MOF MIS EN FORME PAR EXTRUSION ET PASTILLAGE AVEC UN LIANT HYDRAULIQUE PRESENTANT DES PROPRIETES MECANIQUES AMELIOREES ET SON PROCEDE DE PRÉPARATION
La présente invention concerne le domaine des matériaux hybrides organique-inorganique cristallisés (MHOIC), en particulier, celui de leur mise en forme en vue d'une utilisation dans des applications industrielles pour la catalyse, le stockage ou la séparation. Plus précisément cette invention concerne un nouveau matériau hybride cristallisé organique -inorganique (MHOIC) mis en forme au moyen d'une formulation liante comprenant au moins un liant hydraulique. La présente invention concerne également le mode de préparation dudit nouveau (MHOIC) mis en forme.
Art antérieur
Dans toute la suite du texte, on entend par matériaux hybrides organique-inorganique cristallisés (MHOIC) tout matériau cristallisé contenant des entités organiques et inorganiques (atomes, clusters) reliées par des liaisons chimiques. Parmi cette classe de matériaux nous pouvons citer sans être exhaustifs les MOF (Métal Organic Framework selon la terminologie anglo-saxonne), les polymères de coordination, les ZIFs (ou Zeolitic Imidazolate Frameworks selon la terminologie anglo-saxonne), les MILs (ou Matériaux de l'Institut Lavoisier), les IRMOFs (ou IsoReticular Métal Organic Framework selon la terminologie anglo-saxonne).
Lesdits matériaux hybrides organique-inorganique cristallisés (MHOIC) ont été décrits avec des premiers exemples dans les années 1960, et font l'objet d'un nombre croissant de publications. L'effervescence autour de ces matériaux a permis d'atteindre une diversité structurale avancée en peu de temps (Férey G., l'Actualité Chimique, janvier 2007, n°304). Conceptuellement, lesdits matériaux hybrides poreux à matrice mixte organique -inorganique (MHOIC) sont assez semblables aux matériaux poreux à squelette inorganique. Comme ces derniers, ils associent des entités chimiques en donnant naissance à une porosité. La principale différence réside dans la nature de ces entités. Cette différence est particulièrement avantageuse et est à l'origine de toute la versatilité de cette catégorie de matériaux hybrides. En effet, la taille des pores devient, par l'utilisation de ligands organiques, ajustable par le biais de la longueur de la chaîne carbonée desdits ligands organiques. La charpente, qui dans le cas des matériaux poreux inorganiques, ne peut accepter que quelques éléments (Si, Al, Ge, Ga, P éventuellement Zn) peut, dans ce cas, accueillir tous les cations.
Il apparaît donc clairement que cette famille de matériaux hybrides organique -inorganique cristallisés (MHOIC) permet une multiplicité de structures et par conséquent comprend des solides finement adaptés aux applications qui leur sont destinées.
Les matériaux hybrides organique -inorganique cristallisés (MHOIC) comprennent au moins deux éléments appelés connecteurs et ligands dont l'orientation et le nombre des sites de liaisons sont déterminants dans la structure dudit matériau hybride. De la diversité de ces ligands et connecteurs naît, comme on l'a déjà précisé, une immense variété de matériaux hybrides.
Par ligand, on désigne la partie organique dudit matériau hybride. Ces ligands sont, le plus souvent, des di- ou tri-carboxylates ou des dérivés azotés, soufrés ou de la pyridine. Quelques ligands organiques fréquemment rencontrés sont représentés ci-après : bdc = benzène- 1 ,4-dicarboxylate, btc = benzène-l,3,5-tricarboxylate, ndc = naphtalène-2,6-dicarboxylate, bpy = 4,4'-bipyridine, hfipbb = 4,4'- (hexafluororisopropylidene)-bisbenzoate, cyclam = 1,4,8,11-tetraazacyclotetradecane, imz = imidazolates.
Par connecteur, on désigne l'entité inorganique dudit matériau hybride. Il peut s'agir d'un cation seul, d'un dimère, trimère ou tétramère ou encore d'une chaîne, d'un plan ou d'un cluster.
Les équipes de Yaghi et Férey ont ainsi décrit un nombre important de nouveaux matériaux hybrides organique-inorganique cristallisés (MHOIC) (série des MOF - " Métal Organic Framework " - et série des MIL - " Matériaux de l'Institut Lavoisier " - respectivement). De nombreuses autres équipes ont suivi cette voie et aujourd'hui le nombre de nouveaux matériaux hybrides décrits est en pleine expansion. Le plus souvent, les études visent à mettre au point des structures ordonnées, présentant des volumes poreux extrêmement importants, une bonne stabilité thermique et des fonctionnalités chimiques ajustables.
Par exemple, Yaghi et al. décrivent une série de structures à base de bore dans la demande de brevet US 2006/0154807 et indiquent leur intérêt dans le domaine du stockage des gaz. Le brevet US 7.202.385 divulgue un récapitulatif particulièrement complet des structures décrites dans la littérature et illustre parfaitement la multitude de matériaux hybrides existants à ce jour.
En outre, cette variété de matériau peut être encore accrue par des méthodes de fonctionnalisation récemment décrites dans la littérature (Savonnet et al., Generic postfunctionalization route from amino-derived metal-organic frameworks, J. Am. Chem. Soc, 132 (2010) 4518-4519).
Dans la suite du texte, pour des raisons de simplicité on utilisera de façon équivalente les acronymes MHOIC ou MOF pour décrire l'ensemble des matériaux hybrides cristallisés décrits précédemment y compris les matériaux obtenus par post-modification de ces derniers (imprégnation, dépôt de phases actives, fonctionnalisation...).
La synthèse des matériaux hybrides organique -inorganique cristallisés (MHOIC) est particulièrement documentée à la fois dans la littérature brevet et dans la littérature ouverte. Or, ces poudres doivent être mises en forme afin d'envisager une utilisation dans des applications industrielles et dans ce domaine, peu de références sont disponibles comme indiqué par Tagliabue et al.
La mise en forme des matériaux hybrides organique -inorganique cristallisés (MHOIC) est généralement abordée par le biais du procédé de compaction : soit en compression directe (Tagliabue et al., Méthane storage on CPO-27 pellets, J. Porous Mater (2011) 18, 289-296), soit en ajoutant des liants polymère (Finsy et al., Séparation of C02/CH4 mixtures with the MIL53(A1) metal-organic framework, Microporous and mesoporous materials, 120 (2009) 221-227) ou plus rarement une alumine ou des noirs de carbone (Cavenati et al., Métal organic framework adsorbent for biogas upgrading, Ind. Eng. Chem. Res. 2008, 47, 6333-6335).
Toutefois, ce type de mise en forme est inadapté à des applications en présence d'eau ou avec des réactifs/produits liquides. Dans ces cas de figure, la résistance mécanique conférée par des liants polymères solubles ne résiste pas aux longues périodes d'utilisation industrielle. De même, dans le cas de la compression directe sans liant, les forces de capillarité et la pénétration des solvants peuvent entraîner la destruction du matériau et une génération de fines aux conséquences désastreuses pour le procédé.
Un objectif de la présente invention est de fournir un nouveau matériau comprenant au moins un matériau hybride organique -inorganique cristallisé (MHOIC) mis en forme avec au moins un liant hydraulique, ledit matériau présentant des propriétés mécaniques accrues, notamment en terme de résistance mécanique et étant également résistant à une élévation de température compatible avec le matériau hybride organique-inorganique cristallisé (MHOIC) .
Un autre objectif de la présente invention est de fournir un procédé de préparation dudit matériau selon l'invention, ledit matériau obtenu présentant une bonne résistance mécanique et étant adapté à son utilisation en présence d'un solvant et donc dans un procédé industriel sur de longues périodes.
Résumé de l'invention :
La présente invention concerne un matériau comprenant au moins un matériau hybride organique- inorganique cristallisé (MHOIC) mis en forme avec une formulation liante comprenant au moins un liant hydraulique.
La présente invention concerne également un procédé de préparation dudit matériau selon l'invention comprenant au moins les étapes suivantes :
a) une étape de mélange d'au moins une poudre d'au moins un matériau hybride organique -inorganique cristallisé (MHOIC) avec au moins une poudre d'au moins un liant hydraulique et au moins un solvant pour obtenir un mélange,
b) une étape de mise en forme du mélange obtenu à l'issue de l'étape a).
Un avantage de la présente invention est de proposer un procédé de préparation permettant l'obtention d'un matériau comprenant au moins un matériau hybride organique-inorganique cristallisé (MHOIC) mis en forme avec une formulation liante comprenant au moins un liant hydraulique, ledit matériau présentant des propriétés mécaniques accrues, notamment en terme de résistance mécanique et étant résistant à une élévation de température, ce qui permet d'envisager la mise en œuvre dudit matériau dans des procédés en présence d'eau ou de solvants et à des températures relativement élevées mais tout de même limitées par la tenue en température du matériau hybride organique -inorganique cristallisé (MHOIC) .
Un autre avantage de la présente invention est de proposer un unique procédé de préparation dudit matériau selon l'invention, pouvant être mis en œuvre quelle que soit la teneur en matériau hybride organique-inorganique cristallisé (MHOIC), ledit procédé permettant d'obtenir des matériaux présentant une bonne résistance mécanique et donc utilisables en lit fixe.
Description détaillée
Conformément à l'invention, ledit matériau comprend au moins un matériau hybride organique- inorganique cristallisé (MHOIC) mis en forme avec une formulation liante comprenant au moins un liant hydraulique.
Le(s)dit(s) matériau(x) hybride(s) organique -inorganique cristallisé(s) utilisé(s) (MHOIC) dans le matériau selon la présente invention sont de préférence choisis parmi les MOF (Métal Organic Framework selon la terminologie anglo-saxonne), les ZIFs (ou Zeolitic Imidazolate Frameworks selon
la terminologie anglo-saxonne), les MILs (ou Matériaux de l'Institut Lavoisier), les IRMOFs (ou IsoReticular Métal Qrganic Framework selon la terminologie anglo-saxonne), seuls ou en mélange. De manière préférée, Le(s)dit(s) matériau(x) hybride(s) organique-inorganique cristallisé(s) utilisé(s) (MHOIC) dans le matériau selon la présente invention sont choisis parmi la liste suivante : SIM-1, HKUST, CAU-1, MOF-5, MOF-38, MOF-305, MOF-37, MOF-12, IRMOF-2 à -16, MIL-53, MIL-68, MIL-101, ZIF-8, ZIF-11, ZIF-67, ZIF-90.
Le(s)dit(s) liant(s) hydraulique(s) de la formulation liante avec le(s)quel(s) ledit matériau hybride organique-inorganique cristallisé est mis en forme est (sont) avantageusement choisi(s) parmi les liants hydrauliques bien connus de l'Homme du métier. De manière préférée, le(s)dit(s) liant(s) hydraulique(s) est (sont) choisi(s) parmi le ciment Portland, les ciments alumineux tels que par exemple le ciment fondu, Ternal, SECAR 51, SECAR 71, SECAR 80, les ciments sulfoalumineux, le plâtre, le ciments à liaisons phosphate tels que par exemple le ciment phospho-magnésien, les ciments au laitier de haut fourneau et les phases minérales choisies parmi l'alite (Ca3Si05), la bélite (Ca2Si04), l'alumino-ferrite (ou brownmillérite : de demi-formule Ca2(Al,Fe3+)205)), l'aluminate tricalcique (Ca3Al206), des aluminates de calcium comme l'aluminate monocalcique (CaAl204), l'hexoaluminate calcique (CaAli20i8), pris seul ou en mélange.
De manière encore plus préférée le liant hydraulique est choisi parmi le ciment Portland et les ciments alumineux.
Ledit liant hydraulique permet la mise en forme dudit matériau selon l'invention et lui confère une bonne résistance mécanique.
Ladite formulation liante comprenant au moins un liant hydraulique peut également éventuellement comprendre au moins une source de silice.
Dans le cas où ladite formulation liante comprend également au moins une source de silice, ladite source de silice est avantageusement choisie parmi la silice de précipitation et la silice issue de sous- produits comme les cendres volantes telle que par exemple les particules silico-alumineuses ou silico- calciques, et les fumées de silice.
De préférence, la source de silice présente une taille inférieure à 10 μιη, et de façon préférée inférieure à 5 μιη, de manière encore préférée inférieure à Ιμιη.
De manière préférée, la source de silice est sous forme amorphe ou cristalline.
Ladite formulation liante comprenant au moins un liant hydraulique peut également éventuellement comprendre au moins un adjuvant organique.
Dans le cas où ladite formulation liante comprend également au moins un adjuvant organique, ledit adjuvant organique est avantageusement choisi parmi les dérivés de cellulose, les polyéthylène glycols, les acides aliphatiques mono-carboxyliques, les composés aromatiques alkylés, les sels d'acide sulphonique, les acides gras, la polyvinyl pyrrolidone, l'alcool polyvinylique, la méthylcellulose, les polyacrylates, les polymétacrylates, le polyisobutène, le polytétrahydrofurane, l'amidon, les polymères de type polysaccharide (comme la gomme de xanthane), le scléroglucane, les dérivés de type cellulose hydroxyéthylée, la carboxyméthylcellulose, les lignosulfonates et les dérivés de galactomannane, pris seul ou en mélange.
Ledit adjuvant organique peut également être choisis parmi tous les additifs connus de l'Homme du métier.
De préférence, ledit matériau présente la composition suivante :
- 1 % à 99 % poids, de préférence de 5 % à 99 % poids, de manière préférée de 7 % à 99 % poids, et de manière très préférée de 10 % à 95 % poids d'au moins un matériau hybride organique-inorganique cristallisé (MHOIC),
- 1 % à 99 % poids, de préférence de 1 % à 90 % poids, de manière préférée de 1 % à 50 % poids, et de manière très préférée de 1 % à 20 % poids d'au moins un liant hydraulique,
- 0 % à 20 % poids, de préférence de 0 % à 15 % poids, de manière préférée de 0 % à 10 % poids, et de manière très préférée de 0 % à 5 % poids d'au moins une source de silice,
- 0 % à 20 % poids, de préférence de 1 % à 15 % poids, de manière préférée de 1 % à 10 % poids, et de manière très préférée de 1 % à 7 % poids d'au moins un adjuvant organique, les pourcentages poids étant exprimés par rapport au poids total dudit matériau et la somme des teneurs en chacun des composés dudit matériau étant égale à 100%. Ledit matériau selon la présente invention est avantageusement sous forme d'extrudés, de billes ou de pastilles.
Lesdits matériaux selon l'invention présentent des propriétés mécaniques accrues, notamment en terme de résistance mécanique, quelle que soit la teneur en matériau hybride organique -inorganique cristallisé (MHOIC) mise en œuvre, et sont résistants à une élévation de température, ce qui permet d'envisager la mise en œuvre dudit matériau dans des procédés en présence d'eau ou de solvants et à des températures relativement élevées mais tout de même limitées par la tenue en température du matériau hybride organique-inorganique cristallisé (MHOIC).
Lesdits matériaux selon l'invention peuvent donc être employés pour des applications en catalyse et séparation.
En particulier, lesdits matériaux selon l'invention présentent une résistance mécanique mesurée par le test d'écrasement grain à grain, notée par la suite EGG au moins supérieure à 0,4 daN/mm et de préférence au moins supérieure à 0,9 daN/mm et de manière préférée au moins supérieure à 1 daN/mm. Ces propriétés de résistance mécanique sont maintenues, y compris après un traitement en température jusqu'à 500°C (lorsque le matériau hybride organique-inorganique cristallisé associé résiste à ces températures) et pour des compositions de matériaux comprenant jusqu'à 95% en poids de matériau hybride organique-inorganique cristallisé par rapport à la masse totale dudit matériau.
On entend par résistance mécanique à l'écrasement latéral, la résistance mécanique du matériau selon l'invention déterminée par le test d'écrasement grain à grain (EGG). Il s'agit d'un test normalisé (norme ASTM D4179-01) qui consiste à soumettre un matériau sous forme d'objet millimétrique, comme une bille, une pastille ou un extrudé, à une force de compression générant la rupture. Ce test est donc une mesure de la résistance en traction du matériau. L'analyse est répétée sur un certain nombre de solides pris individuellement et typiquement sur un nombre de solides compris entre 10 et 200. La moyenne des forces latérales de rupture mesurées constitue l'EGG moyen qui est exprimé dans le cas des granules en unité de force (N), et dans le cas des extrudés en unité de force par unité de longueur (daN/mm ou décaNewton par millimètre de longueur d'extrudé).
La présente invention concerne également un procédé de préparation dudit matériau selon l'invention comprenant au moins les étapes suivantes :
a) une étape de mélange d'au moins une poudre d'au moins un matériau hybride organique -inorganique cristallisé (MHOIC), avec au moins une poudre d'au moins un liant hydraulique et au moins un solvant pour obtenir un mélange,
b) une étape de mise en forme du mélange obtenu à l'issue de l'étape a). Étape a) :
Conformément à l'invention, ladite étape a) consiste en le mélange d'au moins une poudre d'au moins un matériau hybride organique-inorganique cristallisé (MHOIC), avec au moins une poudre d'au moins un liant hydraulique et au moins un solvant pour obtenir un mélange.
De préférence, au moins une source de silice et éventuellement au moins un adjuvant organique sont également mélangés au cours de l'étape a).
De manière préférée, au moins ladite source de silice et éventuellement au moins ledit adjuvant organique peuvent être mélangés sous forme de poudre ou en solution dans ledit solvant.
Ledit solvant est avantageusement choisi parmi l'eau, l'éthanol, les alcools et les aminés. De préférence, ledit solvant est l'eau.
Dans le cadre de l'invention, il est tout à fait envisageable de procéder à des mélanges de plusieurs poudres de matériaux hybrides organique -inorganique cristallisés (MHOIC) différents et/ou de poudres de sources de silice différentes et/ou de poudres de liants hydrauliques différents.
L'ordre dans lequel le mélange des poudres d'au moins un matériau hybride organique-inorganique cristallisé (MHOIC), d'au moins un liant hydraulique, éventuellement d'au moins une source de silice et éventuellement d'au moins un adjuvant organique dans le cas où ceux-ci sont mélangés sous forme de poudres, avec au moins un solvant est réalisé est indifférent.
Le mélange desdites poudres et dudit solvant peut avantageusement être réalisé en une seule fois. Les ajouts de poudres et de solvant peuvent également avantageusement être alternés.
De préférence, lesdites poudres d'au moins un matériau hybride organique-inorganique cristallisé (MHOIC), d'au moins un liant hydraulique, éventuellement d'au moins une source de silice et éventuellement d'au moins un adjuvant organique, dans le cas ou ceux-ci sont mélangés sous forme de poudres, sont d'abord pré-mélangées, à sec, avant l'introduction du solvant.
Lesdites poudres pré-mélangées sont ensuite avantageusement mises en contact avec ledit solvant. Dans un autre mode de réalisation, au moins ladite source de silice et au moins ledit adjuvant organique peuvent préalablement être en solution ou suspension dans ledit solvant quand ledit solvant est mis en contact avec les poudres d'au moins un matériau hybride organique -inorganique cristallisé (MHOIC) et d'au moins un liant hydraulique. La mise en contact avec ledit solvant conduit à l'obtention d'un mélange qui est ensuite malaxé. De préférence, ladite étape a) de mélange est réalisée par malaxage, en batch ou en continu.
Dans le cas où ladite étape a) est réalisée en batch, ladite étape a) est avantageusement réalisée dans un malaxeur de préférence équipé de bras en Z, ou à cames, ou dans tout autre type de mélangeur tel que par exemple un mélangeur planétaire. Ladite étape a) de mélange permet d'obtenir un mélange homogène des constituants pulvérulents.
De préférence, ladite étape a) est mise en œuvre pendant une durée comprise entre 5 et 60 min, et de préférence entre 10 et 50 min. La vitesse de rotation des bras du malaxeur est avantageusement comprise entre 10 et 75 tours/minute, de façon préférée entre 25 et 50 tours/minute. De préférence,
- de 1 % à 99 % poids, de préférence de 5 % à 99 % poids, de manière préférée de 7 % à 99 % poids, et de manière très préférée de 10 % à 95 % poids d'au moins une poudre d'au moins un matériau hybride organique -inorganique cristallisé (MHOIC),
- de 1 % à 99 % poids, de préférence de 1 % à 90 % poids, de manière préférée de 1 % à 50 % poids, et de manière très préférée de 1 % à 20 % poids d'au moins une poudre d'au moins un liant hydraulique,
- éventuellement de 0 % à 20 % poids, de préférence de 0 % à 15 % poids, de manière préférée de 0 % à 10 % poids, et de manière très préférée de 0 % à 5 % poids d'au moins une source de silice, de préférence sous forme de poudre,
- éventuellement de 0 % à 20 % poids, de préférence de 1 % à 15 % poids, de manière préférée de 1 % à 10 % poids, et de manière très préférée de 1 % à 7 % poids d'au moins un adjuvant organique, de préférence sous forme de poudre,
sont introduits dans l'étape a), les pourcentages poids étant exprimés par rapport à la quantité totale de composés et de préférence de poudres introduites dans ladite étape a) et la somme des quantités de chacun des composés et de préférence de poudres introduites dans ladite étape a) étant égale à 100%.
Étape b) :
Conformément à l'invention, ladite étape b) consiste en la mise en forme du mélange obtenu à l'issue de l'étape a) de mélange.
De préférence, le mélange obtenu à l'issue de l'étape a) de mélange est avantageusement mis en forme par extrusion ou par pastillage.
Dans le cas où la mise en forme du mélange issu de l'étape a) est réalisée par extrusion, ladite étape b) est avantageusement réalisée dans une extrudeuse piston, mono-vis ou bi-vis.
Dans ce cas, un adjuvant organique peut éventuellement être ajouté dans l'étape a) de mélange. La présence dudit adjuvant organique facilite la mise en forme par extrusion. Ledit adjuvant organique est décrit plus haut et est introduit dans l'étape a) dans les proportions indiquées plus haut.
Dans le cas où ledit procédé de préparation est mis en œuvre en continu, ladite étape a) de mélange peut être couplée avec l'étape b) de mise en forme par l'extrusion dans un même équipement. Selon
cette mise en œuvre, l'extrusion du mélange nommé aussi "pâte malaxée" peut être réalisée soit en extrudant directement en bout de malaxeur continu de type bi-vis par exemple, soit en reliant un ou plusieurs malaxeurs batch à une extrudeuse. La géométrie de la filière, qui confère leur forme aux extrudés, peut être choisie parmi les filières bien connues de l'Homme du métier. Elles peuvent ainsi être par exemple, de forme cylindrique, multilobée, cannelée ou à fentes.
Dans le cas où la mise en forme du mélange issu de l'étape a) est réalisée par extrusion, la quantité de solvant ajoutée dans l'étape a) de mélange est ajustée de façon à obtenir, à l'issue de cette étape et quelle que soit la variante mise en œuvre, un mélange ou une pâte qui ne coule pas mais qui n'est pas non plus trop sèche afin de permettre son extrusion dans des conditions convenables de pression bien connues de l'Homme du métier et dépendantes de l'équipement d'extrusion utilisé.
De préférence, ladite étape b) de mise en forme par extrusion est opérée à une pression d'extrusion supérieure à 1 MPa et de préférence comprise entre 3 MPa et 10 MPa.
Dans le cas où la mise en forme du mélange issu de l'étape a) est réalisée par pastillage, la quantité de solvant mise en œuvre dans l'étape a) de mélange est ajustée afin de permettre un remplissage facile des matrices de pastillages et un pastillage dans des conditions convenables de pression bien connues de l'Homme du métier et dépendantes de l'équipement de pastillage utilisé. De préférence, ladite étape b) de mise en forme par pastillage est opérée à une force de compression supérieure à IkN et de préférence comprise entre 2kN et 20kN. La géométrie de la matrice de pastillage, qui confère leur forme aux pastilles, peut être choisie parmi les matrices bien connues de l'Homme du métier. Elles peuvent ainsi être par exemple, de forme cylindrique. Les dimensions des pastilles (diamètre et longueur) sont adaptées pour convenir aux besoins du procédé dans lequel elles seront utilisées. De préférence les pastilles ont un diamètre compris entre 0,3 et 10mm et un rapport diamètre sur hauteur de préférence entre 0,25 et 10.
Le procédé de préparation dudit matériau selon l'invention peut également éventuellement comprendre une étape c) de maturation du matériau mis en forme obtenu à l'issue de l'étape b). Ladite étape de maturation est avantageusement réalisée à une température comprise entre 0 et 300°C, de préférence entre 20 et 200°C et de manière préférée entre 20 et 150°C, pendant une durée comprise entre 1 minute et 72 heures, de préférence entre 30 minutes et 72 h, et de manière préférée entre 1 h et 48 h et de manière plus préférée entre 1 et 24h.
De préférence, ladite étape de maturation est effectuée sous air et de préférence sous air humide avec une humidité relative entre 20 et 100% et de préférence entre 70 et 100%. Cette étape permet une bonne hydratation du matériau nécessaire pour une prise complète du liant hydraulique. Le matériau mis en forme issu de l'étape b) de mise en forme ou c) de maturation, peut également éventuellement subir une étape d) de calcination à une température comprise entre 50 et 500°C, de préférence entre 100 et 300°C pendant une durée comprise entre 1 et 6 h et de préférence comprise entre 1 et 4h. Cette étape de calcination est notamment utile afin d'éliminer les adjuvants organiques utilisés afin de faciliter la mise en forme du matériau.
Ladite étape d) de calcination optionnelle est avantageusement mise en œuvre sous un flux gazeux comprenant de l'oxygène, par exemple de préférence les extrudés sont calcinés sous air sec ou avec différents taux d'humidité ou encore traités en température en présence d'un mélange gazeux comprenant un gaz inerte, de préférence l'azote, et de l'oxygène. Le mélange gazeux utilisé comprend de préférence au moins 5 % volume, voire de préférence au moins 10 %volume d'oxygène.
La température de ladite étape d) de calcination est avantageusement comprise entre 50°C et la température de dégradation du matériau hybride organique -inorganique cristallisé (MHOIC) ou du plus fragile des matériaux hybrides organique-inorganiques cristallisés (MHOIC) utilisés dans le matériau selon la présente invention, de préférence entre 150 et 350°C sur une durée comprise entre 1 et 6 h et de préférence entre 2 et 4 h.
A l'issue du procédé de préparation du matériau selon l'invention, le matériau obtenu se présente sous forme d'extrudés ou de pastilles.
Cependant, il n'est pas exclu que lesdits matériaux obtenus soient ensuite, par exemple, introduits dans un équipement permettant d'arrondir leur surface, tel qu'un drageoir ou tout autre équipement permettant leur sphéronisation.
Ledit procédé de préparation selon l'invention permet d'obtenir des matériaux selon l'invention présentant des valeurs de résistance mécanique mesurées par écrasement grain à grain supérieures à 0,4 daN/mm, de préférence supérieure à 0,9 daN/mm et de manière préférée supérieure à 1 daN/mm, quelle que soit la teneur en (MHOIC) mise en œuvre.
Le matériau obtenu à l'issue du procédé de préparation selon l'invention peut être utilisé pour des applications en catalyse, séparation, purification, captage...
Ledit matériau est mis en contact avec la charge gazeuse à traiter dans un réacteur, qui peut être soit un réacteur en lit fixe, soit un réacteur radial, ou bien encore un réacteur en lit fluidisé.
Dans le cas d'une application dans les domaines de la catalyse et des séparations, la valeur d'EGG attendue est supérieure à 0,9 daN.mnï1, de préférence supérieure à 1,0 daN.mm 1.
Les exemples ci- dessous illustrent l'invention sans en limiter la portée.
EXEMPLES
Afin d'exemplifier l'invention, plusieurs mode de préparation sont décrits, sur la base de la mise en forme d'un matériau hybride organique-inorganique cristallisé (MHOIC) : le ZIF-8, disponible commercialement sous l'appellation Basolite Z1200 (Sigma Aldrich).
Exemple 1 (comparatif) :
La poudre de ZIF-8 est pastillée à l'aide d'une machine de compression de marque MTS instrumentée en pression et déplacement et équipée d'un système composé d'une matrice et de poinçons et permettant la fabrication de compacts. Le diamètre du dispositif sélectionné pour ces essais est de 4 mm. La matrice est alimentée en poudre de ZIF-8 et une force de 7 kN est appliquée au système.
Les compacts obtenus présentent les caractéristiques suivantes : SBET =1340m2/g, EGG=0,7 daN/mm. L'analyse de ces compacts par diffraction des rayons X montre une perte de cristallinité induite par cette méthode de mise en forme qui se traduit également par une diminution de la surface spécifique (qui était de 1430m2/g sur la poudre de Basolite Z1200). Les pastilles se détruisent facilement au contact d'un solvant (tests réalisés avec de l'eau et de l'éthanol).
Exemple 2 (MHOIC mis en forme par extrusion selon l'invention) :
Préparation du solide 65% de MHOIC : les poudres de MOF ZIF-8 (67% massiques), de silice (5,8%), de ciment portland (Black label produit par Dyckerhoff) (22,4%) et de methocel (K15M) (4,8%) sont introduites et pré-mélangées dans un malaxeur de marque Brabender. L'eau est ajoutée goutte à goutte jusqu'à obtention d'une pâte et le malaxage est poursuivi pendant 20 minutes. La pâte obtenue est ensuite extrudée sur extrudeuse piston de marque MTS en utilisant une filière cylindrique de diamètre 3 mm.
Les extrudés sont stockés dans les conditions ambiantes le temps de la prise du ciment (48 heures). Les extrudés obtenus présentent une valeur d'EGG de 2,5 daN/mm et une SBET de 900m2/g.
Exemple 3 (MHOIC mis en forme par extrusion selon l'invention : effet du post-traitement) Préparation du solide 65% MHOIC : la préparation est similaire à celle de l'exemple 2 à la différence près que le matériau mis en forme par extrusion subit ensuite une étape de maturation à une température de 20°C pendant 48h, sous air humide comprenant 100% poids d'eau.
Dans ce cas, la résistance mécanique est encore améliorée avec un EGG de 3,2 daN/mm. Exemple 4 (MHOIC mis en forme par extrusion selon l'invention) :
Préparation du solide 80,9% ZIF-8 : le mode de préparation est identique à l'exemple 2 à la différence près que les proportions massiques des différents composants sont : 11,4% de ciment portland (Black label produit par Dyckerhoff), 2,9% de silice et 4,8% de méthocel et que le matériau mis en forme par extrusion subit ensuite une étape de maturation à une température de 20°C pendant 48h, sous air humide comprenant 100% poids d'eau.
Les extrudés obtenus présentent une valeur d'EGG de 2 daN/mm et une SBET de I lOOmVg.
Exemple 5 ( MHOIC mis en forme par pastillage selon l'invention) :
Les poudres de ZIF-8 (90% massiques), de ciment portland (Black label produit par Dyckerhoff) (5%) et de methocel (K15M) (5%) sont introduites et pré-mélangées dans un malaxeur de marque Brabender avec 10 % du poids total des poudres d'eau pendant 15 minutes. Le mélange obtenu est pastillé à l'aide d'une machine de compression de marque MTS instrumentée en pression et déplacement et équipée d'un système composé d'une matrice et de poinçons et permettant la fabrication de compacts. Le diamètre du dispositif sélectionné pour ces essais est de 4 mm. Une force de 5kN est appliquée au système. Le matériau mis en forme par pastillage subit ensuite une étape de maturation à une température de 20°C pendant 4 jours, sous air humide comprenant 100% poids d'eau. Les compacts obtenus présentent les caractéristiques suivantes : SBET =1150m2/g, EGG=1 daN/mm. Les pastilles ne se détruisent pas au contact d'un solvant (tests réalisés avec de l'eau et de l'éthanol).
Exemple 6 (MHOIC mis en forme par extrusion selon l'invention) :
Préparation du solide 95% ZIF-8 : le mode de préparation est identique à l'exemple 2 à la différence près que les proportions massiques des différents composants sont : 4% de ciment portland (Black label produit par Dyckerhoff) et 1% de méthocel et que le matériau mis en forme subit ensuite une
étape de maturation à une température de 20°C pendant 48h, sous air humide comprenant 100% poids d'eau 48h.
Les extrudés obtenus présentent une valeur d'EGG de 1,1 daN/mm et une SBET de 1350m2/g.