EP2895706A1 - Système d'énergie thermique à récupération et son procédé de fonctionnement - Google Patents
Système d'énergie thermique à récupération et son procédé de fonctionnementInfo
- Publication number
- EP2895706A1 EP2895706A1 EP13748194.1A EP13748194A EP2895706A1 EP 2895706 A1 EP2895706 A1 EP 2895706A1 EP 13748194 A EP13748194 A EP 13748194A EP 2895706 A1 EP2895706 A1 EP 2895706A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchange
- thermal energy
- exchange reactor
- fluid
- solid particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims description 28
- 239000002245 particle Substances 0.000 claims abstract description 116
- 239000007787 solid Substances 0.000 claims abstract description 59
- 238000004891 communication Methods 0.000 claims abstract description 38
- 239000012530 fluid Substances 0.000 claims abstract description 36
- 238000004146 energy storage Methods 0.000 claims abstract description 16
- 238000010248 power generation Methods 0.000 claims description 29
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 230000005465 channeling Effects 0.000 claims description 14
- 230000005484 gravity Effects 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 239000003570 air Substances 0.000 description 102
- 238000007599 discharging Methods 0.000 description 15
- 239000000446 fuel Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000012080 ambient air Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K27/00—Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/02—Use of accumulators and specific engine types; Control thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/14—Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
- F02C6/16—Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/08—Heating air supply before combustion, e.g. by exhaust gases
- F02C7/10—Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28C—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
- F28C3/00—Other direct-contact heat-exchange apparatus
- F28C3/10—Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
- F28C3/12—Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
- F28C3/14—Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material moving by gravity, e.g. down a tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D19/00—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
- F28D19/02—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using granular particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0056—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Definitions
- the field of the invention relates generally to energy storage and, more particularly, to regenerative thermal energy storage (TES) systems associated with adiabatic compressed air energy storage (A-CAES) systems.
- TES regenerative thermal energy storage
- A-CAES adiabatic compressed air energy storage
- thermal energy storage within A-CAES systems requires a substantial capital investment to merely reduce heat transfer from the stored, compressed gases.
- At least some known A-CAES systems include fixed-matrix regenerators within a stand-alone vessel that includes an inventory of solid mass.
- the solid mass stores thermal energy as hot air is channeled over the solid mass.
- the solid mass releases thermal energy as cold air is channeled over the solid mass.
- the walls of these stand-alone vessels must provide sufficient strength to withstand the pressures of the air channeled therethrough. Therefore, strengthening the walls will increase the capital construction costs of the A-CAES systems.
- at least some known A-CAES systems include indirect heat transfer systems that use equipment to facilitate substantial heat losses.
- a regenerative thermal energy system includes a heat exchange reactor that includes a top entry portion, a lower entry portion, and a bottom discharge portion.
- the system also includes at least one fluid source coupled in flow communication with the at least one heat exchange reactor at the lower entry portion.
- the system also includes at least one cold particle storage source coupled in flow communication with the at least one heat exchange reactor at the top entry portion.
- the system further includes at least one thermal energy storage (TES) vessel coupled in flow communication with the heat exchange reactor at each of the bottom discharge portion and the top entry portion.
- TES thermal energy storage
- the heat exchange reactor is configured to facilitate direct contact and counter-flow heat exchange between solid particles and a fluid.
- a power generation facility includes at least one power generation apparatus and at least one regenerative thermal energy system coupled to the at least one power generation apparatus.
- the at least one regenerative thermal energy system includes a heat exchange reactor that includes a top entry portion, a lower entry portion, and a bottom discharge portion.
- the system also includes at least one fluid source coupled in flow communication with the at least one heat exchange reactor at the lower entry portion.
- the system further includes at least one cold particle storage source coupled in flow communication with the at least one heat exchange reactor at the top entry portion.
- the system also includes at least one thermal energy storage (TES) vessel coupled in flow communication with the heat exchange reactor at each of the bottom discharge portion and the top entry portion, wherein the heat exchange reactor is configured to facilitate direct contact and counter-flow heat exchange between solid particles and a fluid and channel hot pressurized air to the at least one power generation apparatus.
- TES thermal energy storage
- a method of operating a power generation facility includes channeling solid particles downward through a heat exchange reactor and channeling pressurized air upward through the heat exchange reactor.
- the method also includes transferring heat from the pressurized air to the solid particles through direct contact.
- the method further includes channeling the solid particles into at least one thermal energy storage (TES) vessel.
- TES thermal energy storage
- FIG. 3 is a schematic view of a second portion of the regenerative thermal energy system partially shown in FIG. 1.
- FIG. 4 is a flow chart of a method of discharging the regenerative thermal energy system shown in FIG. 3.
- FIG. 5 is a schematic view of an exemplary power generation facility that uses the regenerative thermal energy system shown in FIGs. 1 and 3.
- FIG. 1 is a schematic view of a first portion 102 of an exemplary regenerative thermal energy system 100.
- First portion 102 includes the components of system 100 used during a charging operation, i.e., when a solid mass (described further below) is charged with thermal energy for storage.
- regenerative thermal energy system 100 includes a heat exchange reactor 110 including a plurality of walls 112 that define a fully enclosed heat transfer cavity 114. Walls 112 also define a top entry portion 116 coupled in flow communication with at least one cold particle storage source 118.
- Cold particle storage source 118 is any containment and delivery system that enables operation of regenerative thermal energy system 100 as described herein, including, without limitation, hoppers, bins, silos, solids transfer devices, and gravity- feed devices.
- Storage source 118 and top entry portion 116 cooperate to inject small, cold, solid particles 119 into heat transfer cavity 114.
- Particles 119 are any solids that enable operation of regenerative thermal energy system 100 as described herein, including, without limitation, sand.
- walls 112 define an inwardly inclined bottom discharge portion 130 configured to facilitate storage of hot solid particles 132.
- Bottom discharge portion 130 is also configured to facilitate discharge of hot solid particles 132 out of heat transfer cavity 114 with the assistance of gravity.
- regenerative thermal energy system 100 includes at least one device configured to increase a residence time of solid particles 119 and hot, compressed air 128.
- a plurality of air and particle deflector devices 163 are coupled to walls 112 within heat transfer cavity 114 and extend inward therefrom.
- air and particle deflector devices 163 and walls 112 define a tortuous heat transfer channel 165.
- heat transfer projections 167 e.g., without limitation, heat fins, are positioned within channel 165. Deflector devices 163, channel 165, and projections 167 facilitate increasing the residence time to further facilitate heat transfer between particles 119 and air 128.
- FIG. 2 is a flow chart of a method 200 of charging regenerative thermal energy system 100 (shown in FIG. 1).
- small, cold, solid particles 119 (shown in FIG. 1) are injected 202 into heat transfer cavity 114 from storage source 118 through top entry portion 116 (all shown in FIG. 1).
- Particles 119 are injected within a temperature range between approximately 0 degrees Celsius (°C) (32 degrees Fahrenheit (°F)) and approximately 49°C (120°F).
- particles 119 are injected within any temperature range that enables operation of regenerative thermal energy system 100 as described herein.
- Particles 119 are injected at any pressures that enable operation of regenerative thermal energy system 100 as described herein.
- particles 119 are directed 204 downward through heat exchange reactor 110 (shown in FIG. 1) with the assistance of gravity.
- Cold, ambient air 126 (shown in FIG. 1) is received and compressed 206 by air compressor 122 (shown in FIG. 1).
- Ambient air 126 is in a temperature range between approximately 0°C (32°F) and approximately 49°C (120°F), and has an atmospheric pressure of approximately one atmosphere, i.e., 1.015 bar, 101.353 kilo-Pascal (kPa), and 14.7 pounds per square inch (psi).
- inlet air 126 to air compressor 122 has temperatures and pressures in any range that enables operation of regenerative thermal energy system 100 as described herein.
- air compressor 122 discharges 208 hot, compressed air 128 (shown in FIG. 1) into heat transfer cavity 114 with a temperature range between approximately 250°C (482°F) and approximately 700°C (1292°F), and a pressure range between approximately 20 bar (2000 kPa, 290 psi) and approximately 70 bar (7000 kPa, 1015 psi).
- hot, compressed air 128 discharged from air compressor 122 has temperatures and pressures in any range that enables operation of regenerative thermal energy system 100 as described herein.
- Hot, compressed air 128 is channeled 210 upward through heat transfer cavity 114.
- cold, pressurized air 144 and entrained particles 146 are extracted 214 from heat transfer cavity 114 to cyclone filter 140 that uses cyclonic action to separate 216 air 144 from particles 146.
- Air 144 is directed 218 to at least one cold, pressurized air storage vessel 148.
- Air 144 has a temperature value within a range between approximately 20°C (68°F) and 60°C (140°F) and within a pressure range between approximately 20 bar (2000 kPa, 290 psi) and approximately 70 bar (7000 kPa, 1015 psi).
- air 144 is within any temperature range that enables operation of regenerative thermal energy system 100 as described herein.
- entrained particles 146 are directed 220 downward through cyclone filter 140 with the assistance of gravity and are stored at sloped portion 150 (shown in FIG. 1) of cyclone filter 140.
- Particles 146 have a temperature value within a range between approximately 20°C (68°F) and approximately 60°C (140°F). Alternatively, particles 146 are within any temperature range that enables operation of regenerative thermal energy system 100 as described herein. Particles 146 are channeled to cold particle storage source 118 for regenerative use.
- FIG. 3 is a schematic view of a second portion 170 of regenerative thermal energy system 100.
- Second portion 170 includes the components of system 100 used during a discharging operation, i.e., when thermal energy stored within a hot solid mass (described further below) is liberated to generate power. Many of the same components of system 100 used in first portion 102 (shown in FIG. 1) for charging operations described above are also used for discharging operations.
- regenerative thermal energy system 100 includes at least one solids transfer pump 166 coupled in flow communication with TES vessel 160. Solids transfer pump 166 is also coupled in flow communication with heat transfer cavity 114 of heat exchange reactor 110 through top entry portion 116. Solids transfer pump 166 is configured to transfer hot particles 168 from TES vessel 160 into heat transfer cavity 114.
- solids transfer pump 166 is configured to inject particles 168 into heat exchange reactor 110 with sufficient pressure to overcome the pressure of air 144.
- cyclone filter 140 is coupled in flow communication with heat transfer cavity 114 through air extraction conduit 142. Cyclone filter 140 is further coupled in flow communication with heat transfer cavity 114 through an entrained particle return conduit 175.
- regenerative thermal energy system 100 includes at least one expander 180 rotatably coupled to a machine, e.g., without limitation, a generator 182. Expander 180 is coupled in flow communication with cyclone filter 140.
- regenerative thermal energy system 100 includes at least one combustion apparatus 181 coupled in flow communication with cyclone filter 140 and expander 180.
- Combustion apparatus 181 includes a hot air extension line 183 coupled to cyclone filter 140.
- Combustion apparatus 181 also includes a fuel line 185.
- Combustion apparatus 181 further includes an air/fuel mixer 186 coupled to hot air extension line 183 and fuel line 185.
- Combustion apparatus 181 also includes a combustion chamber 187 coupled to air/fuel mixer 186 and hot air extension line 183.
- Combustion apparatus 181 further includes a heat exchange device 188 coupled to combustion chamber 187, hot air extension line 183, and expander 180.
- Combustion apparatus 181 further includes an exhaust conduit 189 coupled to heat exchange device 188.
- FIG. 4 is a flow chart of a method 300 of discharging regenerative thermal energy system 100 (shown in FIG. 3).
- hot solid particles 132 (shown in FIG. 3) are maintained 302 within a predetermined temperature range between approximately 240°C (464°F) and approximately 690°C (1274°F) through one full cycle of regenerative thermal energy system 100 as described herein.
- hot solid particles 132 are maintained within the exemplary temperature range for 12 to 24 hours.
- TES vessel 160 (shown in FIG. 3) is maintained at approximately atmospheric pressure.
- Hot particles 168 (shown in FIG. 3) are transferred from TES vessel 160 into heat transfer cavity 114 (shown in FIG. 3) through top entry portion 116 (shown in FIG. 3) within a similar temperature range.
- cold, pressurized air 144 is contained 304 in air storage vessel 148 (shown in FIG. 3).
- Air 144 has a temperature value within a range between approximately 20°C (68°F) and 60°C (140°F) and within a pressure range between approximately 20 bar (2000 kPa, 290 psi) and approximately 70 bar (7000 kPa, 1015 psi).
- Stored, cold, pressurized air 144 is discharged 306 into heat transfer cavity 114.
- Air 144 is directed 308 upward through heat transfer cavity 114.
- Solids transfer pump 166 (shown in FIG. 3) injects 310 particles 168 into heat exchange reactor 110 with sufficient pressure to overcome the pressure of air 144.
- Hot, pressurized air 172 and entrained particles 174 are extracted 314 from heat transfer cavity 114 to cyclone filter 140 (shown in FIG. 3) that uses cyclonic action to separate 316 air 172 from particles 174.
- Hot, pressurized air 172 and entrained particles 174 are within a temperature range of approximately 240°C (464°F) and approximately 690°C (1274°F).
- entrained particles 174 are directed 318 downward through cyclone filter 140 with the assistance of gravity and are stored at sloped portion 150 (shown in FIG. 3) of cyclone filter 140.
- Some reusable, i.e., still transferable, thermal energy may reside within particles 174. Therefore, such particles 174 within a temperature range between approximately 240°C (464°F) and approximately 690°C (1274°F) are reinjected 320 into heat transfer cavity 114 for further thermal energy transfer to air 144.
- particles 174 are reinjected into heat transfer cavity 114 within any temperature range that enables operation of regenerative thermal energy system 100 as described herein.
- particles 174 are transferred 322 to cold particle storage source 118 for regenerative use.
- particles 174 are channeled to cold particle storage source 118 within any temperature range that enables operation of regenerative thermal energy system 100 as described herein.
- some cold particles 190 that have been substantially exhausted of transferrable thermal energy are deposited at inwardly inclined bottom discharge portion 130 (shown in FIG. 3). Particles 190 are transferred 324, with the assistance of gravity, out of heat transfer cavity 114 to TES vessel 160 in a manner that reduces a probability of cannibalizing thermal energy stored in hot particles 132.
- TES vessel 160 receives and stores cold particles 190 within particle storage cavity 162. Cold particles 190 are transferred 326 to cold particle storage source 118 for regenerative use.
- hot, pressurized air 172 having a temperature value within a range between approximately 240°C (464°F) and approximately 690°C (1274°F) and within a pressure range between approximately 20 bar (2000 kPa, 290 psi) and approximately 70 bar (7000 kPa, 1015 psi) is directed 328 to expander 180 (shown in FIG. 3).
- air 172 is within any temperature range and any pressure range that enables operation of regenerative thermal energy system 100 as described herein.
- Expander 180 (shown in FIG. 3) drives 330 generator 182 (shown in FIG. 3) and expended air 184 (shown in FIG. 3) is discharged to any place that enables operation of regenerative thermal energy system 100 as described herein.
- the hot air from cyclone filter 140 is channeled to combustion apparatus 181 through conduit 183.
- Some of the hot air and fuel are channeled to air/fuel mixer 186 through conduit 183 and fuel line 185, respectively, where they are mixed.
- the air/fuel mixture is channeled to combustion chamber 187 and additional hot air in injected into combustion chamber 187 from conduit 183.
- Hot gases are generated and are channeled to heat exchange device 188. Heat transfer from the gases to hot air channeled from conduit 183 further increases the temperature of air 172 prior to expander 180.
- the combustion gases are channeled through exhaust conduit 189
- FIG. 5 is a schematic view of an exemplary power generation facility 500 that uses regenerative thermal energy system 100.
- power generation facility 500 includes a plurality of power generators 502, including, without limitation, steam turbine generators, gas turbine generators, water turbine generators, wind turbine generators, gasoline combustion engine-driven generators, and diesel engine generators, and any combination thereof.
- operating power generation facility 500 includes storing thermal energy during non-peak periods and expending the stored thermal energy during peak periods.
- an own/operator of power generation facility anticipates a need for additional power generation during a future peaking period.
- Power generators 502 transmit electric power to electric motors 124 of air compressors 122 (shown in FIG. 1) and thermal energy is stored in regenerative thermal energy system 100 as described above.
- regenerative thermal energy system 100 substantially recovers the stored thermal energy and electric power that is generated by generators 182 is added to the electric power generated by power generators 502 for transmission.
- Such regenerative operation represents a full cycle of regenerative thermal energy system 100.
- such cycles may occur twice on weekdays, i.e., discharging operations are performed between approximately 5:00 AM and approximately 9:00 AM, and again approximately 5:00 PM and approximately 10:00 PM.
- Charging operations are performed between those two time periods when discharging operations are not in progress.
- some embodiments of power generation facility 500 may include multiple iterations of regenerative thermal energy system 100 such that one system 100 is charging and feeding a second system 100 that is discharging.
- the above-described regenerative thermal energy system provides a cost-effective method for generating and storing thermal energy for later use.
- the embodiments described herein facilitate storing thermal energy in a thermal energy storage vessel during low power usage periods for future use during peak power usage periods.
- the devices, systems, and methods described herein facilitate transferring heat from hot compressed air to and the assistance of gravity small, cold, solid particles through direct contact.
- the devices, systems, and methods described herein facilitate using a power generation facility to use at least some of the power generated therein to drive air compressors during low power usage periods.
- the thermal energy now contained in the hot, small particles is stored with the particles in an insulated vessel configured to maintain the particles within a specific temperature range for a certain period of time at atmospheric pressure.
- An exemplary technical effect of the methods, systems, and apparatus described herein includes at least one of: (a) decreasing the volume of a vessel used to store thermal energy; and (b) directly contacting cold particles with hot air and hot particles with cold air to regeneratively transfer thermal energy therebetween.
- regenerative thermal energy system for power generation facilities and methods for operating are described above in detail.
- the regenerative thermal energy system, power generation facilities, and methods of operating such systems and facilities are not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein.
- the methods may also be used in combination with other systems requiring thermal energy storage and methods, and are not limited to practice with only the regenerative thermal energy system, power generation facilities, and methods as described herein. Rather, the exemplary embodiment can be implemented and utilized in connection with many other thermal energy storage and transfer applications.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Cyclones (AREA)
- Wind Motors (AREA)
Abstract
L'invention porte sur un système d'énergie thermique à récupération, lequel système comprend un réacteur d'échange de chaleur (110) qui comprend une partie d'entrée supérieure (116), une partie d'entrée inférieure (120) et une partie de décharge inférieure (130). Le système comprend également au moins une source de fluide (122) couplée en communication d'écoulement avec le ou les réacteurs d'échange de chaleur à la partie d'entrée inférieure. Le système comprend également au moins une source de stockage de particules froides (118) couplée en communication d'écoulement avec le ou les réacteurs d'échange de chaleur à la partie d'entrée supérieure. Le système comprend de plus au moins une cuve de stockage d'énergie thermique (TES) (160) couplée en communication d'écoulement avec le réacteur d'échange de chaleur au niveau de chacune de la partie de décharge inférieure et de la partie d'entrée supérieure. Le réacteur d'échange de chaleur est configuré de façon à faciliter un contact direct et un échange de chaleur à contre-écoulement entre des particules solides et un fluide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/563,142 US20140033714A1 (en) | 2012-07-31 | 2012-07-31 | Regenerative thermal energy system and method of operating the same |
PCT/US2013/052810 WO2014022451A1 (fr) | 2012-07-31 | 2013-07-31 | Système d'énergie thermique à récupération et son procédé de fonctionnement |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2895706A1 true EP2895706A1 (fr) | 2015-07-22 |
Family
ID=48980319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13748194.1A Withdrawn EP2895706A1 (fr) | 2012-07-31 | 2013-07-31 | Système d'énergie thermique à récupération et son procédé de fonctionnement |
Country Status (11)
Country | Link |
---|---|
US (1) | US20140033714A1 (fr) |
EP (1) | EP2895706A1 (fr) |
JP (1) | JP2015527526A (fr) |
KR (1) | KR20150038481A (fr) |
CN (1) | CN104508257A (fr) |
AU (1) | AU2013296592A1 (fr) |
BR (1) | BR112015002205A2 (fr) |
CA (1) | CA2879405A1 (fr) |
MX (1) | MX2015001504A (fr) |
RU (1) | RU2015101907A (fr) |
WO (1) | WO2014022451A1 (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3023320B1 (fr) | 2014-07-03 | 2017-03-10 | Ifp Energies Now | Systeme et procede de stockage et de recuperation d'energie par gaz comprime avec stockage de la chaleur au moyen d'un echangeur radial |
US10215060B2 (en) | 2014-11-06 | 2019-02-26 | Powerphase Llc | Gas turbine efficiency and power augmentation improvements utilizing heated compressed air |
US10526966B2 (en) | 2014-11-06 | 2020-01-07 | Powerphase Llc | Gas turbine efficiency and power augmentation improvements utilizing heated compressed air and steam injection |
ES2961715T3 (es) | 2017-11-16 | 2024-03-13 | Ihi Corp | Dispositivo de almacenamiento de energía |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2074800A1 (fr) * | 1970-01-29 | 1971-10-08 | Waeselynck Raymond | Procédé et dispositifs d'échange de chaleur continu sans contact direct et appareils en comportant application |
US4727930A (en) * | 1981-08-17 | 1988-03-01 | The Board Of Regents Of The University Of Washington | Heat transfer and storage system |
US5275004A (en) * | 1992-07-21 | 1994-01-04 | Air Products And Chemicals, Inc. | Consolidated heat exchanger air separation process |
JP4413334B2 (ja) * | 1999-10-20 | 2010-02-10 | アルストム株式会社 | 再生式二酸化炭素分離装置及び二酸化炭素分離システム |
DE10149806C2 (de) * | 2001-10-09 | 2003-11-13 | Deutsch Zentr Luft & Raumfahrt | Solarturmkraftwerk |
DE10208487B4 (de) * | 2002-02-27 | 2004-02-12 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zur Nutzung der Wärme hocherhitzter Heißluft |
DE102004019801B4 (de) * | 2004-04-23 | 2011-01-13 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Gas-Sand-Wärmetauscher |
NZ592301A (en) * | 2008-10-07 | 2012-08-31 | Ben Enis | Method and apparatus for using compressed air to increase the efficiency of a fuel driven turbine generator |
BRPI0920949B1 (pt) * | 2008-11-24 | 2020-10-27 | Ares Turbine As | Turbina a gás para transformar energia térmica em trabalho mecânico |
US20110094229A1 (en) * | 2009-10-27 | 2011-04-28 | Freund Sebastian W | Adiabatic compressed air energy storage system with combustor |
US20110094231A1 (en) * | 2009-10-28 | 2011-04-28 | Freund Sebastian W | Adiabatic compressed air energy storage system with multi-stage thermal energy storage |
US8347629B2 (en) * | 2009-10-30 | 2013-01-08 | General Electric Company | System and method for reducing moisture in a compressed air energy storage system |
EP2400120A1 (fr) * | 2010-06-23 | 2011-12-28 | ABB Research Ltd. | Système de stockage d'énergie thermoélectrique |
US8978380B2 (en) * | 2010-08-10 | 2015-03-17 | Dresser-Rand Company | Adiabatic compressed air energy storage process |
CN102580705B (zh) * | 2012-02-29 | 2013-10-16 | 上海克硫环保科技股份有限公司 | 热能综合利用型活性焦净化再生处理系统及方法 |
-
2012
- 2012-07-31 US US13/563,142 patent/US20140033714A1/en not_active Abandoned
-
2013
- 2013-07-31 EP EP13748194.1A patent/EP2895706A1/fr not_active Withdrawn
- 2013-07-31 WO PCT/US2013/052810 patent/WO2014022451A1/fr active Application Filing
- 2013-07-31 CA CA2879405A patent/CA2879405A1/fr active Pending
- 2013-07-31 CN CN201380040843.8A patent/CN104508257A/zh active Pending
- 2013-07-31 AU AU2013296592A patent/AU2013296592A1/en not_active Abandoned
- 2013-07-31 MX MX2015001504A patent/MX2015001504A/es unknown
- 2013-07-31 RU RU2015101907A patent/RU2015101907A/ru not_active Application Discontinuation
- 2013-07-31 BR BR112015002205A patent/BR112015002205A2/pt not_active IP Right Cessation
- 2013-07-31 KR KR20157005203A patent/KR20150038481A/ko not_active Application Discontinuation
- 2013-07-31 JP JP2015525526A patent/JP2015527526A/ja active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2014022451A1 * |
Also Published As
Publication number | Publication date |
---|---|
BR112015002205A2 (pt) | 2017-08-01 |
JP2015527526A (ja) | 2015-09-17 |
CA2879405A1 (fr) | 2014-02-06 |
US20140033714A1 (en) | 2014-02-06 |
KR20150038481A (ko) | 2015-04-08 |
RU2015101907A (ru) | 2016-09-27 |
CN104508257A (zh) | 2015-04-08 |
MX2015001504A (es) | 2015-04-08 |
AU2013296592A1 (en) | 2015-02-05 |
WO2014022451A1 (fr) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9938896B2 (en) | Compressed air energy storage and recovery | |
US10895409B2 (en) | Thermal storage system charging | |
CN101720380B (zh) | 用于存储和返还电能的装置和方法 | |
CA2292488C (fr) | Recuperation de chaleur residuaire dans un convertisseur d'energie organique au moyen d'un cycle liquide intermediaire | |
US8739536B2 (en) | Regulating the temperature of a heat regenerator used in an installation for storing energy by adiabatic compression of air | |
EP3255266B1 (fr) | Système et procédé de stockage d'énergie d'air comprimé hybride | |
US20110016864A1 (en) | Energy storage system | |
CN101185827A (zh) | 去除气体中水分及硅氧烷的系统及方法 | |
JP2010011732A (ja) | エネルギを貯蔵及び供給するためのエネルギ貯蔵システム及び方法 | |
US20140033714A1 (en) | Regenerative thermal energy system and method of operating the same | |
US10677162B2 (en) | Grid scale energy storage systems using reheated air turbine or gas turbine expanders | |
CN103608091B (zh) | 利用废热来车载回收和存储来自机动车内燃机废气的co2的直接致密化方法和系统 | |
US20150260053A1 (en) | System and method for generating electric energy | |
CN101529055A (zh) | 热力发动机系统 | |
EP3146182B1 (fr) | Système et procédé de production d'énergie électrique | |
US20100150713A1 (en) | Rotating-Plate Radial Turbine in Gas-Turbine-Cycle Configurations | |
FR3133431A1 (fr) | Pompe a chaleur a deux systemes de stockage et restitution d’energie thermique | |
US20140109563A1 (en) | Method and apparatus for storing energy using a combined heat and pressure storage device | |
US10557411B2 (en) | Compressed air energy system | |
US20100300099A1 (en) | Air-medium power system | |
WO2023170300A1 (fr) | Pompe a chaleur a deux systemes de stockage et restitution d'energie thermique | |
RU2370386C1 (ru) | Газотурбовоз и силовая установка газотурбовоза | |
WO2016025562A1 (fr) | Moteur à combustion externe et procédé associé | |
WO2010024705A1 (fr) | Installation énergétique autonome (et variantes) et dispositif de recyclage de la chaleur de produits de combustion gazeux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150302 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180201 |