EP2902589A1 - Composant refroidi par impact pour une turbine à gaz - Google Patents

Composant refroidi par impact pour une turbine à gaz Download PDF

Info

Publication number
EP2902589A1
EP2902589A1 EP14153066.7A EP14153066A EP2902589A1 EP 2902589 A1 EP2902589 A1 EP 2902589A1 EP 14153066 A EP14153066 A EP 14153066A EP 2902589 A1 EP2902589 A1 EP 2902589A1
Authority
EP
European Patent Office
Prior art keywords
component
cooling
wall
impingement cooling
impingement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14153066.7A
Other languages
German (de)
English (en)
Inventor
Fathi Ahmad
Tobias Buchal
Daniela Koch
Marco Schüler
Nihal Kurt
Radan RADULOVIC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14153066.7A priority Critical patent/EP2902589A1/fr
Publication of EP2902589A1 publication Critical patent/EP2902589A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to an impingement-cooled component for a gas turbine, with a component wall, along the outside of which a hot gas can be flowed and to whose outside opposite the inside an impingement cooling wall with a number of grid-shaped arranged impingement cooling openings is spaced.
  • such components are known in particular as turbine blades, which are used in particular in stationary gas turbines.
  • cooling on the inside of the blade is carried out as impingement cooling.
  • a perforated plate is usually positioned at a small distance from the inner wall. The air jet passing through the holes in the sheet metal meets perpendicular to the inside of the blade wall to be cooled and thus leads to a particularly efficient cooling.
  • the object of the invention is therefore to provide an aforementioned component in which the problem described is largely avoided.
  • the component designated at the beginning has flow resistances in the region between the inside and the impact cooling wall, which are arranged in a star shape around at least one of the impact cooling openings.
  • the flow resistances Due to the flow resistances which are distributed around the impingement cooling opening, the flow downstream of the impingement cooling jet can be guided in a targeted manner.
  • the flow resistances can have different shapes. Their contour can be, for example, rectangular, triangular, lancet-shaped, curved or non-curved drop-shaped or sickle-shaped. Other forms are conceivable.
  • the resistors are designed either monolithic with the impingement cooling wall or with the component wall. Overall, a planar pattern of flow resistance, which is offset from the grid of the impact cooling holes. In addition to the targeted guidance of the flow, undesired crossflows to adjacent impingement cooling openings are avoided, which increases the efficiency of the impingement cooling. Due to the grid-shaped arrangement of flow resistances, a better convective cooling analogous to a grid-like arrangement of sockets - also known as pin-fin array in the art - is achieved.
  • each flow resistance is designed in the form of a spatial body monolithic with the component wall. Consequently, a more effective cooling effect due to increased component area is achieved by the grid-shaped arrangement of physical flow resistance and thus achieved a lower cooling air consumption.
  • the lower cooling air consumption in turn has a positive effect on the efficiency of a gas turbine, in which the component according to the invention is used during operation.
  • a component for a gas turbine is specified, with a component wall, along the outside of which a hot gas is flowable and to the outside of the outside opposite an impingement cooling wall with a Number of raster-shaped impingement cooling openings is spaced.
  • flow resistances are arranged in the region between the inside and the baffle cooling wall, which are arranged in a star shape around at least one of the baffle cooling holes.
  • FIG. 1 shows a known from the prior art turbine blade, which is in the form of a vane one embodiment of a baffled component 10.
  • the component 10 is intended for use in a stationary gas turbine.
  • the component 10 has a turbine blade as an airfoil 12, which extends from a front edge 14 to a trailing edge 16 and along the outer sides 18 when used in a gas turbine, a hot gas is flowable.
  • so-called film cooling holes 15 are provided in the front edge.
  • the component 10 is hollow and comprises a hollow insert 20, which is to be referred to as an impact-cooling insert.
  • the insert 20 in turn comprises a baffle cooling wall 22, which is opposite to an inner side 24 of the blade 12 at a distance, wherein the inner side 24 itself is part of a component wall 14.
  • the component wall 14 is defined as it were by the outside 18 and the inside 24.
  • a plurality of impingement cooling openings 26 are distributed over the span of the airfoil 12, provided by the cooling air 28 supplied on the foot side out of the cavity of the insert 20 in the form of impingement cooling blasts 30 can escape.
  • the jets 30 strike the inside 24 of the component wall 14 and efficiently cool it during operation of a gas turbine.
  • a part of the thus warmed cooling air flows around the insert 20. This partial flow is then guided to the trailing edge 16 of the airfoil 12, where it can escape there through trailing edge openings 34.
  • Another part of the cooling air exits through the film cooling openings 15 arranged in the front edge 14.
  • Other options for the discharge of the heated cooling air from the component 10 out are conceivable.
  • FIGS. 2 and 3 show a plan view of the inside of the component wall 14, on the monolithic flow resistances 38, 40 according to the invention are arranged.
  • the flow resistances 38, 40 preferably have a height starting from the inside 24, which is smaller than the distance between the impingement cooling wall 22 and the inside 24.
  • the flow resistances 38, 40 are therefore not used as spacers for the impingement cooling wall 22 or for holding or closing Positioning of the impact cooling insert.
  • FIGS. 2 and 3 shown schematically.
  • the flow resistances 38, 40 can, as from the FIGS. 2 and 3 be seen, have different contours, thereby to form between them passages for the cooling air 32 already used for impingement cooling, can flow through said cooling air 32.
  • the flow resistances 38 are preferably arranged so that they do not lie next to, but on an imaginary connecting straight line of two immediately adjacent impingement cooling openings 26. This reduces the occurrence of cross flows which could weaken impingement jets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP14153066.7A 2014-01-29 2014-01-29 Composant refroidi par impact pour une turbine à gaz Withdrawn EP2902589A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14153066.7A EP2902589A1 (fr) 2014-01-29 2014-01-29 Composant refroidi par impact pour une turbine à gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14153066.7A EP2902589A1 (fr) 2014-01-29 2014-01-29 Composant refroidi par impact pour une turbine à gaz

Publications (1)

Publication Number Publication Date
EP2902589A1 true EP2902589A1 (fr) 2015-08-05

Family

ID=50000926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14153066.7A Withdrawn EP2902589A1 (fr) 2014-01-29 2014-01-29 Composant refroidi par impact pour une turbine à gaz

Country Status (1)

Country Link
EP (1) EP2902589A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121689A1 (fr) 2016-01-15 2017-07-20 Siemens Aktiengesellschaft Profil aérodynamique de turbine à gaz
DE102019129835A1 (de) * 2019-11-06 2021-05-06 Man Energy Solutions Se Vorrichtung zur Kühlung eines Bauteils einer Gasturbine/Strömungsmaschine mittels Prallkühlung
RU2813932C2 (ru) * 2019-04-06 2024-02-19 Ман Энерджи Солюшнз Се Устройство для охлаждения компонента газовой турбины/турбомашины посредством инжекционного охлаждения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188902A1 (fr) * 2000-09-14 2002-03-20 Siemens Aktiengesellschaft Paroi refroidie par jet
EP2233693A1 (fr) * 2008-01-08 2010-09-29 IHI Corporation Structure de refroidissement d'aube de turbine
EP2236751A2 (fr) * 2009-03-30 2010-10-06 United Technologies Corporation Aube de turbine avec bord d'attaque refroidi par jets d'air
EP2620592A1 (fr) * 2012-01-26 2013-07-31 Alstom Technology Ltd Aube de moteur à turbine à gaz avec un élément tubulaire pour refroidissement par impact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1188902A1 (fr) * 2000-09-14 2002-03-20 Siemens Aktiengesellschaft Paroi refroidie par jet
EP2233693A1 (fr) * 2008-01-08 2010-09-29 IHI Corporation Structure de refroidissement d'aube de turbine
EP2236751A2 (fr) * 2009-03-30 2010-10-06 United Technologies Corporation Aube de turbine avec bord d'attaque refroidi par jets d'air
EP2620592A1 (fr) * 2012-01-26 2013-07-31 Alstom Technology Ltd Aube de moteur à turbine à gaz avec un élément tubulaire pour refroidissement par impact

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017121689A1 (fr) 2016-01-15 2017-07-20 Siemens Aktiengesellschaft Profil aérodynamique de turbine à gaz
RU2813932C2 (ru) * 2019-04-06 2024-02-19 Ман Энерджи Солюшнз Се Устройство для охлаждения компонента газовой турбины/турбомашины посредством инжекционного охлаждения
DE102019129835A1 (de) * 2019-11-06 2021-05-06 Man Energy Solutions Se Vorrichtung zur Kühlung eines Bauteils einer Gasturbine/Strömungsmaschine mittels Prallkühlung
CN112780353A (zh) * 2019-11-06 2021-05-11 曼恩能源方案有限公司 借助于冲击冷却来冷却燃气涡轮/涡轮机的构件的装置
EP3819470A1 (fr) * 2019-11-06 2021-05-12 MAN Energy Solutions SE Dispositif de refroidissement d'un composant d'une turbine à gaz / turbomachine au moyen du refroidissement par impact
US11280216B2 (en) * 2019-11-06 2022-03-22 Man Energy Solutions Se Device for cooling a component of a gas turbine/turbo machine by means of impingement cooling

Similar Documents

Publication Publication Date Title
DE102016123525A1 (de) Gegenstand und Verfahren zum Kühlen eines Gegenstands
DE69910913T2 (de) Kühlbare Schaufel für Gasturbinen
EP2770260B1 (fr) Chambre de combustion de turbine à gaz avec bardeau à refroidissement par impact effusion
DE102010061376A1 (de) Verbesserung der Wärmeübertragung in inneren Hohlräumen von Turbinenschaufelblättern
EP2384393B1 (fr) Aube refroidie pour turbine a gaz
EP2059655B1 (fr) Aube mobile refroidie pour turbines
EP2787182B1 (fr) Aube directrice pour une turbomachine, grille d'aube directrice et procédé de fabrication d'une aube directrice ou d'une grille d'aube directrice
EP2143883A1 (fr) Aube de turbine et moyau de coulée de fabrication
DE1247072B (de) Hohlschaufel, insbesondere fuer Gasturbinen
DE102014100482A1 (de) Heißgaspfadbauteil für Turbinensystem
EP1188902A1 (fr) Paroi refroidie par jet
CH709094A2 (de) Turbinenschaufel mit einer Kammer zur Aufnahme eines Kühlmittelstroms.
EP3658751A1 (fr) Aubage d'aube de turbine
CH709089A2 (de) Turbinenschaufel mit einer Kammer zur Aufnahme eines Kühlmittelstroms.
EP2902589A1 (fr) Composant refroidi par impact pour une turbine à gaz
DE102005024696A1 (de) Bauteil mit verbesserter Kühlfluidzuführung
WO2016110387A1 (fr) Composant de turbine à gaz refroidi par film
EP3034782A1 (fr) Aube de turbine refroidie par couche d'air
EP1614861A1 (fr) Roue de turbine comprenant des aubes de turbine avec turbulateurs sur la surface radiale interne de la plate-forme
EP2489837A1 (fr) Insert de dosage pour aube de turbine et aube de turbine associée
EP3232001A1 (fr) Aube rotorique de turbine
EP1138878B1 (fr) Composant de turbine à gaz
EP2243574A1 (fr) Dispositif de coulée destiné à la fabrication d'une aube directrice de turbine d'une turbine à gaz et aube directrice de turbine
EP3039246B1 (fr) Aube de turbine
DE112015000578B4 (de) Verfahren zur Herstellung einer Turbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160206