EP2143883A1 - Turbine blade and corresponding casting core - Google Patents
Turbine blade and corresponding casting core Download PDFInfo
- Publication number
- EP2143883A1 EP2143883A1 EP08012518A EP08012518A EP2143883A1 EP 2143883 A1 EP2143883 A1 EP 2143883A1 EP 08012518 A EP08012518 A EP 08012518A EP 08012518 A EP08012518 A EP 08012518A EP 2143883 A1 EP2143883 A1 EP 2143883A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- turbine blade
- openings
- turbulence elements
- coolant
- blade according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/122—Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/70—Shape
- F05D2250/71—Shape curved
- F05D2250/712—Shape curved concave
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2212—Improvement of heat transfer by creating turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
- F05D2260/22141—Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
Definitions
- the invention relates to a turbine blade for a gas turbine having a hollow, can be flowed around by a hot gas blade, at the trailing edge of which a plurality of openings for blowing a turbine blade cooling coolant are separated by interposed webs, wherein in the interior of the airfoil at least one with a plurality of the openings fluidically connected cavity is provided in the upstream of the webs a plurality of turbulence elements are provided, each having one of the incoming there coolant flow facing upstream side.
- the invention relates to a casting core for use in a casting apparatus for producing a cast turbine blade according to the preamble of claim 1 in order to leave behind a cavity traversed by a coolant in the turbine blade after removal of the casting core from the cast turbine blade.
- An initially mentioned turbine blade and a casting core for producing such a turbine blade for example, from WO 2003/042503 A1 known.
- the known turbine blade has a cooled trailing edge at which a plurality of openings for blowing out the cooling air by interposed webs - which are also known in English as "tear drops" - are separated from each other.
- the arranged at the trailing edge of a common cavity is preceded by three rows of columnar sockets - in the English also known as "pin-fins" - are arranged, which increases the heat transfer of them passing cooling air and to increase the Pressure loss are provided there.
- the casting core required for producing such a turbine blade is shown in FIG WO 2003/042503 A1 shown in perspective.
- the space occupied by the casting core remains after production of the cast turbine blade as a cavity in the turbine blade, wherein in the casting core arranged openings is filled with casting material.
- the casting core represents the negative image of the interior of the turbine blade.
- the object of the invention is therefore to provide an initially mentioned turbine blade for a gas turbine, which is efficient and sufficiently coolable with the smallest possible amount of coolant, and / or in which a casting core can be used in a casting device for the production, which is particularly robust to handle ,
- the object directed to the turbine blade is achieved with a turbine blade according to the features of claim 1.
- the object directed to the casting core is achieved with a casting core according to the features of claim 12.
- the invention is based on the finding that a more stable casting core can be achieved if the first openings arranged in the casting core trailing edge are further reduced in longitudinal section, so that the dividing webs arranged in the casting core widen.
- this widening of the dividing webs arranged in the casting core leads, in a turbine blade produced with such a cast core, to an enlargement of the openings arranged at the trailing edge, through which the coolant escapes from the turbine blade. Since previously these openings were also used to adjust the coolant consumption, enlarged openings thus lead to increased consumption of coolant. This increase is not desirable in principle and reduces the efficiency of the gas turbine.
- the invention proposes to increase the pressure loss in the area upstream of the trailing edge openings of the turbine blade, more precisely in a cavity upstream of the openings, and thus to provide an increased flow resistance there, in order to achieve the aforementioned effect of increased flow Compensating, if not overcompensating, coolant.
- the invention proposes that upstream of the webs several turbulence elements are provided, each one have the incoming there incoming coolant flow on the upstream side, at least partially concave.
- Another advantage of the concaved upstream face of the turbulence elements is a further increase in the heat transfer between the inner surfaces of the airfoil side walls and the coolant flow therealong due to further increased turbulence in the coolant.
- the geometric dimensioning of the turbulence elements according to the invention is suitably selected to set the required internal pressure loss and / or the desired heat transfer.
- Pressure loss and heat transfer can also be adjusted by the appropriate choice of the number of turbulence elements according to the invention within a row transverse to the coolant main flow direction.
- the turbulence elements can be arranged directly upstream of the webs in at least one row transversely to the coolant main flow direction.
- each of the turbulence elements of the row preferably has an at least partially concavely curved inflow side. This makes it possible, over the entire longitudinal extent of the turbine blade - in other words: over the entire height of the blade - to set a uniform pressure loss for the coolant and a uniform heat transfer.
- the turbulence elements are viewed in longitudinal step C-shaped.
- Their arc shape can thus circular segment-shaped or also ellipsensegmentförmig, so be sickle-like. Such a shape causes, if the ends are flown, a relatively large pressure loss.
- a further advantageous embodiment provides that the bow ends of the turbulence elements are oriented in such a way that they face at least slightly the flow of coolant arriving there during operation.
- the coolant impinging on the concaved upstream side can be directed from the two arcuate ends to the intermediate center, whereby upstream of this a particularly large back pressure in the coolant flow sets, which can lead to a particularly large pressure loss.
- the distance between two adjacent turbulence elements can be smaller by a factor of 2 than their respective extent in the longitudinal direction.
- the airfoil may comprise a suction side wall and a pressure side wall whose respective inner surfaces laterally bound the cavity and the channels extending from the cavity to the openings between the webs.
- the turbulence elements each extend from one of the two inner surfaces to the other inner surface and connect them.
- coolant flow between the inner surface of the pressure side wall and the inner surface of the suction side wall is partially blocked.
- the two inner surfaces of the side walls may also be inclined relative to one another in such a way that they converge toward the trailing edge of the turbine blade, as viewed in the cross section of the blade.
- this makes it possible to present the minimum flow-through cross section of the turbine blade in a region in which the turbulence elements are arranged.
- This is another difference to one from the Turbine blade known in the art, in which there is usually the smallest cross section between the webs through which the coolant can flow, which separates the openings or channels arranged in the trailing edge of the turbine blade from one another.
- a further means for increasing the turbulence of the coolant flowing through the cavity to the openings may be provided.
- the further means may comprise a plurality of arranged in a grid columns or sockets, ie the known from the prior art cylindrical pin-Fins.
- the further means may be formed from at least one further row of turbulence elements according to the invention. Consequently, not only a single row of turbulence elements according to the invention may be present, but also a plurality of rows of turbulence elements according to the invention, which are each preferably aligned perpendicular to the coolant flow. This further increases the pressure loss.
- the cavities and outlet openings present in a cast turbine blade can be produced by a casting core used in a casting device, which is removed from the casting of the turbine blade in a known manner.
- a casting core is proposed for use in a casting apparatus comprising a casting core trailing edge on which a plurality of first openings for forming the webs are arranged in the trailing edge of the turbine blade.
- a plurality of second openings are provided in the casting core, which are arranged in a second region which is adjacent to a first region is, in which the first openings are arranged.
- the second openings of the casting core serve to produce the turbulence elements according to the invention.
- At least one of the second openings is at least partially concave-shaped.
- the concave part of the second openings of the casting core trailing edge is averted.
- a casting core designed in accordance with the invention therefore tends to break less near the casting core trailing edge than a conventional casting core and is accordingly simpler, more robust to handle.
- FIG. 1 A gas turbine blade 10 relating to the invention is shown in FIG FIG. 1 shown in perspective.
- the gas turbine blade 10 is according to FIG. 1 designed as a blade.
- the invention can also be used in a guide vane, not shown, of a gas turbine.
- the turbine blade 10 comprises a cross-sectionally fir-tree-shaped blade root 12 and a platform 14 arranged thereon.
- the platform 14 is adjoined by an aerodynamically curved blade 16, which has a leading edge 18 and a trailing edge 20.
- Provided at the front edge 18 are cooling holes arranged as so-called “shower heads", from which a coolant flowing inside, preferably cooling air, can emerge.
- the airfoil 16 includes a - with respect FIG.
- FIG. 2 shows the interior of the prior art turbine blade 10 in a longitudinal section along a plane defined by a centerline extending from the leading edge 18 to the trailing edge 20 of the airfoil 16 and from the blade longitudinal direction extending from the blade root 12 to the blade tip extends.
- FIG. 2 are arranged further to the right, the rear edge openings 28 are provided, between which the webs 30 are arranged.
- the webs 30 extend substantially parallel to a hot gas flow which, during operation, flows around the airfoil 16 from the front edge 18 to the rear edge 20.
- FIG. 2 shown on the left is a plurality of arranged in a grid column or sockets 32 are provided. Both the columns 32 and the webs 30 extend from an inner surface 34 of the suction side wall 22 to an inner surface, not shown, of the pressure side wall 24. Consequently, the pillars 32 are arranged in a cavity 38 of the turbine blade 10, which laterally from the suction side wall 22 and Pressure side wall 24 is limited.
- cooling air 40 When using the turbine blade 10 in a gas turbine during operation of the cavity 38 by a coolant, preferably cooling air 40, flows through.
- a coolant preferably cooling air 40
- FIG. 2 not shown part of the turbine blade formed in the interior so that the field of sockets 32 is substantially uniformly flowed by cooling air 40.
- the uniform flow of the arranged in grid base 32 is shown by the arrows marked 40.
- the cooling air 40 impinges on individual pedestals 32 and is thereby deflected by them, the main flow direction 40 of which remains essentially unchanged. This creates 40 turbulences in the cooling air.
- the introduced from the hot gas in the blade walls 22, 24 heat is passed from these further into the base 32. There, the cooling air 40 impinging on the base 32 absorbs the heat and transports it.
- cooling air 40 After the cooling air 40 has flowed through the base field, this enters channels 41, which the cavity 38 with the openings 28th connect. After flowing through the channels 41, the cooling air 40 passes out of the turbine blade 10 through the openings 28 and mixes with the hot gas flowing around the blade 16.
- the turbulences in the coolant 40 arising during the flow through the base field increase the heat transfer from the side walls 22, 24 of the blade 16 into the cooling air, so that a comparatively efficient dissipation of heat can be achieved.
- the turbulence elements 42 according to FIG. 3 have one of the inflowing cooling air 40 facing upstream side 44, which is at least partially concave.
- the turbulence elements according to the invention thus 42 C-shaped, ie sickle-shaped, wherein the arc ends 46 of the turbulence elements 42 are oriented such that they are at least slightly facing the incoming there in operation coolant flow.
- the turbulence elements 42 are arranged in a row transversely to the coolant main flow direction, wherein each of the turbulence elements 42 of a row has an at least partially concavely curved upstream side 44 or is sickle-shaped.
- two rows of pin fins have been replaced by a series of turbulence elements 42 according to the invention.
- the sickle shape of the turbulence elements 42 can, as in 3 and FIG. 4 be aligned in the cavity 38 so that the ends of a turbulence element 42 are at different heights of the blade 16. Installed in a turbine these are then at different radii - relative to a machine axis of the gas turbine, around which the rotor rotates.
- the turbulence elements 42 are not only sickle-shaped in longitudinal section, but also crescent-shaped in cross-section. This results in a total cup or plate-shaped contour of the turbulence element 42 with an at least partially spherical inflow side 44, which generates a particularly large pressure loss.
- turbulence elements 42 By positioning turbulence elements 42 according to the invention upstream of the webs 30, inside the turbine blade 10, it is possible to have a width d (FIG. FIG. 4 ) of the opening 28 to increase, without causing an increased consumption of cooling air occurs.
- the turbulence elements 42 have a further increased flow resistance compared to the sockets 32 arranged in rows, so that at this point an increased pressure loss occurs, which prevents the increase of coolant consumption.
- turbulence elements 42 according to the invention in different rows.
- a length h in the longitudinal direction, a width b and thus the curvature of the concave upstream side 44 of the turbulence elements 42 and the distance L between two adjacent rows can be adapted to local requirements.
- FIG. 6 shows the section VI FIG. 3 by a turbine blade according to the invention with the novel turbulence elements 42.
- the suction side wall 22 and the pressure side wall 24 extending to the trailing edge 20.
- the openings 28 are in turn separated by interposed webs 30 from each other.
- An inner surface 34 of the suction side wall 22 is opposite to an inner surface 48 of the pressure side wall 24, so that viewed in the main flow direction of the coolant 40, these converge toward the trailing edge 20, ie converge towards one another.
- Between the inner surfaces 34, 48 successively first two rows of sockets 32 are provided in the main flow direction, downstream of a series of inventively designed turbulence elements 42 follows. This is followed by the webs 30 with the channels 41 arranged between them.
- FIG. 5 3 shows a perspective view of a casting core 110 according to the invention with first openings 130 arranged in a first area near the casting core trailing edge 120.
- a plurality of second openings 142 arranged in two rows adjacent thereto in a second area is provided.
- the second openings 142 have at least one partial contour, which is concave-shaped.
- a turbine blade according to the invention can be produced therewith, wherein the space occupied by the casting core 110 remains as a cavity in the turbine blade after production of the cast turbine blade.
- the existing in the casting core 110 openings 130, 142 are filled during casting of the turbine blade 10 of cast material and thus remain as structural elements, namely, as webs 30 and turbulence elements 42, in the turbine blade.
- a casting core 110 according to the invention has a complementary contour to the interior of the turbine blade according to the invention.
- the invention can be used in both a blade and a vane.
- the invention proposes a turbine blade with a partially new internal structure.
- the new elements are arranged upstream of the webs 30 arranged on the trailing edge 20 of the airfoil 16 of the turbine blade.
- the structure includes a series arranged turbulence elements 42, which has an inflowable by a coolant 40 upstream side 44, which according to the invention is at least partially concave curved.
- the turbulence elements 42 are formed sickle-shaped. This aerodynamically particularly unfavorable form of turbulence elements 42 causes an increased pressure loss, which complicates the flow of coolant. This allows the width d of the openings 28 (see FIG. FIG.
- the invention also provides a substantially more stable cast core 110, since the first openings 130 required for the production of the webs 30 of a turbine blade can now be spaced further apart than previously in the cast core 110. This leads to a greater stability of the casting core 110 in the region of the casting core trailing edge 120, whereby it tends to break less at this point and can therefore be handled more robustly.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Description
Die Erfindung betrifft eine Turbinenschaufel für eine Gasturbine mit einem hohlen, von einem Heißgas umströmbaren Schaufelblatt, an dessen Hinterkante verteilt mehrere Öffnungen zum Ausblasen eines die Turbinenschaufel kühlenden Kühlmittels durch dazwischen angeordnete Stege voneinander getrennt sind, wobei im Inneren des Schaufelblatts zumindest ein mit mehreren der Öffnungen strömungstechnisch verbundener Hohlraum vorgesehen ist, in dem stromauf der Stege mehrere Turbulenzelemente vorgesehen sind, die jeweils eine der dort ankommenden Kühlmittelströmung zugewandten Anströmseite aufweisen. Ferner betrifft die Erfindung einen Gusskern zur Verwendung in einer Gießvorrichtung zum Herstellen einer gegossenen Turbinenschaufel gemäß dem Oberbegriff des Anspruchs 1, um nach der Entfernung des Gusskerns aus der gegossenen Turbinenschaufel einen von einem Kühlmittel durchströmbaren Hohlraum in der Turbinenschaufel zu hinterlassen.The invention relates to a turbine blade for a gas turbine having a hollow, can be flowed around by a hot gas blade, at the trailing edge of which a plurality of openings for blowing a turbine blade cooling coolant are separated by interposed webs, wherein in the interior of the airfoil at least one with a plurality of the openings fluidically connected cavity is provided in the upstream of the webs a plurality of turbulence elements are provided, each having one of the incoming there coolant flow facing upstream side. Furthermore, the invention relates to a casting core for use in a casting apparatus for producing a cast turbine blade according to the preamble of claim 1 in order to leave behind a cavity traversed by a coolant in the turbine blade after removal of the casting core from the cast turbine blade.
Eine eingangs genannte Turbinenschaufel und ein Gusskern zum Herstellen einer solchen Turbinenschaufel ist beispielsweise aus der
Der zur Herstellung einer solchen Turbinenschaufel benötigte Gusskern ist dabei in Fig. 7 der
Die aus der
Es ist dabei bekannt, die an der Hinterkante der Turbinenschaufel austretende Kühlluftmenge durch eine geeignete Wahl des maximalen Druckverlustes und/oder die kleinste, von der Kühlluft zu durchströmenden Querschnittsfläche nahe der Hinterkante einzustellen. Diese Vorgehensweise kann jedoch zu Gusskernen führen, bei denen die an der Gusskernhinterkante vorgesehenen Öffnungen derartig groß werden, dass zwischen ihnen nur noch vergleichsweise dünne Trennstege verbleiben. Während der Handhabung des Gusskerns kann jedoch genau an dieser Stelle der Gusskern brechen, so dass dieser anschließend unbrauchbar ist.It is known to set the exiting at the trailing edge of the turbine blade cooling air amount by a suitable choice of the maximum pressure drop and / or the smallest, to be flowed through by the cooling air cross-sectional area near the trailing edge. However, this procedure can lead to casting cores, in which the openings provided at the casting core trailing edge become so large that only comparatively thin separating webs remain between them. During the handling of the casting core, however, the casting core may break precisely at this point, so that it is subsequently useless.
Aufgabe der Erfindung ist daher die Bereitstellung einer eingangs genannten Turbinenschaufel für eine Gasturbine, die mit einer möglichst geringen Menge an Kühlmittel effizient und ausreichend kühlbar ist, und/oder bei der zur Herstellung ein Gusskern in einer Gießvorrichtung verwendet werden kann, welcher besonders robust handhabbar ist.The object of the invention is therefore to provide an initially mentioned turbine blade for a gas turbine, which is efficient and sufficiently coolable with the smallest possible amount of coolant, and / or in which a casting core can be used in a casting device for the production, which is particularly robust to handle ,
Die auf die Turbinenschaufel gerichtet Aufgabe wird mit einer Turbinenschaufel gemäß den Merkmalen von Anspruch 1 gelöst. Die auf dem Gusskern gerichtete Aufgabe wird mit einem Gusskern gemäß den Merkmalen von Anspruch 12 gelöst.The object directed to the turbine blade is achieved with a turbine blade according to the features of claim 1. The object directed to the casting core is achieved with a casting core according to the features of
Der Erfindung liegt die Erkenntnis zugrunde, dass ein stabilerer Gusskern erreicht werden kann, wenn die in der Gusskernhinterkante angeordneten ersten Öffnungen im Längsschnitt weiter verkleinert werden, so dass die im Gusskern dazwischen angeordneten Trennstege sich verbreitern. Diese Verbreiterung der im Gusskern angeordneten Trennstege führt jedoch in einer mit einem solchen Gusskern hergestellten Turbinenschaufel zu einer Vergrößerung der an der Hinterkante angeordneten Öffnungen, durch welche das Kühlmittel aus der Turbinenschaufel entweicht. Da bisher diese Öffnungen auch zur Einstellung des Kühlmittelverbrauchs dienten, führen vergrößerte Öffnungen somit zu einem erhöhten Verbrauch an Kühlmittel. Diese Erhöhung ist prinzipiell nicht erstrebenswert und vermindert den Wirkungsgrad der Gasturbine. Um diesem Effekt nun entgegenzuwirken, schlägt die Erfindung vor, in dem Bereich stromauf der Hinterkantenöffnungen der Turbinenschaufel, genauer: in einem den Öffnungen strömungstechnisch vorgeschalteten Hohlraum, den Druckverlust zu erhöhen und somit dort einen erhöhten Strömungswiderstand vorzusehen, um den vorgenannten Effekt eines vergrößerten Durchflusses an Kühlmittel zu kompensieren, wenn nicht sogar zu überkompensieren. Um einen weiter erhöhten Druckverlust - verglichen mit dem aus dem Stand der Technik bekannten zylindrischen Pin-Fins - in der Kühlmittelströmung stromauf der Öffnungen an der Hinterkante der Turbinenschaufel zu erreichen, wird erfindungsgemäß vorgeschlagen, dass stromauf der Stege mehrere Turbulenzelemente vorgesehen sind, die jeweils eine der dort ankommenden Kühlmittelströmung zugewandte Anströmseite aufweisen, zumindest teilweise konkav gewölbt ist. Durch diese Maßnahme kann eine Vergrößerung der Öffnungen in Kauf genommen werden, ohne dass dadurch sich ein erhöhter Verbrauch an Kühlmittel einstellt.The invention is based on the finding that a more stable casting core can be achieved if the first openings arranged in the casting core trailing edge are further reduced in longitudinal section, so that the dividing webs arranged in the casting core widen. However, this widening of the dividing webs arranged in the casting core leads, in a turbine blade produced with such a cast core, to an enlargement of the openings arranged at the trailing edge, through which the coolant escapes from the turbine blade. Since previously these openings were also used to adjust the coolant consumption, enlarged openings thus lead to increased consumption of coolant. This increase is not desirable in principle and reduces the efficiency of the gas turbine. In order to counteract this effect, the invention proposes to increase the pressure loss in the area upstream of the trailing edge openings of the turbine blade, more precisely in a cavity upstream of the openings, and thus to provide an increased flow resistance there, in order to achieve the aforementioned effect of increased flow Compensating, if not overcompensating, coolant. In order to achieve a further increased pressure loss - compared to the known from the prior art cylindrical pin-fins - in the coolant flow upstream of the openings at the trailing edge of the turbine blade, the invention proposes that upstream of the webs several turbulence elements are provided, each one have the incoming there incoming coolant flow on the upstream side, at least partially concave. By this measure, an enlargement of the openings can be accepted without this setting in an increased consumption of coolant.
Ein weiterer Vorteil der konkav gewölbten Anströmseite der Turbulenzelemente ist eine weitere Erhöhung des Wärmeübergangs zwischen den Innenflächen der Schaufelblatt-Seitenwände und der daran entlang strömenden Kühlmittelströmung durch eine weiter gesteigerte Turbulenz im Kühlmittel.Another advantage of the concaved upstream face of the turbulence elements is a further increase in the heat transfer between the inner surfaces of the airfoil side walls and the coolant flow therealong due to further increased turbulence in the coolant.
Die geometrische Dimensionierung der erfindungsgemäßen Turbulenzelemente wie Krümmung der Anströmseite, Größe der Längserstreckung und/oder Abstand zwischen den in einer Reihe angeordneten Turbulenzelemente wird dabei in geeigneter Weise gewählt, um den erforderlichen internen Druckverlust und/oder den gewünschten Wärmeübergang einzustellen.The geometric dimensioning of the turbulence elements according to the invention, such as curvature of the inflow side, size of the longitudinal extent and / or distance between the turbulence elements arranged in a row, is suitably selected to set the required internal pressure loss and / or the desired heat transfer.
Dabei können Zusammenhänge zwischen den unterschiedlichen geometrischen Dimensionen bezüglich der zu der dadurch strömenden Menge von Kühlluft und der Druckunterschiede abgeleitet werden.In this case, relationships between the different geometrical dimensions with respect to the amount of cooling air flowing through and the pressure differences can be derived.
Druckverlust und Wärmeübergang können auch durch die geeignete Wahl der Anzahl der erfindungsgemäßen Turbulenzelemente innerhalb einer Reihe quer zur Kühlmittel-Hauptströmungsrichtung eingestellt werden.Pressure loss and heat transfer can also be adjusted by the appropriate choice of the number of turbulence elements according to the invention within a row transverse to the coolant main flow direction.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.Advantageous embodiments are specified in the subclaims.
Gemäß einer ersten vorteilhaften Weiterbildung können die Turbulenzelemente unmittelbar stromauf der Stege in zumindest einer Reihe quer zur Kühlmittel-Hauptströmrichtung angeordnet sein. Vorzugsweise weist dabei jedes der Turbulenzelemente der Reihe eine zumindest teilweise konkav gewölbte Anströmseite auf. Hierdurch ist es möglich, über die gesamte Längserstreckung der Turbinenschaufel - mit anderen Worten: über die gesamte Höhe des Schaufelblatts - einen einheitlichen Druckverlust für das Kühlmittel und einen einheitlichen Wärmeübergang einzustellen. Es ist aber auch denkbar, in einer Reihe unterschiedliche Geometrien von erfindungsgemäßen Turbulenzelementen oder auch unterschiedliche Abstände vorzusehen, um lokalen Anforderungen an die Kühlung gerecht zu werden.According to a first advantageous development, the turbulence elements can be arranged directly upstream of the webs in at least one row transversely to the coolant main flow direction. In this case, each of the turbulence elements of the row preferably has an at least partially concavely curved inflow side. This makes it possible, over the entire longitudinal extent of the turbine blade - in other words: over the entire height of the blade - to set a uniform pressure loss for the coolant and a uniform heat transfer. However, it is also conceivable to provide a number of different geometries of turbulence elements according to the invention or different distances to meet local cooling requirements.
Gemäß einer besonders vorteilhaften Ausgestaltung der Erfindung sind die Turbulenzelemente in Längsschritt betrachtet C-förmig ausgebildet. Deren Bogenform kann folglich kreissegmentförmig oder auch ellipsensegmentförmig, also sichelartig sein. Eine solche Form bewirkt, sofern die Enden angeströmt werden, einen vergleichsweise großen Druckverlust.According to a particularly advantageous embodiment of the invention, the turbulence elements are viewed in longitudinal step C-shaped. Their arc shape can thus circular segment-shaped or also ellipsensegmentförmig, so be sickle-like. Such a shape causes, if the ends are flown, a relatively large pressure loss.
Eine weitere vorteilhafte Ausgestaltung sieht vor, dass die Bogen-Enden der Turbulenzelemente derart orientiert sind, dass diese zumindest geringfügig der dort im Betrieb ankommenden Kühlmittelströmung zugewandt sind. Somit kann das auf der konkav gewölbten Anströmseite auftreffende Kühlmittel von den beiden Bogen-Enden zur dazwischen liegenden Mitte geleitet werden, wodurch sich stromauf davon ein besonders großer Staudruck in der Kühlmittelströmung einstellt, was zu einem besonders großen Druckverlust führen kann.A further advantageous embodiment provides that the bow ends of the turbulence elements are oriented in such a way that they face at least slightly the flow of coolant arriving there during operation. Thus, the coolant impinging on the concaved upstream side can be directed from the two arcuate ends to the intermediate center, whereby upstream of this a particularly large back pressure in the coolant flow sets, which can lead to a particularly large pressure loss.
Zweckmäßigerweise kann bei einer erfindungsgemäßen Turbinenschaufel - in Längsrichtung des Schaufelblatts betrachtet - der Abstand zwischen zwei benachbarten Turbulenzelementen um den Faktor 2 kleiner sein, als deren jeweilige Erstreckung in Längsrichtung.Expediently, in the case of a turbine blade according to the invention-viewed in the longitudinal direction of the blade leaf-the distance between two adjacent turbulence elements can be smaller by a factor of 2 than their respective extent in the longitudinal direction.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann das Schaufelblatt eine Saugseitenwand und eine Druckseitenwand umfassen, deren jeweiligen Innenflächen den Hohlraum und die sich vom Hohlraum zu den Öffnungen hin erstreckenden Kanäle zwischen den Stegen seitlich begrenzen. Die Turbulenzelemente erstrecken sich dabei jeweils von einer der beiden Innenflächen bis zur anderen Innenfläche und verbinden diese. Somit wird Kühlmittelströmung zwischen der Innenfläche der Druckseitenwand und der Innenfläche der Saugseitenwand teilweise blockiert. Unabhängig von der Erstreckung der Turbulenzelemente von einer Innenfläche bis zur anderen Innenfläche können die beiden Innenflächen der Seitewände auch derart zueinander geneigt sein, dass sie - im Querschnitt des Schaufelblatts betrachtet - zur Hinterkante der Turbinenschaufel konvergieren. Insbesondere hierdurch ist es möglich, den minimalen durchströmbaren Querschnitt der Turbinenschaufel in einen Bereich vorzulegen, in dem die Turbulenzelemente angeordnet sind. Dies ist ein weiterer Unterschied zu einer aus dem Stand der Technik bekannten Turbinenschaufel, bei der in der Regel der geringste, von dem Kühlmittel durchströmbare Querschnitt zwischen den Stegen vorhanden ist, welcher die in der Hinterkante der Turbinenschaufel angeordneten Öffnungen bzw. Kanäle voneinander trennt.According to a further advantageous embodiment, the airfoil may comprise a suction side wall and a pressure side wall whose respective inner surfaces laterally bound the cavity and the channels extending from the cavity to the openings between the webs. The turbulence elements each extend from one of the two inner surfaces to the other inner surface and connect them. Thus, coolant flow between the inner surface of the pressure side wall and the inner surface of the suction side wall is partially blocked. Regardless of the extent of the turbulence elements from one inner surface to the other inner surface, the two inner surfaces of the side walls may also be inclined relative to one another in such a way that they converge toward the trailing edge of the turbine blade, as viewed in the cross section of the blade. In particular, this makes it possible to present the minimum flow-through cross section of the turbine blade in a region in which the turbulence elements are arranged. This is another difference to one from the Turbine blade known in the art, in which there is usually the smallest cross section between the webs through which the coolant can flow, which separates the openings or channels arranged in the trailing edge of the turbine blade from one another.
Dies kann zu einer geringfügigen, aber wesentlichen Vorverlagerung der Drosselstelle in den Bereich der Turbulenzelemente führen, also aus dem Bereich der Stege hinaus.This can lead to a slight but significant forward displacement of the throttle point in the region of the turbulence elements, ie out of the region of the webs.
Gemäß einer weiteren vorteilhaften Ausgestaltung kann stromauf und/oder stromab der Turbulenzelemente ein weiteres Mittel zur Anfachung der Turbulenz des durch den Hohlraum zu den Öffnungen strömenden Kühlmittels vorgesehen sein. Das weitere Mittel kann dabei eine Vielzahl von in einem Raster angeordneten Säulen oder Sockeln umfassen, also den aus dem Stand der Technik bekannten zylindrischen Pin-Fins. Alternativ oder ergänzend dazu ist es auch denkbar, dass das die weiteren Mittel aus mindestens einer weiteren Reihe von erfindungsgemäßen Turbulenzelementen gebildet wird. Folglich kann nicht nur eine einzige Reihe von erfindungsgemäßen Turbulenzelementen vorhanden sein, sondern auch mehrere Reihen von erfindungsgemäßen Turbulenzelementen, welche jeweils vorzugsweise senkrecht zur Kühlmittelströmung ausgerichtet sind. Dies erhöht weiter den Druckverlust.According to a further advantageous embodiment, upstream and / or downstream of the turbulence elements, a further means for increasing the turbulence of the coolant flowing through the cavity to the openings may be provided. The further means may comprise a plurality of arranged in a grid columns or sockets, ie the known from the prior art cylindrical pin-Fins. Alternatively or additionally, it is also conceivable for the further means to be formed from at least one further row of turbulence elements according to the invention. Consequently, not only a single row of turbulence elements according to the invention may be present, but also a plurality of rows of turbulence elements according to the invention, which are each preferably aligned perpendicular to the coolant flow. This further increases the pressure loss.
Die in einer gegossenen Turbinenschaufel vorhandenen Hohlräume und Austrittsöffnungen sind durch einen in einer Gießvorrichtung verwendeten Gusskern herstellbar, welcher nach dem Guss der Turbinenschaufel aus dieser in bekannter Art und Weise entfernt wird. Zum Herstellen einer gegossenen Turbinenschaufel gemäß dem Oberbegriff des Anspruchs 1 wird ein Gusskern zur Verwendung in einer Gießvorrichtung vorgeschlagen, der eine Gusskernhinterkante umfasst, an der mehrere erste Öffnungen zur Bildung der Stege in der Hinterkante der Turbinenschaufel angeordnet sind. Zudem sind im Gusskern mehrere zweite Öffnungen vorgesehen, welche in einem zweiten Bereich angeordnet sind, der zu einem ersten Bereich benachbart ist, in welchem die ersten Öffnungen angeordnet sind. Die zweiten Öffnungen des Gusskerns dienen zur Herstellung der erfindungsgemäßen Turbulenzelemente.The cavities and outlet openings present in a cast turbine blade can be produced by a casting core used in a casting device, which is removed from the casting of the turbine blade in a known manner. For producing a cast turbine blade according to the preamble of claim 1, a casting core is proposed for use in a casting apparatus comprising a casting core trailing edge on which a plurality of first openings for forming the webs are arranged in the trailing edge of the turbine blade. In addition, a plurality of second openings are provided in the casting core, which are arranged in a second region which is adjacent to a first region is, in which the first openings are arranged. The second openings of the casting core serve to produce the turbulence elements according to the invention.
Erfindungsgemäß ist dabei vorgesehen, dass zumindest eine der zweiten Öffnungen zumindest teilweise konkav geformt ist. Zur Bildung von korrespondierend geformten Turbulenzelementen in der Turbinenschaufel ist der konkave Teil der zweiten Öffnungen der Gusskernhinterkante abgewandt. Mit einem solchen Gusskern lassen sich erfindungsgemäße Turbinenschaufeln herstellen, die stromauf der Stege, also im Inneren der Turbinenschaufel einen vergleichsweise hohen Druckverlust für das Kühlmittel erzeugen, wodurch die zwischen den in der Turbinenschaufelhinterkante vorgesehenen Öffnungen vorhandenen Stege schmaler ausgeführt werden können. Die schmaleren Stege werden dabei durch einen Gusskern erreicht, dessen erste Öffnungen an der Gusskernhinterkante ebenfalls schmaler sind. Zwischen den ersten Öffnungen vorhandene Trennstege im Gusskern - welche in der gegossenen Turbinenschaufel die Öffnungen der Hinterkante definieren - sind - in Bezug auf den konventionellen Gusskern - vergleichsweise breit ausgebildet sind, was die Stabilität des Gusskerns insgesamt erhöht. Ein erfindungsgemäß ausgestalteter Gusskern neigt somit nahe der Gusskernhinterkante weniger zum Bruch als ein konventioneller Gusskern und ist demgemäß einfacher, robuster handhabbar.According to the invention, it is provided that at least one of the second openings is at least partially concave-shaped. To form correspondingly shaped turbulence elements in the turbine blade, the concave part of the second openings of the casting core trailing edge is averted. With such a casting core, turbine blades according to the invention can be produced, which generate a comparatively high pressure loss for the coolant upstream of the webs, ie inside the turbine blade, whereby the webs present between the openings provided in the turbine blade trailing edge can be made narrower. The narrower webs are achieved by a casting core whose first openings are also narrower at the Gusskernhinterkante. Between the first openings existing dividers in the casting core - which define the openings of the trailing edge in the cast turbine blade - are - compared to the conventional casting core - are made comparatively wide, which increases the stability of the casting core as a whole. A casting core designed in accordance with the invention therefore tends to break less near the casting core trailing edge than a conventional casting core and is accordingly simpler, more robust to handle.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Figurenbeschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen. Es zeigen jeweils schematisch,
- FIG 1
- eine aus dem Stand der Technik bekannte Turbinenlaufschaufel in einer perspektivischen Darstellung,
- FIG 2
- einen Längsschnitt durch den Bereich der Hinterkante der aus dem Stand der Technik bekannten Turbinenlaufschaufel,
- FIG 3
- einen Ausschnitt analog
FIG 2 durch eine erfindungsgemäße Turbinenschaufel mit konkav gewölbten Anströmseiten gemäß einer ersten Ausgestaltung, - FIG 4
- eine alternative Ausgestaltung der in Reihen angeordneten Turbulenzelementen einer erfindungsgemäßen Turbinenschaufel,
- FIG 5
- einen erfindungsgemäßen Gusskern in perspektivischer Darstellung zur Herstellung einer erfindungsgemäßen Turbinenschaufel und
- FIG 6
- einen Querschnitt durch die Hinterkante einer erfindungsgemäßen Turbinenschaufel.
- FIG. 1
- a known from the prior art turbine blade in a perspective view,
- FIG. 2
- a longitudinal section through the region of the trailing edge of the known from the prior art turbine blade,
- FIG. 3
- a section analog
FIG. 2 by a turbine blade according to the invention with concavely curved inflow sides according to a first embodiment, - FIG. 4
- an alternative embodiment of the turbulence elements arranged in rows of a turbine blade according to the invention,
- FIG. 5
- a casting core according to the invention in a perspective view for producing a turbine blade according to the invention and
- FIG. 6
- a cross section through the trailing edge of a turbine blade according to the invention.
Eine die Erfindung betreffende Gasturbinenschaufel 10 ist in
In
Bei der Verwendung der Turbinenschaufel 10 in einer Gasturbine wird während des Betriebes der Hohlraum 38 von einem Kühlmittel, vorzugsweise Kühlluft 40, durchströmt. In der Regel ist der in
Die während der Durchströmung des Sockelfeldes entstehenden Turbulenzen im Kühlmittel 40 erhöhen den Wärmeübergang von den Seitenwänden 22, 24 des Schaufelblatts 16 in die Kühlluft, so dass eine vergleichweise effiziente Abführung von Wärme erreicht werden kann. Um eine weiter gesteigerte Übertragung von Wärme aus den Seitenwänden 22, 24 in die Kühlluft 40 zu erreichen, ohne die Menge an benötigter Kühlluft 40 weiter zu erhöhen, werden mit der Erfindung gemäß
Die Sichelform der Turbulenzelemente 42 kann dabei, wie in
Durch die Positionierung von erfindungsgemäßen Turbulenzelementen 42 stromauf der Stege 30, im Innern der Turbinenschaufel 10, ist es möglich, eine Breite d (
Gemäß
Durch die Verwendung des Gusskerns 110 in einer Gießvorrichtung kann mit diesem eine erfindungsgemäße Turbinenschaufel hergestellt werden, wobei der vom Gusskern 110 eingenommen Platz nach Herstellung der gegossenen Turbinenschaufel als Hohlraum in der Turbinenschaufel verbleibt. Die im Gusskern 110 vorhandenen Öffnungen 130, 142 werden beim Gießen der Turbinenschaufel 10 von Gussmaterial ausgefüllt und verbleiben somit nachher als strukturelle Elemente, namentlich als Stege 30 und Turbulenzelemente 42, in der Turbinenschaufel.By using the
Ingesamt weist ein erfindungsgemäßer Gusskerns 110 eine komplementäre Kontur zum erfindungsgemäßen Inneren der Turbinenschaufel auf.Overall, a
Die Erfindung kann sowohl in einer Laufschaufel als auch in einer Leitschaufel verwendet werden.The invention can be used in both a blade and a vane.
Insgesamt wird mit der Erfindung eine Turbinenschaufel mit einer teilweise neuen inneren Struktur vorgeschlagen. Die neuen Elemente sind stromauf der an der Hinterkante 20 des Schaufelblattes 16 der Turbinenschaufel angeordneten Stege 30 angeordnet. Die Struktur beinhaltet eine in einer Reihe angeordneten Turbulenzelemente 42, die eine von einem Kühlmittel 40 anströmbaren Anströmseite 44 aufweist, welche erfindungsgemäß zumindest teilweise konkav gekrümmt ist. Vorzugsweise sind die Turbulenzelemente 42 sichelförmig ausgebildet. Diese aerodynamisch besonders ungünstige Form der Turbulenzelemente 42 ruft einen erhöhten Druckverlust hervor, was die Durchströmung mit Kühlmittel erschwert. Dies ermöglicht, die Breite d der Öffnungen 28 (vgl.
Claims (13)
dadurch gekennzeichnet, dass
zumindest eines der Turbulenzelemente (42) - im Längsschnitt des Schaufelblatts (16) betrachtet - eine zumindest teilweise konkav gewölbte Anströmseite (44) aufweist.Turbine blade for a gas turbine, with a hollow, by a hot gas flow around the airfoil (16), at the trailing edge (20) distributed a plurality of openings (28) for blowing a turbine blade cooling the coolant (40) are separated by interposed webs (30) wherein inside the blade (16) at least one with a plurality of openings (28) fluidly connected cavity (38) is provided in the upstream of the webs (30) a plurality of turbulence elements (42) are provided, each one of the incoming there coolant flow have facing inflow side (44),
characterized in that
at least one of the turbulence elements (42) - viewed in longitudinal section of the airfoil (16) - an at least partially concave curved inflow side (44).
sich die Turbulenzelemente (42) jeweils von einer der beiden Innenflächen (34, 48) bis zur anderen Innenfläche (34, 48) erstrecken.A turbine blade according to any one of the preceding claims wherein the airfoil (16) comprises a suction sidewall (22) and a pressure sidewall (24), their respective inner surfaces (34, 48) facing the cavity (38) and towards the openings (28) laterally delimiting channels (41) between the webs (30), wherein
the turbulence elements (42) each extend from one of the two inner surfaces (34, 48) to the other inner surface (34, 48).
mittels denen in der gegossenen Turbinenschaufel Turbulenzelemente (42) verbleiben,
zumindest eine der zweiten Öffnungen (142) zur Bildung von korrespondierend geformten Turbulenzelementen (42) in der Turbinenschaufel (10) zumindest teilweise konkav geformt ist, wobei der konkave Teil der Öffnung (130, 142) der Gusskernhinterkante (120) abgewandt ist.A casting core (110) for use in a casting apparatus for producing a cast turbine blade according to the preamble of claim 1 for leaving a cavity (38) in the turbine blade permeable by a coolant (40) after removal thereof from the cast turbine blade;
by means of which turbulence elements (42) remain in the cast turbine blade,
at least one of the second openings (142) is at least partially concave-shaped to form correspondingly shaped turbulence elements (42) in the turbine blade (10), the concave portion of the opening (130, 142) facing away from the casting core trailing edge (120).
mit welchem eine Turbinenschaufel nach einem der Ansprüche 1 bis 11 herstellbar ist.Cast core (110) according to claim 12,
with which a turbine blade according to one of claims 1 to 11 can be produced.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08012518A EP2143883A1 (en) | 2008-07-10 | 2008-07-10 | Turbine blade and corresponding casting core |
US13/002,986 US20110176930A1 (en) | 2008-07-10 | 2009-05-19 | Turbine vane for a gas turbine and casting core for the production of such |
PCT/EP2009/056074 WO2010003725A1 (en) | 2008-07-10 | 2009-05-19 | Turbine vane for a gas turbine and casting core for the production of such |
EP09793895A EP2304185B1 (en) | 2008-07-10 | 2009-05-19 | Turbine vane for a gas turbine and casting core for the production of such |
JP2011517050A JP5080688B2 (en) | 2008-07-10 | 2009-05-19 | Turbine blades or vanes for gas turbines and molded cores for the manufacture of the interior |
PL09793895T PL2304185T3 (en) | 2008-07-10 | 2009-05-19 | Turbine vane for a gas turbine and casting core for the production of such |
CN200980126714.4A CN102089498B (en) | 2008-07-10 | 2009-05-19 | Turbine vane for a gas turbine and casting core for the production of such |
AT09793895T ATE549488T1 (en) | 2008-07-10 | 2009-05-19 | TURBINE BLADE FOR A GAS TURBINE AND CAST CORE FOR PRODUCING SUCH |
ES09793895T ES2381821T3 (en) | 2008-07-10 | 2009-05-19 | Turbine blade for a gas turbine and molten core for manufacturing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08012518A EP2143883A1 (en) | 2008-07-10 | 2008-07-10 | Turbine blade and corresponding casting core |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2143883A1 true EP2143883A1 (en) | 2010-01-13 |
Family
ID=39714166
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08012518A Withdrawn EP2143883A1 (en) | 2008-07-10 | 2008-07-10 | Turbine blade and corresponding casting core |
EP09793895A Not-in-force EP2304185B1 (en) | 2008-07-10 | 2009-05-19 | Turbine vane for a gas turbine and casting core for the production of such |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09793895A Not-in-force EP2304185B1 (en) | 2008-07-10 | 2009-05-19 | Turbine vane for a gas turbine and casting core for the production of such |
Country Status (8)
Country | Link |
---|---|
US (1) | US20110176930A1 (en) |
EP (2) | EP2143883A1 (en) |
JP (1) | JP5080688B2 (en) |
CN (1) | CN102089498B (en) |
AT (1) | ATE549488T1 (en) |
ES (1) | ES2381821T3 (en) |
PL (1) | PL2304185T3 (en) |
WO (1) | WO2010003725A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013076109A1 (en) * | 2011-11-21 | 2013-05-30 | Siemens Aktiengesellschaft | Coolable hot-gas component for a gas turbine |
EP2578803A3 (en) * | 2011-10-07 | 2014-05-07 | General Electric Company | Methods and systems for use in regulating a temperature of components |
EP2832955A1 (en) * | 2013-07-29 | 2015-02-04 | Siemens Aktiengesellschaft | Turbine blade with curved cylindrical cooling bodies |
EP2828514A4 (en) * | 2012-03-20 | 2015-11-11 | United Technologies Corp | Trailing edge cooling |
EP2468433A3 (en) * | 2010-12-22 | 2017-05-17 | United Technologies Corporation | Drill to flow mini core |
WO2018136042A1 (en) * | 2017-01-18 | 2018-07-26 | Siemens Aktiengesellschaft | Turbine element |
CN111406147A (en) * | 2017-11-29 | 2020-07-10 | 西门子股份公司 | Internally cooled turbomachine component |
CN112943379A (en) * | 2021-02-04 | 2021-06-11 | 大连理工大学 | Turbine blade separation transverse rotation re-intersection type cooling structure |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8790083B1 (en) * | 2009-11-17 | 2014-07-29 | Florida Turbine Technologies, Inc. | Turbine airfoil with trailing edge cooling |
US20130052036A1 (en) * | 2011-08-30 | 2013-02-28 | General Electric Company | Pin-fin array |
FR2989608B1 (en) * | 2012-04-24 | 2015-01-30 | Snecma | METHOD FOR MACHINING THE LEFT EDGE OF A TURBOMACHINE BLADE |
EP3731075A1 (en) | 2012-05-11 | 2020-10-28 | Samsung Electronics Co., Ltd. | Multiple display window providing apparatus and method |
KR101392610B1 (en) | 2012-08-07 | 2014-05-08 | 엘지전자 주식회사 | Fan |
EP2971543B1 (en) * | 2013-03-15 | 2020-08-19 | United Technologies Corporation | Gas turbine engine component having shaped pedestals |
US10525525B2 (en) * | 2013-07-19 | 2020-01-07 | United Technologies Corporation | Additively manufactured core |
US9551229B2 (en) | 2013-12-26 | 2017-01-24 | Siemens Aktiengesellschaft | Turbine airfoil with an internal cooling system having trip strips with reduced pressure drop |
WO2017082907A1 (en) * | 2015-11-12 | 2017-05-18 | Siemens Aktiengesellschaft | Turbine airfoil with a cooled trailing edge |
WO2017095438A1 (en) * | 2015-12-04 | 2017-06-08 | Siemens Aktiengesellschaft | Turbine airfoil with biased trailing edge cooling arrangement |
US11193378B2 (en) | 2016-03-22 | 2021-12-07 | Siemens Energy Global GmbH & Co. KG | Turbine airfoil with trailing edge framing features |
GB2559177A (en) * | 2017-01-30 | 2018-08-01 | Rolls Royce Plc | A component for a gas turbine engine |
CN110809665B (en) * | 2017-06-30 | 2022-04-26 | 西门子能源全球两合公司 | Turbine airfoil and casting core with trailing edge features |
FR3096074B1 (en) * | 2019-05-17 | 2021-06-11 | Safran Aircraft Engines | Trailing edge turbomachine blade with improved cooling |
CN111022127B (en) * | 2019-11-29 | 2021-12-03 | 大连理工大学 | Turbine blade trailing edge curved exhaust split structure |
CN113358336B (en) * | 2021-04-25 | 2024-01-26 | 西北工业大学 | Laminate cooling structure test simulation piece, design method thereof and fatigue test device |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527554A1 (en) * | 1991-07-04 | 1993-02-17 | Hitachi, Ltd. | Turbine blade with internal cooling passage |
US5246341A (en) * | 1992-07-06 | 1993-09-21 | United Technologies Corporation | Turbine blade trailing edge cooling construction |
EP0661414A1 (en) * | 1993-12-28 | 1995-07-05 | Kabushiki Kaisha Toshiba | A cooled turbine blade for a gas turbine |
GB2349920A (en) * | 1999-05-10 | 2000-11-15 | Abb Alstom Power Ch Ag | Cooling arrangement for turbine blade |
US6183194B1 (en) * | 1996-09-26 | 2001-02-06 | General Electric Co. | Cooling circuits for trailing edge cavities in airfoils |
EP1091092A2 (en) * | 1999-10-05 | 2001-04-11 | United Technologies Corporation | Method and apparatus for cooling a wall within a gas turbine engine |
WO2001031171A1 (en) * | 1999-10-22 | 2001-05-03 | Pratt & Whitney Canada Corp. | Cast airfoil structure with openings which do not require plugging |
US20020062945A1 (en) * | 1997-09-30 | 2002-05-30 | Rainer Hocker | Wall part acted upon by an impingement flow |
US6554571B1 (en) * | 2001-11-29 | 2003-04-29 | General Electric Company | Curved turbulator configuration for airfoils and method and electrode for machining the configuration |
WO2003042503A1 (en) | 2001-11-14 | 2003-05-22 | Honeywell International Inc. | Internal cooled gas turbine vane or blade |
DE10316974A1 (en) * | 2002-05-16 | 2003-11-27 | Alstom Switzerland Ltd | Coolable blade for a turbine has a footing of blades and a blade area as well as walls on the delivery side and the induction side |
EP1607577A2 (en) * | 2004-06-17 | 2005-12-21 | United Technologies Corporation | Turbine engine blades with drillable film cooling holes |
US20060099073A1 (en) * | 2004-11-05 | 2006-05-11 | Toufik Djeridane | Aspherical dimples for heat transfer surfaces and method |
US20060239820A1 (en) * | 2005-04-04 | 2006-10-26 | Nobuaki Kizuka | Member having internal cooling passage |
EP1840330A2 (en) * | 2006-03-24 | 2007-10-03 | United Technologies Corporation | Turbulator arrangement for passageways |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4775296A (en) * | 1981-12-28 | 1988-10-04 | United Technologies Corporation | Coolable airfoil for a rotary machine |
US4474532A (en) * | 1981-12-28 | 1984-10-02 | United Technologies Corporation | Coolable airfoil for a rotary machine |
JPH0833099B2 (en) * | 1989-02-27 | 1996-03-29 | 株式会社次世代航空機基盤技術研究所 | Turbine blade structure |
US6254334B1 (en) * | 1999-10-05 | 2001-07-03 | United Technologies Corporation | Method and apparatus for cooling a wall within a gas turbine engine |
EP1456505A1 (en) * | 2001-12-10 | 2004-09-15 | ALSTOM Technology Ltd | Thermally loaded component |
US7014424B2 (en) * | 2003-04-08 | 2006-03-21 | United Technologies Corporation | Turbine element |
US7125225B2 (en) * | 2004-02-04 | 2006-10-24 | United Technologies Corporation | Cooled rotor blade with vibration damping device |
US7575414B2 (en) * | 2005-04-01 | 2009-08-18 | General Electric Company | Turbine nozzle with trailing edge convection and film cooling |
JP4872410B2 (en) * | 2005-04-04 | 2012-02-08 | 株式会社日立製作所 | Member having cooling passage inside and cooling method thereof |
US8177492B2 (en) * | 2008-03-04 | 2012-05-15 | United Technologies Corporation | Passage obstruction for improved inlet coolant filling |
US8506252B1 (en) * | 2010-10-21 | 2013-08-13 | Florida Turbine Technologies, Inc. | Turbine blade with multiple impingement cooling |
US8668453B2 (en) * | 2011-02-15 | 2014-03-11 | Siemens Energy, Inc. | Cooling system having reduced mass pin fins for components in a gas turbine engine |
-
2008
- 2008-07-10 EP EP08012518A patent/EP2143883A1/en not_active Withdrawn
-
2009
- 2009-05-19 CN CN200980126714.4A patent/CN102089498B/en not_active Expired - Fee Related
- 2009-05-19 US US13/002,986 patent/US20110176930A1/en not_active Abandoned
- 2009-05-19 AT AT09793895T patent/ATE549488T1/en active
- 2009-05-19 JP JP2011517050A patent/JP5080688B2/en not_active Expired - Fee Related
- 2009-05-19 PL PL09793895T patent/PL2304185T3/en unknown
- 2009-05-19 ES ES09793895T patent/ES2381821T3/en active Active
- 2009-05-19 WO PCT/EP2009/056074 patent/WO2010003725A1/en active Application Filing
- 2009-05-19 EP EP09793895A patent/EP2304185B1/en not_active Not-in-force
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527554A1 (en) * | 1991-07-04 | 1993-02-17 | Hitachi, Ltd. | Turbine blade with internal cooling passage |
US5246341A (en) * | 1992-07-06 | 1993-09-21 | United Technologies Corporation | Turbine blade trailing edge cooling construction |
EP0661414A1 (en) * | 1993-12-28 | 1995-07-05 | Kabushiki Kaisha Toshiba | A cooled turbine blade for a gas turbine |
US6183194B1 (en) * | 1996-09-26 | 2001-02-06 | General Electric Co. | Cooling circuits for trailing edge cavities in airfoils |
US20020062945A1 (en) * | 1997-09-30 | 2002-05-30 | Rainer Hocker | Wall part acted upon by an impingement flow |
GB2349920A (en) * | 1999-05-10 | 2000-11-15 | Abb Alstom Power Ch Ag | Cooling arrangement for turbine blade |
EP1091092A2 (en) * | 1999-10-05 | 2001-04-11 | United Technologies Corporation | Method and apparatus for cooling a wall within a gas turbine engine |
WO2001031171A1 (en) * | 1999-10-22 | 2001-05-03 | Pratt & Whitney Canada Corp. | Cast airfoil structure with openings which do not require plugging |
WO2003042503A1 (en) | 2001-11-14 | 2003-05-22 | Honeywell International Inc. | Internal cooled gas turbine vane or blade |
US6554571B1 (en) * | 2001-11-29 | 2003-04-29 | General Electric Company | Curved turbulator configuration for airfoils and method and electrode for machining the configuration |
DE10316974A1 (en) * | 2002-05-16 | 2003-11-27 | Alstom Switzerland Ltd | Coolable blade for a turbine has a footing of blades and a blade area as well as walls on the delivery side and the induction side |
EP1607577A2 (en) * | 2004-06-17 | 2005-12-21 | United Technologies Corporation | Turbine engine blades with drillable film cooling holes |
US20060099073A1 (en) * | 2004-11-05 | 2006-05-11 | Toufik Djeridane | Aspherical dimples for heat transfer surfaces and method |
US20060239820A1 (en) * | 2005-04-04 | 2006-10-26 | Nobuaki Kizuka | Member having internal cooling passage |
EP1840330A2 (en) * | 2006-03-24 | 2007-10-03 | United Technologies Corporation | Turbulator arrangement for passageways |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9995145B2 (en) | 2010-12-22 | 2018-06-12 | United Technologies Corporation | Drill to flow mini core |
EP2468433A3 (en) * | 2010-12-22 | 2017-05-17 | United Technologies Corporation | Drill to flow mini core |
EP2578803A3 (en) * | 2011-10-07 | 2014-05-07 | General Electric Company | Methods and systems for use in regulating a temperature of components |
US8840371B2 (en) | 2011-10-07 | 2014-09-23 | General Electric Company | Methods and systems for use in regulating a temperature of components |
WO2013076109A1 (en) * | 2011-11-21 | 2013-05-30 | Siemens Aktiengesellschaft | Coolable hot-gas component for a gas turbine |
EP2602439A1 (en) * | 2011-11-21 | 2013-06-12 | Siemens Aktiengesellschaft | Coolable hot gas component for a gas turbine |
US9366144B2 (en) | 2012-03-20 | 2016-06-14 | United Technologies Corporation | Trailing edge cooling |
EP2828514A4 (en) * | 2012-03-20 | 2015-11-11 | United Technologies Corp | Trailing edge cooling |
EP2832955A1 (en) * | 2013-07-29 | 2015-02-04 | Siemens Aktiengesellschaft | Turbine blade with curved cylindrical cooling bodies |
WO2018136042A1 (en) * | 2017-01-18 | 2018-07-26 | Siemens Aktiengesellschaft | Turbine element |
CN111406147A (en) * | 2017-11-29 | 2020-07-10 | 西门子股份公司 | Internally cooled turbomachine component |
CN112943379A (en) * | 2021-02-04 | 2021-06-11 | 大连理工大学 | Turbine blade separation transverse rotation re-intersection type cooling structure |
CN112943379B (en) * | 2021-02-04 | 2022-07-01 | 大连理工大学 | Turbine blade separation transverse rotation re-intersection type cooling structure |
Also Published As
Publication number | Publication date |
---|---|
US20110176930A1 (en) | 2011-07-21 |
ES2381821T3 (en) | 2012-05-31 |
EP2304185A1 (en) | 2011-04-06 |
CN102089498B (en) | 2014-01-01 |
PL2304185T3 (en) | 2012-08-31 |
EP2304185B1 (en) | 2012-03-14 |
CN102089498A (en) | 2011-06-08 |
JP5080688B2 (en) | 2012-11-21 |
JP2011527398A (en) | 2011-10-27 |
WO2010003725A1 (en) | 2010-01-14 |
ATE549488T1 (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2304185B1 (en) | Turbine vane for a gas turbine and casting core for the production of such | |
EP2611990B1 (en) | Turbine blade for a gas turbine | |
EP1223308B1 (en) | Turbomachine component | |
EP1113145B1 (en) | Blade for gas turbines with metering section at the trailing edge | |
DE69823236T2 (en) | DEVICE FOR COOLING GAS TURBINE SHOVELS AND METHOD FOR THE PRODUCTION THEREOF | |
DE60015233T2 (en) | Turbine blade with internal cooling | |
DE602005000350T2 (en) | Turbine stator blade with improved cooling | |
DE60017166T2 (en) | GUN CORE FOR AN INNER COOLED TURBINE BLADE WHICH DOES NOT HAVE TO BE FASTENED TO FOOD OPENING | |
EP1267039A1 (en) | Cooling configuration for an airfoil trailing edge | |
CH697919A2 (en) | Turbine blade having a concave cooling passage and arranged therein opposite swirling currents causing turbulators. | |
EP2696031B1 (en) | Blade for a flow machine engine and corresponding flow machine engine. | |
EP3658751B1 (en) | Blade for a turbine blade | |
CH705185A1 (en) | Blade for a gas turbine and processes for manufacturing such a blade. | |
EP2489837A1 (en) | Metering insert for turbine blade and corresponding turbine blade | |
EP2163726A1 (en) | Turbine blade with a modular, tiered trailing edge | |
EP1138878B1 (en) | Gas turbine component | |
WO2010121939A1 (en) | Casting apparatus for producing a turbine rotor blade of a gas turbine and turbine rotor blade | |
WO2018010918A1 (en) | Turbine vane having strut-shaped cooling fins | |
AT516150B1 (en) | CYLINDER HEAD OF AN INTERNAL COMBUSTION ENGINE | |
EP2918780A1 (en) | Impact cooled component for a gas turbine | |
DE102013221227A1 (en) | Device for cooling a wall of a component | |
WO2010086402A2 (en) | Method for producing a component of a gas turbine | |
EP2196625A1 (en) | Turbine blade with a hole extending through a partition wall and corresponding casting core | |
EP3832069A1 (en) | Turbine blade for a stationary gas turbine | |
EP3199760A1 (en) | Turbine blade with a throttle element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
AKY | No designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100714 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |