gas can be flowed and to whose outer side (18) opposite inner side (24) an impingement cooling wall (22) with a number of grid-shaped arranged impingement cooling openings (26) is spaced apart,
characterized in that
Flow resistance (38, 40) in the region between the inside (24) and impact cooling wall (22) around at least one of the impingement cooling openings (26) are arranged around star-shaped.
Bauteil (10) nach Anspruch 1,
bei dem jeder Strömungswiderstand (38, 40) in Gestalt eines räumlichen Körpers monolithisch entweder an der Innenseite (24) der Bauteilwand (14) oder an derjenigen Seite der Prallkühlwand (22) angeordnet ist, die der Innenseite (24) gegenüberliegt.
Component (10) according to claim 1,
wherein each flow resistance (38, 40) in the form of a spatial body is arranged monolithically either on the inside (24) of the component wall (14) or on the side of the impingement cooling wall (22) opposite the inside (24).
Bauteil (10) nach Anspruch 1 oder 2,
ausgestaltet als Turbinenschaufel.
Component (10) according to claim 1 or 2,
designed as a turbine blade.
EP14153066.7A 2014-01-29 2014-01-29 Impact cooled component for a gas turbine Withdrawn EP2902589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14153066.7A EP2902589A1 (en) 2014-01-29 2014-01-29 Impact cooled component for a gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14153066.7A EP2902589A1 (en) 2014-01-29 2014-01-29 Impact cooled component for a gas turbine

Publications (1)

Publication Number Publication Date
EP2902589A1 true EP2902589A1 (en) 2015-08-05

Family

ID=50000926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14153066.7A Withdrawn EP2902589A1 (en) 2014-01-29 2014-01-29 Impact cooled component for a gas turbine

Country Status (1)

Country Link
EP (1) EP2902589A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121689A1 (en) 2016-01-15 2017-07-20 Siemens Aktiengesellschaft Gas turbine aerofoil
DE102019129835A1 (en) * 2019-11-06 2021-05-06 Man Energy Solutions Se Device for cooling a component of a gas turbine / turbo machine by means of impingement cooling
RU2813932C2 (en) * 2019-04-06 2024-02-19 Ман Энерджи Солюшнз Се Device for cooling component of gas turbine/turbomachine by means of injection cooling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188902A1 (en) * 2000-09-14 2002-03-20 Siemens Aktiengesellschaft Impingement cooled wall
EP2233693A1 (en) * 2008-01-08 2010-09-29 IHI Corporation Cooling structure of turbine blade
EP2236751A2 (en) * 2009-03-30 2010-10-06 United Technologies Corporation Turbine airfoil with leading edge impingement cooling
EP2620592A1 (en) * 2012-01-26 2013-07-31 Alstom Technology Ltd Airfoil for a gas turbine engine having a tubular impingement element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188902A1 (en) * 2000-09-14 2002-03-20 Siemens Aktiengesellschaft Impingement cooled wall
EP2233693A1 (en) * 2008-01-08 2010-09-29 IHI Corporation Cooling structure of turbine blade
EP2236751A2 (en) * 2009-03-30 2010-10-06 United Technologies Corporation Turbine airfoil with leading edge impingement cooling
EP2620592A1 (en) * 2012-01-26 2013-07-31 Alstom Technology Ltd Airfoil for a gas turbine engine having a tubular impingement element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121689A1 (en) 2016-01-15 2017-07-20 Siemens Aktiengesellschaft Gas turbine aerofoil
RU2813932C2 (en) * 2019-04-06 2024-02-19 Ман Энерджи Солюшнз Се Device for cooling component of gas turbine/turbomachine by means of injection cooling
DE102019129835A1 (en) * 2019-11-06 2021-05-06 Man Energy Solutions Se Device for cooling a component of a gas turbine / turbo machine by means of impingement cooling
CN112780353A (en) * 2019-11-06 2021-05-11 曼恩能源方案有限公司 Device for cooling components of a gas turbine/turbomachine by means of impingement cooling
EP3819470A1 (en) * 2019-11-06 2021-05-12 MAN Energy Solutions SE Device for cooling a component of a gas turbine / flow engine with impingement cooling
US11280216B2 (en) * 2019-11-06 2022-03-22 Man Energy Solutions Se Device for cooling a component of a gas turbine/turbo machine by means of impingement cooling

Similar Documents

Publication Publication Date Title
DE102016123525A1 (en) An article and method for cooling an article
DE69910913T2 (en) Coolable blade for gas turbines
EP2770260B1 (en) Gas turbine combustion chamber with impingement effusion cooled shingle
DE102010061376A1 (en) Improvement of heat transfer in internal cavities of turbine blades
EP2384393B1 (en) Cooled vane for a gas turbine
EP2059655B1 (en) Cooled turbine rotor blade
EP2787182B1 (en) Guide blade for a fluid flow engine, guide blade grid and method for the production of a guide blade or a guide blade grid
EP2143883A1 (en) Turbine blade and corresponding casting core
DE1247072B (en) Hollow blade, especially for gas turbines
DE102014100482A1 (en) Hot gas path component for turbine system
EP1188902A1 (en) Impingement cooled wall
CH709094A2 (en) The turbine blade having a chamber for receiving a cooling medium flow.
EP3658751A1 (en) Blade for a turbine blade
CH709089A2 (en) The turbine blade having a chamber for receiving a cooling medium flow.
EP2902589A1 (en) Impact cooled component for a gas turbine
DE102005024696A1 (en) Component part of especially turbo-engine has protective shroud installed around sleeve element to protect section of sleeve element protruding from cooling passage against effects of surrounding flow
EP3034782A1 (en) Film cooled turbine blade
EP1614861A1 (en) Turbine wheel comprising turbine blades having turbulators on the platform radially inner surface.
EP2489837A1 (en) Metering insert for turbine blade and corresponding turbine blade
EP3232001A1 (en) Rotor blade for a turbine
EP1138878B1 (en) Gas turbine component
EP2243574A1 (en) Casting device for creating a turbine rotor blade of a gas turbine and turbine rotor blade
EP3039246B1 (en) Turbine blade
DE112015000578B4 (en) Method for producing a turbine blade
EP2918780A1 (en) Impact cooled component for a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160206