EP2898186B1 - Process gas compressor/gas turbine section - Google Patents

Process gas compressor/gas turbine section Download PDF

Info

Publication number
EP2898186B1
EP2898186B1 EP13771434.1A EP13771434A EP2898186B1 EP 2898186 B1 EP2898186 B1 EP 2898186B1 EP 13771434 A EP13771434 A EP 13771434A EP 2898186 B1 EP2898186 B1 EP 2898186B1
Authority
EP
European Patent Office
Prior art keywords
gas
seal
leakage
compressor
process gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13771434.1A
Other languages
German (de)
French (fr)
Other versions
EP2898186A1 (en
Inventor
Henk Blekkenhorst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2898186A1 publication Critical patent/EP2898186A1/en
Application granted granted Critical
Publication of EP2898186B1 publication Critical patent/EP2898186B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • F01D11/06Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/122Shaft sealings using sealing-rings especially adapted for elastic fluid pumps
    • F04D29/124Shaft sealings using sealing-rings especially adapted for elastic fluid pumps with special means for adducting cooling or sealing fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/602Drainage
    • F05D2260/6022Drainage of leakage having past a seal

Definitions

  • the invention relates to a process gas compressor gas turbine train in which the process gas compressor is intended to compress combustible process gas.
  • a process gas compressor has a housing and a rotor housed in the housing.
  • the rotor has a shaft which is mounted at its longitudinal ends outside of the housing.
  • the shaft occurs at its longitudinal ends through the housing, where the shaft is sealed against the housing with a shaft seal.
  • the construction of the shaft seal is conventionally such that, viewed from the inside of the process gas compressor, first a gas separation and then an oil separation are arranged.
  • the inside of the process gas compressor, the process side is separated from the storage area by means of the shaft seal from the atmosphere and the oil separation.
  • the shaft seal is designed for example as a gas-lubricated mechanical seal, which is designed as a tandem seal.
  • the tandem seal is constructed of two gas-lubricated mechanical seals, each having a seal ring secured to the housing and a mating ring secured to the shaft. Each slip ring is arranged axially adjacent to its associated counter ring to form an axial gap.
  • the rings are arranged in the tandem seal such that from the primary seal the process side is sealed against torch pressure. With the secondary seal separation against the atmosphere is accomplished, the secondary seal is also provided as a redundancy to the primary seal in case of failure of the primary seal. Between the two mating rings sealing gas is introduced, which is used to lock the axial gaps.
  • To separate the storage area is called the oil separation
  • a tertiary seal which may be embodied for example as a labyrinth seal or Kohleringdichtung. The tertiary seal is loaded with a sealing gas, whereby its blocking is accomplished.
  • process gas can be used and for the secondary seal, air or nitrogen can be used.
  • air or nitrogen can be used.
  • a leakage gas accumulates due to leakage of the primary seal and the secondary seal.
  • the leakage gas is a gas mixture of the process gas and the barrier gases with air, wherein the leakage gas is conventionally discharged to the atmosphere or to a torch.
  • the object of the invention is to provide a process gas compressor gas turbine train, which has a low emission burden.
  • the process gas compressor gas turbine engine has a process gas compressor and a gas turbine which, for driving the process gas compressor, is coupled to its shaft is, wherein the process gas compressor is arranged for compressing combustible process gas and for sealing the process gas compressor interior against the atmosphere is equipped with a shaft seal which is equipped with a sealing gas of a well seal, which is lockable with a sealing gas and having at least one leakage gas line, with the leakage gas is deductible from the shaft seal and which is connected to the air inlet of the gas turbine, so that during operation of the process gas compressor gas turbine train, the leakage gas is feasible together with inlet air at the air inlet into the gas turbine.
  • the process gas compressor gas turbine train is set up such that the leakage gas is supplied to the air inlet of the gas turbine.
  • the leakage gas mixes with the inlet air of the gas turbine and enters the compressor of the gas turbine.
  • the air leakage mixture is compressed and fed to the combustion chamber of the gas turbine.
  • the flame formed in the combustion chamber comes into contact with the leakage gas, so that the process gas content in the leakage gas in the combustion chamber is burned.
  • the proportion of process gas in the leakage gas in the combustion chamber is utilized thermally, which contributes to the drive power of the gas turbine.
  • the leakage gas does not need to be supplied to a torch or the atmosphere, thereby reducing the emission load of the environment.
  • the shaft seal on a process-side primary seal and an atmosphere-side secondary seal, wherein each of the primary seal and the secondary seal having one of the leakage lines.
  • the leakage line for the secondary seal preferably has an atmosphere line and a switching device, which is set up such that in normal operation of the shaft seal, the atmosphere line to the secondary seal for discharging leakage gas from the secondary seal to the atmosphere is fluidly connected and in case of failure of the sealing effect of the secondary seal the Leakage line to the secondary seal for discharging leakage gas from the secondary seal is connected to the air inlet fluid-conducting.
  • the switching device has a diaphragm in the atmosphere line and a rupture disk in the leakage line between the connection of the atmosphere line to the leakage line and the air inlet.
  • the switching organ a three-way valve is located at the connection of the atmosphere line to the leakage line.
  • the shaft seal is preferably a gas-lubricated mechanical seal. It is preferred that the gas-lubricated mechanical seal is designed in tandem. In addition, it is preferable that the process gas compressor is a pipelined compressor.
  • a compressor gas turbine train 1 has a process gas compressor 2 in turbo-compressor design and a gas turbine 3.
  • the process gas compressor is, for example, a pipeline compressor for compressing natural gas.
  • the gas turbine 3 has a compressor 5 for compressing inlet air, a turbine 5 for obtaining shaft power and a combustion chamber 6. Furthermore, the gas turbine 3 at the compressor inlet to an air inlet 7, via the ambient air to the compressor 4 is performed. Exhaust gas is removed from the turbine 5 via an exhaust gas outlet 8.
  • the turbine 5 further has a shaft 9, which is coupled by means of a coupling 10 with the shaft of the process gas compressor 2 and thereby drives the process gas compressor 2.
  • the shaft of the process gas compressor 2 is supported by bearings 11 on both sides.
  • shaft seals 12 are provided on the shaft, which are designed as gas-lubricated mechanical seals in tandem design are.
  • the shaft seals 12 each have a primary seal 13, a secondary seal 14 and a tertiary seal 15.
  • the primary seal 13 seals against the process side of the process gas compressor 2, whereas the tertiary seal 15 seals against the bearing 11.
  • the secondary seal 14 is disposed between the primary seal 13 and the tertiary seal 15 and is provided to support and secure the primary seal 13.
  • the process pressure is only applied to the secondary seal 14 and not to the tertiary seal 15, which is conventionally formed by Kohler rings and thus would not be able to withstand the process pressure due to the design.
  • it is prevented with the secondary seal 14, that the process gas in case of failure of the primary seal 13 in the camp 11 and thus can reach the atmosphere.
  • the shaft seal further includes a process gas barrier line 16 and a barrier gas line 17 (the barrier gas line differs from the process gas line due to the barrier gas, which need not be a process gas, preferably not a process gas).
  • the barrier gas line may be basically operated with various gases, with inert gas (e.g., nitrogen) being preferred in some applications.
  • process gas is at a pressure which is slightly higher than the process pressure applied to the process side.
  • barrier gas line 17 is sealing gas - possibly inert gas - at a pressure which is higher than the atmospheric pressure.
  • the process gas barrier line 16 is guided to the primary seal 13, so that with the process gas, the primary seal 13 is blocked.
  • the sealing gas line 17 is guided to the tertiary seal 15, so that the tertiary seal 15 is blocked with the sealing gas.
  • a primary leakage line 18 is provided, with which a leakage of the primary seal 13 is discharged from the shaft seal 12.
  • a secondary leakage line 19 is provided between the tertiary seal 15 and the secondary seal 14. With a leakage of the secondary seal 14 and the tertiary seal 15 is discharged from the shaft seal 12. Because the secondary seal is acted upon by process gas from the primary seal 13, the leakage of the secondary seal 14 consists of process gas. In an analogous manner, the leakage of the tertiary seal 15 is made of inert gas.
  • the leakage collected by the secondary leakage line 19 is a mixture of process gas and inert gas.
  • the primary leakage lines 18 and the Secondary leakage lines 19 are led to the air inlet 7, so that the leakage flows in the primary leakage lines 18 and the secondary leakage lines 19 of the inlet air of the compressor 4 is supplied.
  • the leakage gas streams mix with the inlet air of the gas turbine 3 and enter the compressor 4.
  • the air leakage mixture is compressed and fed to the combustion chamber 6.
  • the flame formed in the combustion chamber 6 burns the proportion of process gas in the leakage gas.
  • the proportion of process gas in the leakage gas in the combustion chamber 6 is utilized thermally, which contributes to the drive power of the gas turbine 3.
  • a shaft seal monitoring system 26 monitors and controls the operation of the shaft seals 12, wherein the operating conditions may correspond to a design operating state or an off-design operating state. Furthermore, the operation of the gas turbine 3 is monitored and controlled by a gas turbine monitoring system 27.
  • the gas turbine monitoring system 27 preferably has a gas analyzer with which the composition of the air at the air inlet 7 can be measured. Basically, a gas analysis is not required, because based on the turbine load and the leakage at the shaft seals the shaft seal monitoring system 26 detects whether the leak is still safe or not - as described below.
  • the primary leakage lines 18 and the secondary leakage lines 19 are connected to a torch 20 via a valve 22.
  • the option is created that the leakage currents in the primary leakage lines 18 and the secondary leakage lines 19 are not supplied to the air inlet 7, but the torch 22 by actuation of the valve 22.
  • the process gas portion of the leakage flows is burned and the resulting combustion products emitted into the atmosphere.
  • the derivation of the leakage gas streams to the torch 20 is necessary, for example, if an inflammable mixture would form in the compressor 4 due to the introduction of the process gas leak into the air inlet 7. This is essential to avoid, since in this case there is the danger of the flame from passing through the combustion chamber 6 through the compressor 4.
  • the gas analyzer is provided at the air inlet 7, with which the risk of ignition in the air inlet 7 and in the compressor 4 can be measured. If the gas analyzer determines that there is an inadmissibly high risk of ignition during operation of the compressor gas turbine train 1, then the valve 22 is actuated by the gas turbine monitoring system 27, whereby the leakage flows instead of into the air inlet 7 are conducted to the torch 20.
  • the secondary leakage lines 19 are additionally connected to a chimney 21 via a valve 25 as a switching device, through which the leakage gas flows in the secondary leakage lines 19 can be discharged to the atmosphere.
  • a further valve 24 is installed as a further switching element in the secondary leakage line 19.
  • an additional valve 23 is installed between the integration of the torch 20 in the primary leakage line 18 and the air inlet 7.
  • valves 22 to 25 are driven, so that leaks in the Primary leakage line 18 and the secondary leakage line 19 can be fed to the currently prevailing operating state, the air inlet 7 can be supplied.
  • the valves 22 and 23 and the valves 24 and 25 may each be designed as a three-way valve.
  • the valve 24 could be designed as a rupture disc and the valve 25 as a diaphragm. Failure of the primary seal 13 and the secondary seal 14 fails the process pressure on the secondary leakage lines 19 through. By means of the diaphragm 25, a pressure reduction over the chimney 21 is prevented, so that the rupture disk 24 bursts. Thus, the secondary leakage lines 19 are connected to the air inlet, whereby the leakage gas flows in the secondary leakage lines 19 are not supplied via the chimney 21 but the air inlet 7 for thermal utilization.
  • the fuel-air ratio is typically 1:10.
  • the process gas leakage rate of the shaft seal is typically 5 to 10 kg / hour.
  • the power of the gas turbine 3 is typically 10 MW, wherein the process gas content in the air inlet flow is about 0.05%.
  • the process gas compressor gas turbine train 1 is turned off when the leakage rate of one of the shaft seals 12 is five times the normal operating state. In this case, the proportion of process gas in the air inlet flow is approx. 0.5%. For safety reasons, the process gas content in the air inlet flow is monitored with the gas analyzer.

Description

Die Erfindung betrifft einen Prozessgasverdichter-Gasturbinenstrang, bei dem der Prozessgasverdichter vorgesehen ist brennbares Prozessgas zu verdichten.The invention relates to a process gas compressor gas turbine train in which the process gas compressor is intended to compress combustible process gas.

Ein Prozessgasverdichter weist ein Gehäuse und einen Rotor auf, der in dem Gehäuse untergebracht ist. Der Rotor weist eine Welle auf, die an ihren Längsenden außerhalb des Gehäuses gelagert ist. Dadurch tritt die Welle an ihren Längsenden durch das Gehäuse, wobei dort die Welle gegen das Gehäuse mit einer Wellendichtung abgedichtet ist. Somit ist die Innenseite des Prozessgasverdichters von der Atmosphäre getrennt. Der Aufbau der Wellendichtung ist herkömmlich derart, dass von der Innenseite des Prozessgasverdichters her betrachtet zuerst eine Gastrennung und dann eine Öltrennung angeordnet sind. Die Innenseite des Prozessgasverdichters, die Prozessseite, wird mittels der Wellendichtung von der Atmosphäre und der Öltrennung vom Lagerbereich getrennt. Die Wellendichtung ist beispielsweise als eine gasgeschmierte Gleitringdichtung ausgeführt, die als eine Tandemdichtung ausgebildet ist.A process gas compressor has a housing and a rotor housed in the housing. The rotor has a shaft which is mounted at its longitudinal ends outside of the housing. As a result, the shaft occurs at its longitudinal ends through the housing, where the shaft is sealed against the housing with a shaft seal. Thus, the inside of the process gas compressor is separated from the atmosphere. The construction of the shaft seal is conventionally such that, viewed from the inside of the process gas compressor, first a gas separation and then an oil separation are arranged. The inside of the process gas compressor, the process side, is separated from the storage area by means of the shaft seal from the atmosphere and the oil separation. The shaft seal is designed for example as a gas-lubricated mechanical seal, which is designed as a tandem seal.

Die Tandemdichtung ist aus zwei gasgeschmierten Gleitringdichtungen aufgebaut, die jeweils einen Gleitring, der an dem Gehäuse befestigt ist, und einen Gegenring aufweisen, der an der Welle befestigt ist. Jeder Gleitring ist seinem zugeordneten Gegenring unter Ausbilden eines Axialspalts axial unmittelbar benachbart angeordnet. Die Ringe sind in der Tandemdichtung derart angeordnet, dass von der Primärdichtung die Prozessseite gegen einen Fackeldruck, abgedichtet ist. Mit der Sekundärdichtung wird die Abtrennung gegen die Atmosphäre bewerkstelligt, wobei die Sekundärdichtung zusätzlich als Redundanz zur Primärdichtung bei Versagen der Primärdichtung vorgesehen ist. Zwischen den beiden Gegenringen wird Sperrgas eingebracht, das zum Sperren der Axialspalte verwendet wird. Um den Lagerbereich abzutrennen, ist als die Öltrennung beispielsweise eine Tertiärdichtung vorgesehen, die beispielsweise als eine Labyrinthdichtung oder eine Kohleringdichtung ausgeführt sein kann. Die Tertiärdichtung ist mit einem Sperrgas beaufschlagt, wodurch ihre Sperrung bewerkstelligt wird.The tandem seal is constructed of two gas-lubricated mechanical seals, each having a seal ring secured to the housing and a mating ring secured to the shaft. Each slip ring is arranged axially adjacent to its associated counter ring to form an axial gap. The rings are arranged in the tandem seal such that from the primary seal the process side is sealed against torch pressure. With the secondary seal separation against the atmosphere is accomplished, the secondary seal is also provided as a redundancy to the primary seal in case of failure of the primary seal. Between the two mating rings sealing gas is introduced, which is used to lock the axial gaps. To separate the storage area is called the oil separation For example, provided a tertiary seal, which may be embodied for example as a labyrinth seal or Kohleringdichtung. The tertiary seal is loaded with a sealing gas, whereby its blocking is accomplished.

Aus der DE 42 39 586 C1 ist bereits ein gattüngsgemäßer Prozessgasverdichter-Gasturbinenstrang mit einer Abdichtung einer Rotorwelle gegenüber einem Gehäuse einer in einer Produktgasleitung arbeitenden Turbomaschine, mit einer Trockengasdichtung zwischen der Rotorwelle und dem Gehäuse bekannt.From the DE 42 39 586 C1 is already a gattüngsgemäßer process gas compressor gas turbine train with a seal of a rotor shaft relative to a housing of a working in a product gas line turbomachine, with a dry gas seal between the rotor shaft and the housing known.

Als das Sperrgas für die Primärdichtung kann Prozessgas und für die Sekundärdichtung kann Luft oder Stickstoff verwendet werden. Beim Betrieb des Prozessgasverdichters fällt aufgrund einer Leckage der Primärdichtung und der Sekundärdichtung ein Leckagegas an. Das Leckagegas ist ein Gasgemisch aus dem Prozessgas und dem Sperrgase mit Luft, wobei das Leckagegas herkömmlich an die Atmosphäre oder an eine Fackel abgeführt wird. Diese beiden Varianten sind für die Umwelt problematisch, das sie mit unerwünschten Emissionen an die Umgebung einhergehen. Abhilfe schafft zwar das Vorsehen einer Anlage zum Separieren des Prozessgases aus dem Leckagegas und zum Rückführen des Prozessgases in den Prozess, jedoch ist eine derartige Anlage energieintensiv und mit hohen Kosten verbunden.As the seal gas for the primary seal, process gas can be used and for the secondary seal, air or nitrogen can be used. During operation of the process gas compressor, a leakage gas accumulates due to leakage of the primary seal and the secondary seal. The leakage gas is a gas mixture of the process gas and the barrier gases with air, wherein the leakage gas is conventionally discharged to the atmosphere or to a torch. These two variants are problematic for the environment as they accompany undesirable emissions to the environment. Although remedying the provision of a system for separating the process gas from the leakage gas and for returning the process gas in the process, but such a system is energy-intensive and associated with high costs.

Aufgabe der Erfindung ist es, einen Prozessgasverdichter-Gasturbinenstrang zu schaffen, der eine geringe Emissionsbe-lastung hat.The object of the invention is to provide a process gas compressor gas turbine train, which has a low emission burden.

Die Aufgabe wird gelöst mit den Merkmalen des Patentanspruchs 1. Bevorzugte Ausgestaltungen dazu sind in den weiteren Patentansprüchen angegeben.The object is solved with the features of claim 1. Preferred embodiments thereof are given in the further claims.

Der erfindungsgemäße Prozessgasverdichter-Gasturbinenstrang weist einen Prozessgasverdichter und eine Gasturbine auf, die zum Antreiben des Prozessgasverdichters an dessen welle gekuppelt ist, wobei der Prozessgasverdichter zum Verdichtern von brennbarem Prözessgas eingerichtet ist und zum Abdichten des Prozessgasverdichterinnenraums gegen die Atmosphäre mit einer Wellendichtung ausgestattet ist, die mit einem Sperrgas einer welledichtung ausgestattet ist , die mit einem Sperrgas sperrbar ist und mindestens eine Leckagegasleitung aufweist, mit der Leckagegas von der Wellendichtung abführbar ist und die an den Lufteintritt der Gasturbine angeschlossen ist, so dass beim Betrieb des Prozessgasverdichter-Gasturbinenstrangs das Leckagegas zusammen mit Eintrittsluft am Lufteintritt in die Gasturbine führbar ist.The process gas compressor gas turbine engine according to the invention has a process gas compressor and a gas turbine which, for driving the process gas compressor, is coupled to its shaft is, wherein the process gas compressor is arranged for compressing combustible process gas and for sealing the process gas compressor interior against the atmosphere is equipped with a shaft seal which is equipped with a sealing gas of a well seal, which is lockable with a sealing gas and having at least one leakage gas line, with the leakage gas is deductible from the shaft seal and which is connected to the air inlet of the gas turbine, so that during operation of the process gas compressor gas turbine train, the leakage gas is feasible together with inlet air at the air inlet into the gas turbine.

Der Prozessgasverdichter-Gasturbinenstrang ist derart eingerichtet, dass das Leckagegas dem Lufteintritt der Gasturbine zugeführt wird. Dadurch vermischt sich das Leckagegas mit der Eintrittsluft der Gasturbine und tritt in den Verdichter der Gasturbine ein. In dem Verdichter wird das Luft-Leckagegemisch verdichtet und der Brennkammer der Gasturbine zugeführt. Die in der Brennkammer ausgebildete Flamme kommt mit dem Leckagegas in Kontakt, so dass der Prozessgasanteil in dem Leckagegas in der Brennkammer verbrannt wird. Dadurch wird der Prozessgasanteil in dem Leckagegas in der Brennkammer thermisch verwertet, wodurch zur Antriebsleistung der Gasturbine beigetragen wird. Außerdem braucht das Leckagegas nicht etwa einer Fackel oder der Atmosphäre zugeführt zu werden, wodurch die Emissionsbelastung der Umwelt reduziert wird.The process gas compressor gas turbine train is set up such that the leakage gas is supplied to the air inlet of the gas turbine. As a result, the leakage gas mixes with the inlet air of the gas turbine and enters the compressor of the gas turbine. In the compressor, the air leakage mixture is compressed and fed to the combustion chamber of the gas turbine. The flame formed in the combustion chamber comes into contact with the leakage gas, so that the process gas content in the leakage gas in the combustion chamber is burned. As a result, the proportion of process gas in the leakage gas in the combustion chamber is utilized thermally, which contributes to the drive power of the gas turbine. In addition, the leakage gas does not need to be supplied to a torch or the atmosphere, thereby reducing the emission load of the environment.

Bevorzugtermaßen weist die Wellendichtung eine prozessseitige Primärdichtung und eine atmosphärenseitige Sekundärdichtung auf, wobei jeweils die Primärdichtung und die Sekundärdichtung eine der Leckageleitungen aufweisen. Die Leckageleitung für die Sekundärdichtung weist bevorzugt eine Atmosphärenleitung und ein Umschaltorgan auf, das derart eingerichtet ist, dass im Normalbetrieb der Wellendichtung die Atmosphärenleitung an die Sekundärdichtung zum Abführen von Leckagegas von der Sekundärdichtung an die Atmosphäre fluidleitend geschaltet ist und bei Versagen der Dichtwirkung der Sekundärdichtung die Leckageleitung an die Sekundärdichtung zum Abführen von Leckagegas von der, Sekundärdichtung an den Lufteintritt fluidleitend geschaltet ist. Bevorzugt ist es, dass das Umschaltorgan eine Blende in der Atmosphärenleitung und eine Berstscheibe in der Leckageleitung zwischen der Anbindung der Atmosphärenleitung an die Leckageleitung und dem Lufteintritt aufweist. Alternativ bevorzugt ist es, dass das Umschaltorgan ein Dreiwegeventil ist, das an der Anbindung der Atmosphärenleitung an die Leckageleitung angeordnet ist.Preferably, the shaft seal on a process-side primary seal and an atmosphere-side secondary seal, wherein each of the primary seal and the secondary seal having one of the leakage lines. The leakage line for the secondary seal preferably has an atmosphere line and a switching device, which is set up such that in normal operation of the shaft seal, the atmosphere line to the secondary seal for discharging leakage gas from the secondary seal to the atmosphere is fluidly connected and in case of failure of the sealing effect of the secondary seal the Leakage line to the secondary seal for discharging leakage gas from the secondary seal is connected to the air inlet fluid-conducting. It is preferred that the switching device has a diaphragm in the atmosphere line and a rupture disk in the leakage line between the connection of the atmosphere line to the leakage line and the air inlet. Alternatively, it is preferred that the switching organ a three-way valve is located at the connection of the atmosphere line to the leakage line.

Die Wellendichtung ist bevorzugt eine gasgeschmierte Gleitringdichtung. Hierbei ist es bevorzugt, dass die gasgeschmierte Gleitringdichtung in Tandemanordnung ausgeführt ist. Außerdem ist es bevorzugt, dass der Prozessgasverdichter ein Pipeline-Verdichter ist.The shaft seal is preferably a gas-lubricated mechanical seal. It is preferred that the gas-lubricated mechanical seal is designed in tandem. In addition, it is preferable that the process gas compressor is a pipelined compressor.

Im Folgenden wird die Erfindung anhand einer bevorzugten Ausführungsform mit Bezugnahme auf die schematischen Zeichnungen erläutert. In der Zeichnung zeigen:

  • Figur 1 ein Fließschema der Ausführungsform des erfindungsgemäßen Verdichter-Gasturbinenstrangs und
  • Figur 2 eine Längsschnittdarstellung einer Wellendichtung.
In the following the invention will be explained with reference to a preferred embodiment with reference to the schematic drawings. In the drawing show:
  • FIG. 1 a flow diagram of the embodiment of the compressor-gas turbine train according to the invention and
  • FIG. 2 a longitudinal sectional view of a shaft seal.

Wie es aus den Figuren ersichtlich ist, weist ein Verdichter-Gasturbinenstrang 1 einen Prozessgasverdichter 2 in Turboverdichterbauweise und eine Gasturbine 3 auf. Der Prozessgasverdichter ist beispielsweise ein Pipeline-Verdichter zum Verdichten von Erdgas. Die Gasturbine 3 weist einen Verdichter 5 zum Verdichten von Eintrittsluft, eine Turbine 5 zur Gewinnung von Wellenleistung und eine Brennkammer 6 auf. Ferner weist die Gasturbine 3 am Verdichtereintritt einen Lufteintritt 7 auf, via dem Umgebungsluft zum Verdichter 4 geführt wird. Via einen Abgasaustritt 8 wird Abgas von der Turbine 5 abgeführt. Die Turbine 5 weist ferner eine Welle 9 auf, die mittels einer Kupplung 10 mit der Welle des Prozessgasverdichters 2 gekuppelt ist und dadurch den Prozessgasverdichter 2 antreibt.As can be seen from the figures, a compressor gas turbine train 1 has a process gas compressor 2 in turbo-compressor design and a gas turbine 3. The process gas compressor is, for example, a pipeline compressor for compressing natural gas. The gas turbine 3 has a compressor 5 for compressing inlet air, a turbine 5 for obtaining shaft power and a combustion chamber 6. Furthermore, the gas turbine 3 at the compressor inlet to an air inlet 7, via the ambient air to the compressor 4 is performed. Exhaust gas is removed from the turbine 5 via an exhaust gas outlet 8. The turbine 5 further has a shaft 9, which is coupled by means of a coupling 10 with the shaft of the process gas compressor 2 and thereby drives the process gas compressor 2.

Die Welle des Prozessgasverdichters 2 ist mittels Lager 11 beidseitig gelagert. Zur Abdichtung des Innenraums des Prozessgasverdichters 5 gegen die Atmosphäre und gegen die Lager 11 sind an der Welle Wellendichtungen 12 vorgesehen, die als gasgeschmierte Gleitringdichtungen in Tandembauweise ausgeführt sind. Die Wellendichtungen 12 weisen jeweils eine Primärdichtung 13, eine Sekundärdichtung 14 und eine Tertiärdichtung 15 auf. Die Primärdichtung 13 dichtet gegen die Prozessseite des Prozessgasverdichters 2 ab, wohingegen die Tertiärdichtung 15 gegen das Lager 11 abdichtet. Die Sekundärdichtung 14 ist zwischen der Primärdichtung 13 und der Tertiärdichtung 15 angeordnet und ist als Unterstützung und Absicherung der Primärdichtung 13 vorgesehen. Versagt nämlich die Primärdichtung 13, so steht der Prozessdruck erst an der Sekundärdichtung 14 an und nicht an der Tertiärdichtung 15, die herkömmlich von Kohleringen gebildet ist und somit bauweisebedingt dem Prozessdruck nicht standhalten würde. Außerdem wird mit der Sekundärdichtung 14 unterbunden, dass das Prozessgas bei Versagen der Primärdichtung 13 in die Lager 11 und somit in die Atmosphäre gelangen kann.The shaft of the process gas compressor 2 is supported by bearings 11 on both sides. For sealing the interior of the process gas compressor 5 against the atmosphere and against the bearings 11 shaft seals 12 are provided on the shaft, which are designed as gas-lubricated mechanical seals in tandem design are. The shaft seals 12 each have a primary seal 13, a secondary seal 14 and a tertiary seal 15. The primary seal 13 seals against the process side of the process gas compressor 2, whereas the tertiary seal 15 seals against the bearing 11. The secondary seal 14 is disposed between the primary seal 13 and the tertiary seal 15 and is provided to support and secure the primary seal 13. If the primary seal 13 fails, then the process pressure is only applied to the secondary seal 14 and not to the tertiary seal 15, which is conventionally formed by Kohler rings and thus would not be able to withstand the process pressure due to the design. In addition, it is prevented with the secondary seal 14, that the process gas in case of failure of the primary seal 13 in the camp 11 and thus can reach the atmosphere.

Die Wellendichtung weist ferner eine Prozessgassperrleitung 16 und eine Sperrgasleitung 17 auf (die Sperrgasleitung unterscheidet sich von der Prozessgasleitung aufgrund des Sperrgases, welches kein Prozessgas sein muss, bevorzugt kein Prozessgas ist). Die Sperrgasleitung kann grundsäzlich mit verschiedenen Gasen betrieben werden, wobei Inertgas (z.B. Stickstoff) bei manchen Anwendungen bevorzugt ist. In der Prozessgassperrleitung 16 liegt Prozessgas mit einem Druck an, der etwas höher als der prozessseitig anliegende Prozessdruck ist. In der Sperrgasleitung 17 liegt Sperrgas - ggf. Inertgas - mit einem Druck an, der höher als der Atmosphärendruck ist. Die Prozessgassperrleitung 16 ist an die Primärdichtung 13 geführt, so dass mit dem Prozessgas die Primärdichtung 13 gesperrt ist. Analog ist die Sperrgasleitung 17 an die Tertiärdichtung 15 geführt, so dass mit dem Sperrgas die Tertiärdichtung 15 gesperrt ist.The shaft seal further includes a process gas barrier line 16 and a barrier gas line 17 (the barrier gas line differs from the process gas line due to the barrier gas, which need not be a process gas, preferably not a process gas). The barrier gas line may be basically operated with various gases, with inert gas (e.g., nitrogen) being preferred in some applications. In the process gas barrier line 16, process gas is at a pressure which is slightly higher than the process pressure applied to the process side. In the barrier gas line 17 is sealing gas - possibly inert gas - at a pressure which is higher than the atmospheric pressure. The process gas barrier line 16 is guided to the primary seal 13, so that with the process gas, the primary seal 13 is blocked. Analogously, the sealing gas line 17 is guided to the tertiary seal 15, so that the tertiary seal 15 is blocked with the sealing gas.

Zwischen der Primärdichtung 13 und der Sekundärdichtung 14 ist eine Primärleckageleitung 18 vorgesehen, mit der eine Leckage der Primärdichtung 13 von der Wellendichtung 12 abgeführt wird. Dadurch, dass die Primärdichtung 13 mit Prozessgas beaufschlagt ist, besteht die Leckage der Primärdichtung aus Prozessgas. Ferner ist zwischen der Tertiärdichtung 15 und der Sekundärdichtung 14 eine Sekundärleckageleitung 19 vorgesehen. Mit der eine Leckage der Sekundärdichtung 14 und der Tertiärdichtung 15 von der Wellendichtung 12 abgeführt wird. Dadurch, dass die Sekundärdichtung von der Primärdichtung 13 her mit Prozessgas beaufschlagt ist, besteht die Leckage der Sekundärdichtung 14 aus Prozessgas. In Analoger Weise besteht die Leckage der Tertiärdichtung 15 aus Inertgas. Somit ist die von der Sekundärleckageleitung 19 gesammelte Leckage ein Gemisch aus Prozessgas und Inertgas.Between the primary seal 13 and the secondary seal 14, a primary leakage line 18 is provided, with which a leakage of the primary seal 13 is discharged from the shaft seal 12. The fact that the primary seal 13 is acted upon by process gas, the leakage of the primary seal from process gas. Further, a secondary leakage line 19 is provided between the tertiary seal 15 and the secondary seal 14. With a leakage of the secondary seal 14 and the tertiary seal 15 is discharged from the shaft seal 12. Because the secondary seal is acted upon by process gas from the primary seal 13, the leakage of the secondary seal 14 consists of process gas. In an analogous manner, the leakage of the tertiary seal 15 is made of inert gas. Thus, the leakage collected by the secondary leakage line 19 is a mixture of process gas and inert gas.

Die Primärleckageleitungen 18 und die
Sekundärleckageleitungen 19 sind zum Lufteintritt 7 geführt, so dass die Leckageströme in den Primärleckageleitungen 18 und den Sekundärleckageleitungen 19 der Eintrittsluft des Verdichters 4 zugeführt wird. Dadurch vermischen sich die Leckagegasströme mit der Eintrittsluft der Gasturbine 3 und treten in den Verdichter 4. In dem Verdichter 4 wird das Luft-Leckagegemisch verdichtet und der Brennkammer 6 zugeführt. Die in der Brennkammer 6 ausgebildete Flamme verbrennt den Prozessgasanteil in dem Leckagegas. Dadurch wird der Prozessgasanteil in dem Leckagegas in der Brennkammer 6 thermisch verwertet, wodurch zur Antriebsleistung der Gasturbine 3 beigetragen wird.
The primary leakage lines 18 and the
Secondary leakage lines 19 are led to the air inlet 7, so that the leakage flows in the primary leakage lines 18 and the secondary leakage lines 19 of the inlet air of the compressor 4 is supplied. As a result, the leakage gas streams mix with the inlet air of the gas turbine 3 and enter the compressor 4. In the compressor 4, the air leakage mixture is compressed and fed to the combustion chamber 6. The flame formed in the combustion chamber 6 burns the proportion of process gas in the leakage gas. As a result, the proportion of process gas in the leakage gas in the combustion chamber 6 is utilized thermally, which contributes to the drive power of the gas turbine 3.

Ein Wellendichtungsüberwachungssystem 26 überwacht und steuert den Betrieb der Wellendichtungen 12, wobei die Betriebsbedingungen einem Design-Betriebszustand oder einem Off-Design-Betriebszustand entsprechen können. Ferner wird der Betrieb der Gasturbine 3 mit einem Gasturbinenüberwachungssystem 27 überwacht und gesteuert. Das Gasturbinenüberwachungssystem 27 weist bevorzugt ein Gasanalysegerät auf, mit dem die Zusammensetzung der Luft am Lufteintritt 7 messbar ist. Grundsätzlich ist eine Gasanalyse nicht erforderlich, weil auf Basis der Turbinenlast und der Leckage an den Wellendichtungen das Wellendichtungsüberwachungssystem 26 erkennt, ob die Leckage noch sicher ist oder nicht - wie nachfolgend beschrieben.A shaft seal monitoring system 26 monitors and controls the operation of the shaft seals 12, wherein the operating conditions may correspond to a design operating state or an off-design operating state. Furthermore, the operation of the gas turbine 3 is monitored and controlled by a gas turbine monitoring system 27. The gas turbine monitoring system 27 preferably has a gas analyzer with which the composition of the air at the air inlet 7 can be measured. Basically, a gas analysis is not required, because based on the turbine load and the leakage at the shaft seals the shaft seal monitoring system 26 detects whether the leak is still safe or not - as described below.

Denkbar ist es, dass die Primärleckageleitungen 18 und die Sekundärleckageleitungen 19 an eine Fackel 20 via ein Ventil 22 angeschlossen sind. Dadurch ist die Option geschaffen, dass unter Betätigung des Ventils 22 die Leckageströme in den Primärleckageleitungen 18 und den Sekundärleckageleitungen 19 nicht dem Lufteintritt 7, sondern der Fackel 22 zugeführt werden. In der Fackel 22 wird der Prozessgasanteil der Leckageströme verbrannt und die daraus entstehenden Verbrennungsprodukte in die Atmosphäre emittiert.It is conceivable that the primary leakage lines 18 and the secondary leakage lines 19 are connected to a torch 20 via a valve 22. As a result, the option is created that the leakage currents in the primary leakage lines 18 and the secondary leakage lines 19 are not supplied to the air inlet 7, but the torch 22 by actuation of the valve 22. In the torch 22, the process gas portion of the leakage flows is burned and the resulting combustion products emitted into the atmosphere.

Das Ableiten von den Leckagegasströmen zur Fackel 20 ist beispielsweise dann notwendig, wenn sich aufgrund des Einleitens der Prozessgasleckage in den Lufteintritt 7 ein entzündliches Gemisch im Verdichter 4 bilden würde. Dies ist unbedingt zu vermeiden, da hierbei die Gefahr des Durchschlagens der Flamme von der Brennkammer 6 durch den Verdichter 4 besteht. Dafür ist an dem Lufteintritt 7 das Gasanalysegerät vorgesehen, mit dem die Zündgefahr im Lufteintritt 7 und im Verdichter 4 messbar ist. Wird beim Betrieb des Verdichter-Gasturbinenstrangs 1 von dem Gasanalysegerät ermittelt, dass eine unzulässig hohe Zündgefahr vorliegt, so wird von dem Gasturbinenüberwachungssystem 27 das Ventil 22 betätigt, wodurch die Leckageströme statt in den Lufteinlass 7 zur Fackel 20 geleitet werden.The derivation of the leakage gas streams to the torch 20 is necessary, for example, if an inflammable mixture would form in the compressor 4 due to the introduction of the process gas leak into the air inlet 7. This is essential to avoid, since in this case there is the danger of the flame from passing through the combustion chamber 6 through the compressor 4. For this purpose, the gas analyzer is provided at the air inlet 7, with which the risk of ignition in the air inlet 7 and in the compressor 4 can be measured. If the gas analyzer determines that there is an inadmissibly high risk of ignition during operation of the compressor gas turbine train 1, then the valve 22 is actuated by the gas turbine monitoring system 27, whereby the leakage flows instead of into the air inlet 7 are conducted to the torch 20.

Denkbar ist, dass die Sekundärleckageleitungen 19 zusätzlich an einen Kamin 21 via ein Ventil 25 als ein Umschaltorgan angeschlossen sind, durch das die Leckagegasströme in den Sekundärleckageleitungen 19 an die Atmosphäre abgeleitet werden können. Stromab der Anbindung des Kamins 21 und vor dem Lufteintritt 7 ist eine weiteres Ventil 24 als ein weiteres Umschaltorgan in der Sekundärleckageleitung 19 eingebaut. Ferner ist zwischen der Einbindung der Fackel 20 in die Primärleckageleitung 18 und dem Lufteintritt 7 ein zusätzliches Ventil 23 eingebaut.It is conceivable that the secondary leakage lines 19 are additionally connected to a chimney 21 via a valve 25 as a switching device, through which the leakage gas flows in the secondary leakage lines 19 can be discharged to the atmosphere. Downstream of the connection of the chimney 21 and in front of the air inlet 7, a further valve 24 is installed as a further switching element in the secondary leakage line 19. Furthermore, an additional valve 23 is installed between the integration of the torch 20 in the primary leakage line 18 and the air inlet 7.

Mit dem Welldichtungsüberwachungssystem 27 werden die Ventile 22 bis 25 angesteuert, so dass Leckagen in der
Primärleckageleitung 18 und der Sekundärleckegeleitung 19 angestimmt auf den momentan vorherrschenden Betriebszustand dem Lufteintritt 7 zugeführt werden können. Die Ventile 22 und 23 sowie die Ventile 24 und 25 können jeweils als ein Dreiwegeventil ausgeführt sein.
With the Welldichtungsüberwachungssystem 27, the valves 22 to 25 are driven, so that leaks in the
Primary leakage line 18 and the secondary leakage line 19 can be fed to the currently prevailing operating state, the air inlet 7 can be supplied. The valves 22 and 23 and the valves 24 and 25 may each be designed as a three-way valve.

Das Ventil 24 könnte als eine Berstscheibe und das Ventil 25 als eine Blende ausgeführt sein. Versagen die Primärdichtung 13 und die Sekundärdichtung 14 schlägt der Prozessdruck auf die Sekundärleckageleitungen 19 durch. Mittels der Blende 25 wird ein Druckabbau über den Kamin 21 verhindert, so dass die Berstscheibe 24 zerbirst. Somit sind die Sekundärleckageleitungen 19 mit dem Lufteintritt verbunden, wodurch die Leckagegasströme in den Sekundärleckageleitungen 19 nicht über den Kamin 21 sondern dem Lufteintritt 7 zur thermischen Verwertung zugeführt werden.The valve 24 could be designed as a rupture disc and the valve 25 as a diaphragm. Failure of the primary seal 13 and the secondary seal 14 fails the process pressure on the secondary leakage lines 19 through. By means of the diaphragm 25, a pressure reduction over the chimney 21 is prevented, so that the rupture disk 24 bursts. Thus, the secondary leakage lines 19 are connected to the air inlet, whereby the leakage gas flows in the secondary leakage lines 19 are not supplied via the chimney 21 but the air inlet 7 for thermal utilization.

Typischerweise liegt der Brennstoffverbrauch des Prozessgasverdichters 3 beim Einsatz als Pipelineverdichter für Erdgas bei 200 kg/MWH Erdgas. Das Brennstoff-Luft-Verhältnis liegt typischerweise bei 1:10. Die Prozessgasleckagerate der Wellendichtung liegt typischerweise bei 5 bis 10 kg/Stunde. Die Leistung der Gasturbine 3 beträgt typischerweise 10 MW, wobei der Prozessgasanteil im Lufteintrittsstrom ca. 0,05% beträgt. Typischerweise wird der Prozessgasverdichter-Gasturbinenstrang 1 abgeschaltet, wenn die Leckagerate einer der Wellendichtungen 12 bei dem fünffachen Wert gegenüber dem normalen Betriebszustand liegt. In diesem Fall beträgt der Prozessgasanteil im Lufteintrittsstrom ca. 0,5%. Aus Sicherheitsgründen wird mit dem Gasanalysegerät der Prozessgasanteil im Lufteintrittsstrom überwacht.Typically, the fuel consumption of the process gas compressor 3 when used as a pipeline compressor for natural gas at 200 kg / MWH natural gas. The fuel-air ratio is typically 1:10. The process gas leakage rate of the shaft seal is typically 5 to 10 kg / hour. The power of the gas turbine 3 is typically 10 MW, wherein the process gas content in the air inlet flow is about 0.05%. Typically, the process gas compressor gas turbine train 1 is turned off when the leakage rate of one of the shaft seals 12 is five times the normal operating state. In this case, the proportion of process gas in the air inlet flow is approx. 0.5%. For safety reasons, the process gas content in the air inlet flow is monitored with the gas analyzer.

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been further illustrated and described in detail by the preferred embodiment, the invention is not limited by the disclosed examples, and other variations can be made by those skilled in the art can be derived without departing from the scope of the invention.

Claims (6)

  1. Process gas compressor/gas turbine section comprising a process gas compressor (2) and a gas turbine (3) which is coupled to the shaft of the process gas compressor (2) in order to drive said compressor, wherein the process gas compressor (2) is designed to compress combustible process gas and, for sealing the process gas compressor inner chamber from the atmosphere, is equipped with a shaft seal (12) which can be sealed with a seal gas and which has at least one leakage gas line (18, 19) with which leakage gas can be conducted away from the shaft seal (12) and which is connected to the air inlet (7) of the gas turbine (3) such that the leakage gas together with the inlet air at the air inlet (7) can be conducted into the gas turbine (3) during the operation of the process gas compressor/gas turbine section (1), wherein the shaft seal (12) has a process-side primary seal (13) and an atmosphere-side secondary seal (14), wherein the primary seal (13) and the secondary seal (14) each have one of the leakage lines (18, 19), wherein the leakage line (19) for the secondary seal (14) has an atmosphere line and a changeover member which is designed in such a manner that, during the normal operation of the shaft seal (12), the atmosphere line is connected in a fluid-conducting manner to the secondary seal (14) for conducting leakage gas away from the secondary seal (14) into the atmosphere and, if the sealing effect of the secondary seal (14) fails, the leakage line (19) is connected in a fluid-conducting manner to the secondary seal (14) for conducting leakage gas away from the secondary seal (14) to the air inlet (7).
  2. Process gas compressor/gas turbine section according to Claim 1, wherein the changeover member has a diaphragm in the atmosphere line and a bursting disk in the leakage line (19) between the connection of the atmosphere line to the leakage line (19) and the air inlet (7).
  3. Process gas compressor/gas turbine section according to Claim 2, wherein the changeover member is a three-way directional control valve which is arranged at the connection of the atmosphere line to the leakage line (19).
  4. Process gas compressor/gas turbine section according to one of Claims 1 to 3, wherein the shaft seal (12) is a gas-lubricated rotating mechanical seal.
  5. Process gas compressor/gas turbine section according to Claim 4, wherein the gas-lubricated rotating mechanical seal is realized in a tandem arrangement.
  6. Process gas compressor/gas turbine section according to one of Claims 1 to 5, wherein the process gas compressor (2) is a pipeline compressor.
EP13771434.1A 2012-10-25 2013-09-25 Process gas compressor/gas turbine section Not-in-force EP2898186B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012219520.3A DE102012219520A1 (en) 2012-10-25 2012-10-25 Process Gas gas turbine train
PCT/EP2013/069921 WO2014063893A1 (en) 2012-10-25 2013-09-25 Process gas compressor/gas turbine section

Publications (2)

Publication Number Publication Date
EP2898186A1 EP2898186A1 (en) 2015-07-29
EP2898186B1 true EP2898186B1 (en) 2016-09-07

Family

ID=49301456

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13771434.1A Not-in-force EP2898186B1 (en) 2012-10-25 2013-09-25 Process gas compressor/gas turbine section

Country Status (5)

Country Link
US (1) US9915161B2 (en)
EP (1) EP2898186B1 (en)
CN (1) CN104769227B (en)
DE (1) DE102012219520A1 (en)
WO (1) WO2014063893A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2519150A (en) 2013-10-11 2015-04-15 Reaction Engines Ltd Rotational machine
DE102014214685A1 (en) * 2014-07-25 2016-01-28 Thyssenkrupp Ag Sealing device for sealing a rotatable shaft of a gas compressor and / or a gas expander in a plant for the production of nitric acid
FR3106631B1 (en) * 2020-01-28 2022-01-07 Grtgaz GAS LEAK PREVENTION DEVICE FOR COMPRESSOR
CN112253263B (en) * 2020-10-26 2023-04-11 中国船舶集团有限公司第七一一研究所 Sealing system of ammonia water turboexpander

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216006C1 (en) * 1992-05-12 1993-04-29 Mannesmann Ag, 4000 Duesseldorf, De
CH686525A5 (en) * 1992-07-02 1996-04-15 Escher Wyss Ag Turbomachinery.
DE4239586C1 (en) * 1992-11-25 1994-01-13 Ruhrgas Ag Turbomachinery system and method for sealing a turbomachine
DE4313805A1 (en) 1993-04-27 1994-11-03 Siemens Ag Sealing arrangement for at least one passage of a shaft through a housing
EP1207310B1 (en) 1999-07-23 2011-04-20 Hitachi Plant Technologies, Ltd. Dry gas seal for turbo fluid machinery
FR2885992B1 (en) 2005-05-17 2007-06-29 Air Liquide METHOD FOR ENHANCING PRODUCT LEAKAGE IN COMPRESSOR SEALING SYSTEMS BY RECOVERING AND RECYCLING AS A FUEL
US8066023B2 (en) 2007-04-10 2011-11-29 Black & Veatch Corporation System and method for collecting and increasing the pressure of seal leak gas
US8100636B2 (en) 2008-03-26 2012-01-24 Air Liquide Process & Construction, Inc. Recovery of expander-booster leak gas
DE102009012038B4 (en) 2009-03-10 2014-10-30 Siemens Aktiengesellschaft Shaft seal for a turbomachine
US8061984B2 (en) * 2009-04-06 2011-11-22 Dresser-Rand Company Dry gas blow down seal
US9033651B2 (en) 2009-05-04 2015-05-19 Ingersoll-Rand Company Flow distributed buffered/educted gas seal
IT1397059B1 (en) * 2009-11-23 2012-12-28 Nuovo Pignone Spa SEAL SYSTEM FOR DRY GAS, LOW EMISSION FOR COMPRESSORS
CN201650839U (en) 2010-02-02 2010-11-24 成都一通密封有限公司 Dry-gas seal of cracked gas compressor
DE102011003173A1 (en) * 2011-01-26 2012-07-26 Siemens Aktiengesellschaft Gas system for the compression of a process gas
DE102011005026A1 (en) * 2011-03-03 2012-09-06 Siemens Aktiengesellschaft Partial joint sealing in a housing for a fluid machine

Also Published As

Publication number Publication date
CN104769227A (en) 2015-07-08
WO2014063893A1 (en) 2014-05-01
US9915161B2 (en) 2018-03-13
DE102012219520A1 (en) 2014-04-30
US20150292346A1 (en) 2015-10-15
CN104769227B (en) 2016-05-18
EP2898186A1 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
EP2898186B1 (en) Process gas compressor/gas turbine section
EP2406527B1 (en) Shaft seal for a turbomachine
US20180058331A1 (en) Corner flow reduction seals
DE112012005939B4 (en) Gas turbine
EP3159490A1 (en) Jet engine having several compartments and a bearing housing carrier
WO1988006232A1 (en) Supercharged multicylinder reciprocating combustion engine with several exhaust gas turbochargers operating in parallel
EP2025879B1 (en) Turbine for an ORC plant, ORC plant with such a turbine and method for operating an ORC plant
US9234433B2 (en) Flap seal spring and sealing apparatus
WO2006120204A1 (en) Combustion chamber wall, gas turbine installation and process for starting or shutting down a gas turbine installation
WO2016156370A1 (en) Bypass heat shield element
EP2440747B1 (en) Turbomachine
EP3181827A1 (en) Turbo-machine component connection
EP1767855A1 (en) Combustion Chamber and Gas Turbine Plant
WO2009109551A1 (en) Vacuum exhaust-gas line system
EP2730744B1 (en) Exhaust gas turbo charger
AU2011334608A1 (en) System and apparatus for connecting a gas source to a thermal oxidiser
US9188018B2 (en) Flap seal and sealing apparatus
EP0690204B1 (en) Steamturbine with at least two seals in the casing for sealing the same
EP2634379B1 (en) Compression Sleeve Seal
DE102022123442A1 (en) Fan for a heater and heater
CN207750203U (en) The hydrogen gas compressor of leaching emergency decompression system is led with exhaust line
EP2778531A1 (en) Gas turbine with optimized combustion in partial load operation by air flow rate adjustment
EP2040062A1 (en) Inspection of high temperature chambers
WO2014001176A1 (en) Shaft seal for a turbomachine
ITTO970413A1 (en) DEVICE FOR LIMITING FIRE RISKS INSIDE A TURBOMACHINE.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160329

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004406

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 827065

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161208

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013004406

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160925

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

26N No opposition filed

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160925

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170925

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181119

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181210

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190918

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 827065

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190926

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013004406

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200925