EP2894389B1 - Ersatz von Glühlampen an Bahnsignalen durch Leuchtdioden - Google Patents

Ersatz von Glühlampen an Bahnsignalen durch Leuchtdioden Download PDF

Info

Publication number
EP2894389B1
EP2894389B1 EP14151166.7A EP14151166A EP2894389B1 EP 2894389 B1 EP2894389 B1 EP 2894389B1 EP 14151166 A EP14151166 A EP 14151166A EP 2894389 B1 EP2894389 B1 EP 2894389B1
Authority
EP
European Patent Office
Prior art keywords
circuit arrangement
point
voltage
slave
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14151166.7A
Other languages
English (en)
French (fr)
Other versions
EP2894389A1 (de
Inventor
Mario Moser
Rolf Schmid
Bernhard Koller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility AG
Original Assignee
Siemens Mobility AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility AG filed Critical Siemens Mobility AG
Priority to EP14151166.7A priority Critical patent/EP2894389B1/de
Publication of EP2894389A1 publication Critical patent/EP2894389A1/de
Application granted granted Critical
Publication of EP2894389B1 publication Critical patent/EP2894389B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/12Visible signals
    • B61L5/18Light signals; Mechanisms associated therewith, e.g. blinders
    • B61L5/1809Daylight signals
    • B61L5/1881Wiring diagrams for power supply, control or testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2207/00Features of light signals
    • B61L2207/02Features of light signals using light-emitting diodes (LEDs)

Definitions

  • LEDs Light-emitting diodes
  • the rail network is essentially finished in many countries, incandescent lamps are widely used. They should therefore be able to be replaced by light emitting diodes on systems that are in operation.
  • the existing control circuit which represents a significant part of the approval of the system, should be able to be maintained. The possibility of such maintenance is called retrofit.
  • the special challenge with main and presignal signals lies in the precise current monitoring of the interlocking as well as the fact that the luminous points of a driving concept are switched on as series connection. Furthermore, the safety is to pay particular attention, since a failure of a luminous point can have an immediate endangerment of a train result.
  • the document WO03 / 096753 A1 discloses a circuit arrangement for operating a luminous sign, in particular an LED signal according to the preamble of claim 1.
  • LED-emitting diodes as a retrofit for main signals are not yet available.
  • LED-based luminous points require a special control element or a special configuration of the existing control and are currently only available for electronic signal boxes, which were designed from the start for operation with LEDs.
  • the present invention is therefore based on the object, a use of light emitting diodes in train signals then too if the interlocking has been designed for the operation of railway signals with incandescent lamps.
  • a circuit arrangement for a railway signal comprises several luminous points.
  • the luminous dots each form a driving concept in various combinations.
  • the circuit arrangement is designed for each driving concept to define exactly one of the luminous dots as a master point.
  • the circuit arrangement is designed to operate the luminous point defined as a master point of a driving concept with more than one impedance.
  • the circuit arrangement is configured to operate the master point with a fixed starting impedance and based on this to determine a voltage with which the driving concept is currently being operated.
  • a method for operating a railway signal with light-emitting diodes is presented.
  • the railway signal can be controlled by an interlocking, which is designed for a light bulb signal.
  • one of the luminous points of a driving concept is defined as a master point.
  • the driving concept comprises a selection of the luminous points of the railway signal.
  • the driving concept is switched on by the signal box. When switching on the driving concept, each of the luminous points of the driving concept initially assumes a fixed electrical starting impedance.
  • the voltage is determined above the master point. Based on the determined voltage, it is determined with which brightness value the signal box intends to operate the path signal.
  • the impedance of the master point is adjusted so that the master point is operated with the brightness value intended by the interlocking.
  • FIG. 1 shows a block diagram of a railway infrastructure which includes a signal box 2 and a railway signal 3 according to a preferred embodiment of the invention.
  • the path signal 3 comprises a plate 4 with luminous points 11, 12, 13, 14, 15, 16.
  • the path signal 3 also comprises a circuit arrangement 1 for driving the luminous points 11, 12, 13, 14, 15, 16.
  • the circuit arrangement 1 comprises a Step down converter 40 and a system 50 for monitoring one, several, or all luminous points 11, 12, 13, 14, 15, 16.
  • Driving terms H, F1, F2, F3, F5, F6 are selected by selecting the luminous points 11, 12, 13, 14, 15, 16 defines. The selections are also called combinations.
  • FIG. 2A-2F represent different driving concepts H, F1, F2, F3, F5, F6 using the example of the L-signal system of a main signal of the Swiss Federal Railways (SBB)
  • FIG. 2A shown driving term H means "stop" while in the Figures 2B-2F illustrated driving concepts F1, F2, F3, F5, F6 representing different speeds to be traveled.
  • the signal box 2 is configured to switch the train signal, respectively its driving terms H, F1, F2, F3, F5, F6 with voltages as if the luminous points 11, 12, 13, 14, 15, 16 of the railway signal 3 equipped with incandescent lamps ,
  • the driving terms H, F1, F2, F3, F5, F6 are switched by the interlocking 2, wherein for each driving concept H, F1, F2, F3, F5, F6 usually a separate wire to the train signal 3 is already laid while for the return line usually only one wire is used for the driving terms H, F1, F2, F3, F5, F6.
  • the interlocking 2 is designed so that it can control the path signals 3 with at least two different voltages, for example, at least one day voltage and a night voltage that is lower than the day voltage to account for the different brightness ratios.
  • the path signal 3 comprises the circuit arrangement 1.
  • the circuit arrangement 1 is designed so that it can be operated by the offset unit configured as the interlocking 2, and the driving terms H, F1, F2, F3, F5, F6 each by a serial circuit to the driving concept H, F1, F2, F3, F5, F6 belonging luminous points 11, 12, 13, 14, 15, 16 can turn on.
  • the circuit arrangement 1 is designed to operate exactly one of the luminous points 11, 12, 13, 14, 15, 16 as the master point M for each driving concept H, F1, F2, F3, F5, F6.
  • the circuit arrangement 1 is configured to operate the luminous point 11, 12, 13, 14, 15, 16 thus defined as master point M with more than one impedance.
  • the circuit arrangement 1 is designed to operate the master point M with a fixed starting impedance and based on this to determine a voltage with which the driving concept H, F1, F2, F3, F5, F6 is currently operated becomes.
  • the circuit arrangement 1 is configured to detect, based on the determined voltage, whether the signal box 2 currently operates the driving concept H, F1, F2, F3, F5, F6 with a day voltage or a night voltage.
  • the determined voltage represents a desired brightness value that would result if the interlocking were to drive a conventional incandescent lamp operated railway signal.
  • the circuit arrangement 1 is designed on the basis of the determined voltage to set the impedance of the master point M such that the light-emitting diode of the master point M is operated with the desired brightness value.
  • the circuit arrangement 1 is designed to operate those luminous points 11, 12, 13, 14, 15, 16 of a driving concept H, F1, F2, F3, F5, F6, which are not master point M, as slave points S.
  • the circuit arrangement 1 is therefore configured to control the further luminous points 11, 12, 13, 14, 15, 16 of the driving concept H, F1, F2, F3, F5, F6 defined as slave points, by the slave point S the determined voltage and a Impedance value with which the slave point S is to be operated, is transmitted.
  • the circuit arrangement 1 is designed to control the impedance of the slave point or points S of the driving concept, which light up or illuminate the slave points S equipped with a light-emitting diode with the desired brightness value.
  • the circuit arrangement 1 is configured to operate the slave point S with a fixed starting impedance and based on this to enable the master point M to determine a voltage with which the driving concept H, F1, F2, F3, F5, F6 is currently being operated.
  • the master point M is one, several or all driving terms covered by the circuit arrangement 1.
  • the slave points S by the circuit arrangement 1 includes.
  • the luminous dots 11, 12, 13, 14, 15, 16 are covered by the circuit arrangement 1.
  • FIGS. 3A to 3F show possible definitions of the luminous points 11, 12, 13, 14, 15, 16 of the in the FIGS. 2A to 2F Driving terms H, F1, F2, F3, F5, F6 as master points M and slave points S.
  • the luminous points 11, 12, 13, 14, 15, 16 are defined as master and slave points that at each driving concept H, F1, F2, F3, F5, F6 exactly one master point M is involved.
  • Zero to two slave points S are assigned to this master point M, whereby one slave point may be assigned to several master points.
  • the circuit arrangement 1 is designed to operate each of the luminous points 11, 12, 13, 14, 15, 16 of the driving concept H, F1, F2, F3, F5, F6 with the fixed starting impedance, and to switch on each of the slave points S. to register the driving concept and report this to the master point M.
  • the fixed starting impedance preferably coincides with an operating point of an incandescent lamp. This has the advantage that the present in the existing interlocking 2, set on the incandescent lamps used, control and monitoring circuit can be used.
  • FIG. 4 7 shows a known buck converter 40.
  • the buck converter 40 is used for realizing a variable load at the master point M, the slave point S, or generally at one, several or all of the luminous points 11, 12, 13, 14, 15, 16 used.
  • a variable load means a variable impedance.
  • the impedance can be selected within certain limits, since the duty cycle for the transistor T can not be resolved arbitrarily exactly.
  • the buck converter 40 comprises, for example, a switching element T1, an inductance L1 and a fixed load R L.
  • the switching element T1 is, for example, a transistor T1, which comprises a connection for a control circuit S.
  • T1 conducts: the current flows from the source DC via T1, L1 and RL.
  • L1 stores energy.
  • the source "sees” the impedance R L.
  • T1 blocks: the current flows through D1, L1 and RL.
  • L1 gives off energy.
  • the ON / OFF time ratio is selected at T1
  • the time average of the current taken from the DC source changes.
  • the mean value of the load which the source DC "sees” also changes.
  • the buck converter 40 was originally designed for DC voltage, but can also be a variable load to AC voltage, for example, by a bridge rectifier is connected upstream.
  • a further exemplary embodiment relates to a method for operating the path signal 3 with light-emitting diodes.
  • the railway signal 3 can be controlled by a signal box 2.
  • the signal box 3 is designed for a light bulb signal.
  • a driving concept H, F1, F2, F3, F5, F6 of the path signal 3 comprises a selection of luminous points 11, 12, 13, 14, 15, 16 of the path signal.
  • one of the luminous points 11, 12, 13, 14, 15, 16 of one of the driving terms H, F1, F2, F3, F5, F6 is defined as master point M.
  • the driving concept H, F1, F2, F3, F5, F6 is turned on by the interlocking 2.
  • each of the luminous points 11, 12, 13, 14, 15, 16 of the driving concept H F1, F2, F3, F5, F6 first assumes a fixed electrical starting impedance. Thereafter, the voltage across the master point M is determined. Based on the determined voltage, it is determined with which brightness value the interlocking 2 the Railway signal intended to operate 3. For example, it is determined whether the signal box 2 currently operates the path signal 3 with a day voltage or a night voltage, which is designed for a conventional bulb path signal. The impedance of the master point M is adjusted, so that a light-emitting diode of the master point M is operated with the intention by the interlocking 2 brightness value.
  • the other luminous points 11, 12, 13, 14, 15, 16 of the driving concept H, F1, F2, F3, F5, F6 are defined as slave points S.
  • the slave points S signal their connection to the master point M.
  • the master point M transmits the brightness value to the slave points S.
  • the impedance of the equipped with a LED slave points is adjusted so that they are operated with the intended by the interlocking 2 brightness value.
  • a master point M is defined for each driving concept H, F1, F2, F3, F5, F6 of the railway signal.
  • Each of these master points M can be assigned zero to two slave points S per driving concept.
  • the problem of enabling the use of LEDs in train signals even when the interlocking has been designed for the operation of railway signals with incandescent lamps solved by a special master / slave architecture and a method for load distribution. Since in the installed base signal systems "series driving concept circuit" occur for the vein saving, a load distribution logic (load balancing) is required.
  • the luminous points are defined as master points M and slave points S, so that exactly one master point M is involved in each driving concept.
  • Zero to two slave points S are assigned to this master point, whereby one slave point S may be assigned to several master points.
  • the fixed starting impedance must match an operating point of the incandescent lamp in order to adjust the operating conditions for which the system was designed.
  • each light spot can monitor itself. If he detects an error, he interrupts the current flow high impedance, which leads to the shutdown of all involved light points. This fault is detected by the interlocking, and automatically "stop" turned on.
  • FIG. 5 shows a system 50 that monitors a master point M, a slave point S, or any of the ones in FIG FIG. 1 illustrated luminous points 11, 12, 13, 14, 15, 16 allows. It is an example of monitoring the luminous flux with superposition.
  • the system 50 includes a monitoring circuit 54, 55, a in one of the luminous points 11, 12, 13, 14, 15, 16 arranged light-emitting diode 51, a photocell 53, and a signal optics 56th
  • the monitoring of a luminous point 11, 12, 13, 14, 15, 16 takes place in a command / message procedure.
  • a portion 52 of the light is coupled to a photodiode 53.
  • a first monitoring circuit 54 determines whether the luminous spot generates sufficient light and, if appropriate, triggers the switching off of the path signal 3 with the aid of the monitoring circuit 55. By superposing the light of the light-emitting diode 51 with a high-frequency signal, the generated light can be distinguished from the ambient light.
  • a method for monitoring a luminous spot 11, 12, 13, 14, 15, 16 operated by means of a light-emitting diode 51 is preceded by a path signal 3.
  • light is generated by means of the light-emitting diode 51 by means of a significant drive signal.
  • a portion of the light generated by the light-emitting diode 51 is coupled out of the path signal 3 by the signal optics 56 as part of a driving concept H, F1, F2, F3, F5, F6.
  • a smaller portion 52 of the light generated by the light emitting diode 51 is coupled to the photodiode 53.
  • An electrical output signal generated thereby by the photodiode 53 is input to the monitoring circuit 54.
  • the monitoring circuit 54 analyzes the output signal and determines whether the light emitting diode 51 generates enough light.
  • the drive signal is sufficiently significant that the portion of the light of the light emitting diode 51 produced by the drive signal is distinguishable in the output signal from the portion of the output signal generated by ambient light.
  • the monitoring circuit 54 may isolate the portion of the output signal generated by the light emitting diode 51 from the portion of the output signal generated by ambient light. A sufficient significance of the drive signal can be ensured, for example, by means of a frequency of the drive signal. If by the monitoring circuit 54 it is determined that the luminous point 11, 12, 13, 14, 15, 16 does not generate enough light, the path signal 3 is turned off.

Description

  • Leuchtdioden (LEDs) an Bahnsignalen erhöhen die Verfügbarkeit und reduzieren die Instandhaltungskosten. Das Eisenbahnnetz ist in vielen Ländern im Wesentlichen fertig gebaut, Glühlampen sind weit verbreitet. Sie sollten somit an in Betrieb stehenden Anlagen durch Leuchtdioden ausgetauscht werden können. Die bestehende Ansteuerschaltung, welche einen massgeblichen Teil der Zulassung der Anlage darstellt, soll beibehalten werden können. Die Möglichkeit eines solchen Beibehaltens bezeichnet man als Retrofit.
  • Die besondere Herausforderung bei Haupt- und Vorsignalen besteht in der präzisen Stromüberwachung des Stellwerks sowie der Tatsache, dass die Leuchtpunkte eines Fahrbegriffs als Serieschaltung angeschaltet werden. Weiterhin ist der Sicherheit besondere Beachtung zu schenken, da ein Versagen eines Leuchtpunktes eine unmittelbare Gefährdung eines Zuges zur Folge haben kann.
  • Weiterhin muss die Lösung flexibel konfigurierbar sein, da unterschiedlichste Kombinationen von Signalen im Einsatz sind. Das Dokument WO03/096753 A1 offenbart eine Schaltungsanordnung zum Betreiben eines Leuchtzeichens, insbesondere eines LED-Signals gemäß Oberbegriff des Anspruchs 1.
  • Leuchtdioden als Retrofit für Hauptsignale sind bislang nicht verfügbar. LED-basierte Leuchtpunkte bedingen ein spezielles Ansteuerungselement oder eine spezielle Konfiguration der bestehenden Ansteuerung und stehen zurzeit nur für elektronische Stellwerke zur Verfügung, welche von Beginn weg für den Betrieb mit Leuchtdioden konzipiert wurden.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Verwendung von Leuchtdioden in Bahnsignalen auch dann zu ermöglichen, wenn das Stellwerk für den Betrieb von Bahnsignalen mit Glühlampen ausgelegt wurde.
  • Diese Aufgabe wird durch die durch die unabhängigen Ansprüche beschriebenen Lösungen gelöst.
  • Gemäss einem Aspekt wird eine Schaltungsanordnung für ein Bahnsignal vorgestellt. Das Bahnsignal umfasst mehrere Leuchtpunkte. Die Leuchtpunkte bilden in verschiedenen Kombinationen jeweils einen Fahrbegriff. Die Schaltungsanordnung ist ausgestaltet für jeden Fahrbegriff genau einen der Leuchtpunkte als Masterpunkt zu definieren. Zudem ist die Schaltungsanordnung ausgestaltet, den als Masterpunkt definierten Leuchtpunkt eines Fahrbegriffs mit mehr als einer Impedanz zu betreiben. Zudem ist die Schaltungsanordnung ausgestaltet, den Masterpunkt mit einer fixen Startimpedanz zu betreiben und darauf basierend eine Spannung zu ermitteln, mit der welcher der Fahrbegriff aktuell betrieben wird.
  • Gemäss einem weiteren Aspekt wird ein Verfahren zum Betreiben eines Bahnsignals mit Leuchtdioden vorgestellt. Das Bahnsignal ist durch ein Stellwerk ansteuerbar, welches für ein Glühlampenbahnsignal ausgelegt ist. In einem Verfahrensschritt wird einer der Leuchtpunkte eines Fahrbegriffs als Masterpunkt definiert. Der Fahrbegriff umfasst eine Auswahl der Leuchtpunkte des Bahnsignals. In einem weiteren Verfahrensschritt wird der Fahrbegriff durch das Stellwerk eingeschaltet. Dabei nimmt beim Einschalten des Fahrbegriffs zunächst jeder der Leuchtpunkte des Fahrbegriffs eine fixe elektrische Startimpedanz ein. In einem weiteren Verfahrensschritt wird die Spannung über dem Masterpunkt ermittelt. Anhand der ermittelten Spannung wird ermittelt, mit welchem Helligkeitswert das Stellwerk das Bahnsignal zu betreiben beabsichtigt. In einem weiteren Verfahrensschritt wird die Impedanz des Masterpunktes angepasst, sodass der Masterpunkt mit dem durch das Stellwerk beabsichtigten Helligkeitswert betrieben wird.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in weiteren Ansprüchen ange¬geben.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Figuren beispielsweise näher erläutert. Dabei zeigen:
    • Figur 1 ein Blockdiagramm einer Bahninfrastruktur welche ein Bahnsignal umfasst gemäss einem bevorzugten Ausführungsbeispiel der Erfindung;
    • Figuren 2A bis 2F jeweils einen unterschiedlichen Fahrbegriff des Bahnsignals von Figur 1 (gemäss den Schweizerischen Fahrdienstvorschriften) ;
    • Figuren 3A bis 3F jeweils eine mögliche Definition von Masterpunkten und Slavepunkten der in Figuren 2A - 2F dargestellten Fahrbegriffe;
    • Figur 4 ein Blockschaltbild einer Schaltung mit welcher eine variable Impedanz erzeugt werden kann;
    • Figur 5 ein Blockdiagramm eines Systems, welches ausgestaltet ist, einen mittels einer Leuchtdiode betriebenen Leuchtpunkt eines Bahnsignals zu überwachen.
  • Figur 1 zeigt ein Blockdiagramm einer Bahninfrastruktur welche ein Stellwerk 2 und ein Bahnsignal 3 gemäss einem bevorzugten Ausführungsbeispiel der Erfindung umfasst. Das Bahnsignal 3 umfasst eine Platte 4 mit Leuchtpunkten 11, 12, 13, 14, 15, 16. Das Bahnsignal 3 umfasst zudem eine Schaltungsanordnung 1 zum Ansteuern der Leuchtpunkte 11, 12, 13, 14, 15, 16. Die Schaltungsanordnung 1 umfasst einen Tiefsetzsteller 40 und ein System 50 zur Überwachung eines, mehrerer, oder aller Leuchtpunkte 11, 12, 13, 14, 15, 16. Fahrbegriffe H, F1, F2, F3, F5, F6 sind durch Auswahlen der Leuchtpunkte 11, 12, 13, 14, 15, 16 definiert. Die Auswahlen werden auch Kombinationen genannt.
  • Die Figuren 2A-2F stellen verschiedene Fahrbegriffe H, F1, F2, F3, F5, F6 am Beispiel des L-Signalsystems eines Hauptsignals der Schweizerischen Bundesbahnen (SBB) dar. Der in Figur 2A dargestellte Fahrbegriff H bedeutet "Halt", während die in den Figuren 2B-2F dargestellten Fahrbegriffe F1, F2, F3, F5, F6 verschiedene zu fahrende Geschwindigkeiten repräsentieren.
  • Mit Verweis zurück auf Figur 1, ist das Stellwerk 2 ausgestaltet, das Bahnsignal, respektive dessen Fahrbegriffe H, F1, F2, F3, F5, F6 mit Spannungen zu schalten, als wären die Leuchtpunkte 11, 12, 13, 14, 15, 16 des Bahnsignals 3 mit Glühlampen bestückt. Dies entspricht der Situation, dass schon eine umfangreiche Bahninfrastruktur aufgebaut wurde, die für den Betrieb mit Glühlampen ausgelegt wurde. Die Fahrbegriffe H, F1, F2, F3, F5, F6 werden durch das Stellwerk 2 geschaltet, wobei für jeden Fahrbegriff H, F1, F2, F3, F5, F6 in der Regel eine separate Ader zu dem Bahnsignal 3 bereits verlegt ist, während für die Rückleitung in der Regel durch Adereinsparung nur eine Ader für die Fahrbegriffe H, F1, F2, F3, F5, F6 verwendet wird. Das Stellwerk 2 ist so ausgestaltet, dass es das Bahnsignale 3 mit mindestens zwei unterschiedlichen Spannungen ansteuern kann, beispielsweise mindestens mit einer Tagspannung und einer Nachtspannung, die tiefer ist als die Tagspannung, um den unterschiedlichen Helligkeitsverhältnissen Rechnung zu tragen.
  • Damit anstelle von Glühlampen die Leuchtpunkte 11, 12, 13, 14, 15, 16 trotzdem mit Leuchtdioden betrieben werden können, umfasst das Bahnsignal 3 die Schaltungsanordnung 1.
  • Die Schaltungsanordnung 1 ist so ausgestaltet, dass sie durch das als abgesetzte Einheit ausgestaltete Stellwerk 2 betreibbar ist, und die Fahrbegriffe H, F1, F2, F3, F5, F6 jeweils durch eine serielle Schaltung der zum Fahrbegriff H, F1, F2, F3, F5, F6 gehörenden Leuchtpunkte 11, 12, 13, 14, 15, 16 einschalten kann. Dazu ist die Schaltungsanordnung 1 ausgestaltet, für jeden Fahrbegriff H, F1, F2, F3, F5, F6 genau einen der Leuchtpunkte 11, 12, 13, 14, 15, 16 als Masterpunkt M zu betreiben. Zudem ist die Schaltungsanordnung 1 ausgestaltet, den somit als Masterpunkt M definierten Leuchtpunkt 11, 12, 13, 14, 15, 16 dieses Fahrbegriffs mit mehr als einer Impedanz zu betreiben. Zudem ist die Schaltungsanordnung 1 ausgestaltet, den Masterpunkt M mit einer fixen Startimpedanz zu betreiben und darauf basierend eine Spannung zu ermitteln, mit welcher der Fahrbegriff H, F1, F2, F3, F5, F6 aktuell betrieben wird. Vorzugsweise ist dabei die Schaltungsanordnung 1 ausgestaltet, anhand der ermittelten Spannung zu erkennen, ob das Stellwerk 2 den Fahrbegriff H, F1, F2, F3, F5, F6 aktuell mit einer Tagspannung oder einer Nachtspannung betreibt. Die ermittelte Spannung repräsentiert einen gewünschten Helligkeitswert, der sich ergäbe, wenn das Stellwerk ein herkömmliches mit Glühlampen betriebenes Bahnsignal antreiben würde. Um eine durch den Masterpunkt M betriebene Leuchtdiode mit dem gewünschten Helligkeitswert zu betreiben, ist die Schaltungsanordnung 1 ausgestaltet anhand der ermittelten Spannung die Impedanz des Masterpunktes M so einzustellen, dass die Leuchtdiode des Masterpunktes M mit dem gewünschten Helligkeitswert betrieben wird.
  • Vorzugsweise ist die Schaltungsanordnung 1 ausgestaltet, diejenigen Leuchtpunkte 11, 12, 13, 14, 15, 16 eines Fahrbegriffs H, F1, F2, F3, F5, F6, die nicht Masterpunkt M sind, als Slavepunkte S zu betreiben. In den in den Figuren 2A-2F dargestellten Fahrbegriffen ist dies möglich für die Fahrbegriffe F2, F3, F5, F6, da die Fahrbegriffe H und F1 keine Slavepunkte haben. Vorzugsweise ist die Schaltungsanordnung 1 daher ausgestaltet, die als Slavepunkte definierten weiteren Leuchtpunkte 11, 12, 13, 14, 15, 16 des Fahrbegriffs H, F1, F2, F3, F5, F6 zu steuern, indem dem Slavepunkt S die ermittelte Spannung und ein Impedanzwert, mit dem der Slavepunkt S betrieben werden soll, übermittelt wird. Die Schaltungsanordnung 1 ist ausgestaltet, die Impedanz des oder der Slavepunkte S des Fahrbegriffs so anzusteuern, der oder die mit einer Leuchtdiode bestückten Slavepunkte S mit dem gewünschten Helligkeitswert leuchten. Zudem ist die Schaltungsanordnung 1 ausgestaltet, den Slavepunkt S mit einer fixen Startimpedanz zu betreiben und darauf basierend dem Masterpunkt M die Ermittlung einer Spannung zu ermöglichen, mit welcher der Fahrbegriff H, F1, F2, F3, F5, F6 aktuell betrieben wird.
  • Vorzugsweise wird der Masterpunkt M eines, mehrere oder aller Fahrbegriffe durch die Schaltungsanordnung 1 umfasst. Vorzugsweise werden die Slavepunkte S durch die Schaltungsanordnung 1 umfasst. Vorzugsweise werden die Leuchtpunkte 11, 12, 13, 14, 15, 16 durch die Schaltungsanordnung 1 umfasst.
  • Figuren 3A bis 3F zeigen mögliche Definitionen der Leuchtpunkte 11, 12, 13, 14, 15, 16 der in den Figuren 2A bis 2F dargestellten Fahrbegriffe H, F1, F2, F3, F5, F6 als Masterpunkte M und Slavepunkte S. An dem Fahrsignal 3 werden die Leuchtpunkte 11, 12, 13, 14, 15, 16 so als Master- und Slavepunkte definiert, dass an jedem Fahrbegriff H, F1, F2, F3, F5, F6 genau ein Masterpunkt M beteiligt ist. Diesem Masterpunkt M sind null bis zwei Slavepunkte S zugeordnet, wobei ein Slavepunkt mehreren Masterpunkten zugeordnet sein darf.
  • Gemäss einer Ausführungsform ist die Schaltungsanordnung 1 ausgestaltet, jeden der Leuchtpunkte 11, 12, 13, 14, 15, 16 des Fahrbegriffs H, F1, F2, F3, F5, F6 mit der fixen Startimpedanz zu betreiben, und die Einschaltung jedes der Slavepunkte S des Fahrbegriffs zu registrieren und dies dem Masterpunkt M zu melden. Vorzugsweise stimmt die fixe Startimpedanz mit einem Betriebspunkt einer Glühlampe überein. Dies hat den Vorteil, dass die im bestehenden Stellwerk 2 vorhandene, auf die verwendeten Glühlampen eingestellte, Ansteuer- und Überwachungsschaltung weiter verwendet werden kann.
  • Figur 4, zeigt einen bekannten Tiefsetzsteller (Buck-Converter) 40. Gemäss bevorzugten Ausführungsbeispielen wird der Tiefsetzsteller 40 zur Realisierung einer variablen Last am Masterpunkt M, dem Slavepunkt S, oder allgemein an einem, mehreren oder allen der Leuchtpunkte 11, 12, 13, 14, 15, 16 eingesetzt. Eine variable Last bedeutet eine variable Impedanz. Die Impedanz ist innerhalb gewisser Grenzen wählbar, da das Tast-verhältnis für den Transistor T nicht beliebig genau aufgelöst werden kann. Der Tiefsetzsteller 40 umfasst beispielsweise ein Schaltelement T1, eine Induktivität L1 und eine fixe Last RL. Das Schaltelement T1 ist beispielsweise ein Transistor T1, welcher einen Anschluss für einen Steuerkreis S umfasst.
  • Beim Tiefsetzsteller 40 handelt es sich um eine klassische Schaltung aus der Leistungselektronik. Sie wird eingesetzt, um eine höhere Spannung in eine kleinere umzusetzen. Wird sie mit einer fixen Last RL betrieben (RL = constant), stellt sie eingangsseitig eine variable Last dar.
  • Es gibt zwei Betriebszustände:
    1. T1 leitet: der Strom fliesst von der Quelle DC über T1, L1 und RL. L1 speichert Energie. Die Quelle «sieht» die Impedanz RL. 2. T1 sperrt: der Strom fliesst über D1, L1 und RL. L1 gibt Energie ab. Die Quelle DC «sieht» keine Last.
  • Abhängig davon, wie das Verhältnis Einschalt-/Sperrzeit bei T1 gewählt wird, ändert sich der zeitliche Mittelwert des Stromes, welcher der Quelle DC entnommen wird. Somit ändert auch der Mittelwert der Last, welche die Quelle DC «sieht».
  • Der Tiefsetzsteller 40 wurde ursprünglich für Gleichspannung entworfen, kann jedoch auch an Wechselspannung eine variable Last darstellen, indem beispielsweise ein Brückengleichrichter vorgeschaltet wird.
  • Ein weiteres Ausführungsbeispiel betrifft ein Verfahren zum Betreiben des Bahnsignals 3 mit Leuchtdioden. Das Bahnsignal 3 ist durch ein Stellwerk 2 ansteuerbar. Das Stellwerk 3 ist für ein Glühlampenbahnsignal ausgelegt. Ein Fahrbegriff H, F1, F2, F3, F5, F6 des Bahnsignals 3 umfasst eine Auswahl von Leuchtpunkten 11, 12, 13, 14, 15, 16 des Bahnsignals. Um das Verfahren durchzuführen wird einer der Leuchtpunkte 11, 12, 13, 14, 15, 16 eines der Fahrbegriffe H, F1, F2, F3, F5, F6 als Masterpunkt M definiert. Der Fahrbegriff H, F1, F2, F3, F5, F6 wird durch das Stellwerk 2 eingeschaltet. Beim Einschalten des Fahrbegriffs H, F1, F2, F3, F5, F6 nimmt zunächst jeder der Leuchtpunkte 11, 12, 13, 14, 15, 16 des Fahrbegriffs H, F1, F2, F3, F5, F6 eine fixe elektrische Startimpedanz ein. Danach wird die Spannung über dem Masterpunkt M ermittelt. Anhand der ermittelten Spannung, wird ermittelt, mit welchem Helligkeitswert das Stellwerk 2 das Bahnsignal 3 zu betreiben beabsichtigt. Beispielsweise wird ermittelt, ob das Stellwerk 2 das Bahnsignal 3 aktuell mit einer Tagspannung oder einer Nachtspannung betreibt, welche für ein herkömmliches Glühlampenbahnsignal ausgelegt ist. Die Impedanz des Masterpunktes M wird angepasst, sodass eine Leuchtdiode des Masterpunktes M mit dem durch das Stellwerk 2 beabsichtigten Helligkeitswert betrieben wird.
  • Zudem werden die anderen Leuchtpunkte 11, 12, 13, 14, 15, 16 des Fahrbegriffs H, F1, F2, F3, F5, F6 als Slavepunkte S definiert. Die Slavepunkte S melden ihre Einschaltung an den Masterpunkt M. Der Masterpunkt M übermittelt den Helligkeitswert an die Slavepunkte S. Die Impedanz der mit einer Leuchtdiode bestückten Slavepunkte wird angepasst, sodass diese mit dem durch das Stellwerk 2 beabsichtigten Helligkeitswert betrieben werden.
  • Vorzugsweise wird für jeden Fahrbegriff H, F1, F2, F3, F5, F6 des Bahnsignals ein Masterpunkt M festgelegt. Jedem dieser Masterpunkte M können pro Fahrbegriff null bis zwei Slavepunkte S zugeordnet sein.
  • Gemäss bevorzugten Ausführungsbeispielen wird das Problem, eine Verwendung von Leuchtdioden in Bahnsignalen auch dann zu ermöglichen, wenn das Stellwerk für den Betrieb von Bahnsignalen mit Glühlampen ausgelegt wurde, durch eine spezielle Master / Slave Architektur sowie ein Verfahren zur Lastverteilung gelöst. Da in der installierten Basis Signalsysteme "Serie- Fahrbegriffsschaltung" für die Adereinsparung vorkommen, wird eine Lastverteilungslogik (Last- Symmetrierung) benötigt.
  • An jedem Bahnsignal 3 werden die Leuchtpunkte so als Masterpunkte M und Slavepunkte S definiert, dass an jedem Fahrbegriff genau ein Masterpunkt M beteiligt ist. Diesem Masterpunkt sind null bis zwei Slavepunkte S zugeordnet, wobei ein Slavepunkt S mehreren Masterpunkten zugeordnet sein darf.
  • Wird ein Fahrbegriff durch das Stellwerk eingeschaltet, nimmt zunächst jeder Leuchtpunkt eine fixe elektrische Startimpedanz ein (Beispiel von 75 Ohm bei 40V Glühlampen). Die Slavepunkte melden die Einschaltung ihren Masterpunkten. Dem Masterpunkt ist somit bekannt:
    • welche Spannung an ihm selbst anliegt
    • die Anzahl der eingeschalteten Leuchtpunkte.
  • Die fixe Startimpedanz muss dabei mit einem Betriebspunkt der Glühlampe übereinstimmen, damit sich die Betriebsverhältnisse einstellen, für die das System ausgelegt wurde.
  • Nun bestimmt der Masterpunkt, ob die Leuchtpunkte mit Tagspannung oder Nachtspannung angeschaltet wurden. Anschliessend teilt er den Slavepunkten die einzustellende Helligkeit mit (Tag / Nacht), sowie die Impedanz welche sie einnehmen sollen. Damit werden die Betriebspunkte der Glühlampe nachgebildet und die Ansteuerungselektronik (=Stellteil) kann beibehalten werden.
  • Da die Leuchtpunkte in Serie geschaltet werden, kann sich jeder Leuchtpunkt selbst überwachen. Stellt er einen Fehler fest, unterbricht er den Stromfluss hochohmig, was zur Abschaltung aller beteiligten Leuchtpunkte führt. Dieser Fehlerfall wird durch das Stellwerk detektiert, und automatisch "Halt" angeschaltet.
  • Figur 5 zeigt ein System 50, welches eine Überwachung eines Masterpunktes M, eines Slavepunktes S, oder eines beliebigen der in Figur 1 dargestellten Leuchtpunkte 11, 12, 13, 14, 15, 16 ermöglicht. Es handelt sich um ein Beispiel für die Überwachung des Lichtstromes mit Überlagerung. Das System 50 umfasst eine Überwachungsschaltung 54, 55, eine in einem der Leuchtpunkte 11, 12, 13, 14, 15, 16 angeordnete Leuchtdiode 51, eine Fotozelle 53, und eine Signal-Optik 56.
  • Die Überwachung eines Leuchtpunktes 11, 12, 13, 14, 15, 16 erfolgt in einem Kommando/Meldeverfahren. Es wird ein Teil 52 des Lichtes auf eine Fotodiode 53 ausgekoppelt. Eine erste Überwachungsschaltung 54 stellt fest, ob der Leuchtpunkt genügend Licht erzeugt und löst gegebenenfalls mit Hilfe der Überwachungsschaltung 55 die Abschaltung des Bahnsignals 3 aus. Indem das Licht der Leuchtdiode 51 mit einem hochfrequenten Signal überlagert wird, kann das erzeugte Licht vom Umgebungslicht unterschieden werden.
  • Gemäss einem Beispiel, das nicht Teil der beanspruchten Erfindung ist, wird ein Verfahren zur Überwachung eines mittels einer Leuchtdiode 51 betriebenen Leuchtpunktes 11, 12, 13, 14, 15, 16 eines Bahnsignals 3 vorgeschaltet. In einem Verfahrensschritt wird Licht mittels der Leuchtdiode 51 mittels eines Signifikanten Ansteuersignals erzeugt. Ein Teil des durch die Leuchtdiode 51 erzeugten Lichts wird durch die Signaloptik 56 als Teil eines Fahrbegriffs H, F1, F2, F3, F5, F6 aus dem Bahnsignal 3 ausgekoppelt. Ein kleinerer Teil 52 des durch die Leuchtdiode 51 erzeugten Lichts wird auf die Fotodiode 53 ausgekoppelt.
  • Ein dadurch durch die Fotodiode 53 erzeugtes elektrisches Ausgangssignal wird in die Überwachungsschaltung 54 eingespeist. Die Überwachungsschaltung 54 analysiert das Ausgangssignal und stellt fest, ob die Leuchtdiode 51 genügend Licht erzeugt. Das Ansteuersignal ist ausreichend signifikant, dass der durch das Ansteuersignal erzeugte Teil des Lichts der Leuchtdiode 51 in dem Ausgangssignal von dem durch Umgebungslicht erzeugten Anteil des Ausgangssignals unterscheidbar ist. Die Überwachungsschaltung 54 kann den durch die Leuchtdiode 51 erzeugten Anteil des Ausganssignals von dem durch Umgebungslicht erzeugten Anteil des Ausgangssignals isolieren. Eine ausreichende Signifikanz des Ansteuersignals kann beispielsweise mittels einer Frequenz des Ansteuersignals sichergestellt werden. Falls durch die Überwachungsschaltung 54 festgestellt wird, dass der Leuchtpunkt 11, 12, 13, 14, 15, 16 nicht genügend Licht erzeugt, wird das Bahnsignal 3 ausgeschaltet.

Claims (11)

  1. Schaltungsanordnung (1) für ein mehrere LED-Leuchtpunkte (11, 12, 13, 14, 15, 16) umfassendes Bahnsignal (3), die in verschiedenen Kombinationen jeweils einen Fahrbegriff (H, F1, F2, F3, F5, F6) bilden, wobei die Schaltungsanordnung (1) so ausgestaltet ist, dass:
    a) die Schaltungsanordnung durch ein als abgesetzte Einheit ausgestaltetes Stellwerk (2) betreibbar ist und die Fahrbegriffe (H, F1, F2, F3, F5, F6) jeweils durch eine serielle Schaltung der zum Fahrbegriff (H, F1, F2, F3, F5, F6) gehörenden LED-Leuchtpunkte (11, 12, 13, 14, 15, 16) einschaltet,
    b) die Schaltungsanordnung für jeden Fahrbegriff (H, F1, F2, F3, F5, F6) genau einen der für diesen Fahrbegriff vorgesehenen LED-Leuchtpunkte (11, 12, 13, 14, 15, 16) als Masterpunkt (M) mit einer einstellbaren Impedanz betreibt;
    c) die Schaltungsanordnung den Masterpunkt (M) mit einer fixen Startimpedanz betreibt und darauf basierend eine Spannung ermittelt, mit welcher der Fahrbegriff (H, F1, F2, F3, F5, F6) aktuell vom Stellwerk (2) vorgegeben zu betreiben ist, wobei die Schaltungsanordnung anhand der ermittelten Spannung die Impedanz des Masterpunktes (M) so einstellt, dass der LED-Leuchtpunkt des Masterpunktes (M) mit einem der ermittelten Spannung entsprechenden Helligkeitswert betreibbar ist; und
    d) mindestens ein weiterer mit einer vorgegebenen Startimpedanz betriebener LED-Leuchtpunkt (11, 12, 13, 14, 15, 16) des Fahrbegriffs als Slavepunkt (S) von der Schaltungsanordnung so steuerbar ist, dass die Schaltungsanordnung dem Slavepunkt (S) die ermittelte Spannung und einen Impedanzwert, mit dem der Slavepunkt (S) betrieben werden soll, übermittelt.
  2. Schaltungsanordnung (1) nach Anspruch 1, wobei das Ermitteln der Spannung umfasst, dass ermittelbar ist, ob der Fahrbegriff (H, F1, F2, F3, F5, F6) aktuell mit einer Tagspannung oder einer Nachtspannung betrieben werden soll.
  3. Schaltungsanordnung (1) nach einem der vorhergehenden Ansprüche, wobei jeder der LED-Leuchtpunkte (11, 12, 13, 14, 15, 16) eines Fahrbegriffs (H, F1, F2, F3, F5, F6) mit der fixen Startimpedanz betreibbar ist, und die Einschaltung jedes der Slavepunkte (S) an den Masterpunkt (M) meldbar ist.
  4. Schaltungsanordnung (1) nach einem der vorhergehenden Ansprüche, wobei die fixe Startimpedanz mit einem Betriebspunkt einer Glühlampe übereinstimmt.
  5. Schaltungsanordnung (1) nach einem der vorhergehenden Ansprüche, wobei jedem Masterpunkt (M) null bis zwei Slavepunkte (S) zugeordnet sind.
  6. Schaltungsanordnung (1) nach einem der vorhergehenden Ansprüche, wobei die Schaltungsanordnung (1) eine Lastverteilungslogik umfasst.
  7. Bahnsignal (3), umfassend eine Schaltungsanordnung (1) und LED-Leuchtpunkte (11, 12, 13, 14, 15, 16) nach einem der vorhergehenden Ansprüche.
  8. Verfahren zum Betreiben eines Bahnsignals (3) mit LED-Leuchtpunkten, wobei das Bahnsignal (3) durch ein Stellwerk (2) angesteuert wird, welches für ein Glühlampenbahnsignal ausgelegt ist, wobei ein Fahrbegriff (H, F1, F2, F3, F5, F6) des Bahnsignals (3) eine Auswahl von seriell geschalteten LED-Leuchtpunkten (11, 12, 13, 14, 15, 16) des Bahnsignals umfasst, umfassend die folgenden Verfahrensschritte:
    - Definieren eines der LED-Leuchtpunkte (11, 12, 13, 14, 15, 16) des Fahrbegriffs (H, F1, F2, F3, F5, F6) als Masterpunkt (M) ;
    - Einschalten des Fahrbegriffs (H, F1, F2, F3, F5, F6) durch das Stellwerk (2), wobei beim Einschalten des Fahrbegriffs (H, F1, F2, F3, F5, F6) zunächst jeder der LED-Leuchtpunkte (11, 12, 13, 14, 15, 16) des Fahrbegriffs (H, F1, F2, F3, F5, F6) eine fixe elektrische Startimpedanz einnimmt;
    - Ermitteln der Spannung über dem Masterpunkt (M) und Ermitteln anhand der ermittelten Spannung, mit welchem Helligkeitswert das Stellwerk das Bahnsignal zu betreiben beabsichtigt;
    - Anpassen der Impedanz des Masterpunktes (M), sodass der Masterpunkt (M) mit dem durch das Stellwerk (2) beabsichtigten Helligkeitswert betrieben wird; und
    - Definieren des oder der anderen LED-Leuchtpunkte (11, 12, 13, 14, 15, 16) des Fahrbegriffs (H, F1, F2, F3, F5, F6) als Slavepunkte (S);
    - Melden der Einschaltung des oder der Slavepunkte (S) an den Masterpunkt (M);
    - Übermitteln des Helligkeitswertes durch den Masterpunkt (M) an den oder die Slavepunkte (S);
    - Anpassen der Impedanz des oder der Slavepunkte (S), sodass der oder die Slavepunkte (S) mit dem durch das Stellwerk (2) beabsichtigten Helligkeitswert betrieben werden.
  9. Verfahren nach Anspruch 8, wobei das Ermitteln der Spannung über dem Masterpunkt (M) umfasst, dass ermittelt wird, ob das Stellwerk (2) das Bahnsignal (3) aktuell mit einer Tagspannung oder einer Nachtspannung betreibt.
  10. Verfahren nach Anspruche 8 oder 9, wobei die fixe Startimpedanz mit einem Betriebspunkt einer Glühlampe übereinstimmt.
  11. Verfahren nach einem der Ansprüche 8 bis 10, wobei für jeden Fahrbegriff (H, F1, F2, F3, F5, F6) des Bahnsignals ein Masterpunkt (M) festgelegt wird, welchem eine Auswahl aus null bis zwei Slavepunkte (S) zugeordnet ist.
EP14151166.7A 2014-01-14 2014-01-14 Ersatz von Glühlampen an Bahnsignalen durch Leuchtdioden Active EP2894389B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14151166.7A EP2894389B1 (de) 2014-01-14 2014-01-14 Ersatz von Glühlampen an Bahnsignalen durch Leuchtdioden

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14151166.7A EP2894389B1 (de) 2014-01-14 2014-01-14 Ersatz von Glühlampen an Bahnsignalen durch Leuchtdioden

Publications (2)

Publication Number Publication Date
EP2894389A1 EP2894389A1 (de) 2015-07-15
EP2894389B1 true EP2894389B1 (de) 2019-10-23

Family

ID=49989533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14151166.7A Active EP2894389B1 (de) 2014-01-14 2014-01-14 Ersatz von Glühlampen an Bahnsignalen durch Leuchtdioden

Country Status (1)

Country Link
EP (1) EP2894389B1 (de)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012512A1 (de) * 1993-11-05 1995-05-11 Siemens Integra Verkehrstechnik Ag Schaltungsanordnung zur abgabe von optischen signalen
DE10221573B4 (de) * 2002-05-08 2004-03-18 Siemens Ag Schaltungsanordnung zum Betreiben eines Leuchtzeichens
EP2463174B1 (de) * 2010-12-09 2013-10-30 Siemens Schweiz AG Vorrichtung und Verfahren zur Realisierung eines Glühlampenersatzes für ein Lichtsignal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2894389A1 (de) 2015-07-15

Similar Documents

Publication Publication Date Title
EP1300053A1 (de) Verkehrssignalanlage mit led-lichtquelle
EP1992542B2 (de) LED-Anordnung für Lichtsignalgeber für Bahnübergänge, Lichtsignalgeber für Bahnübergänge mit einer solchen LED-Anordnung sowie Verfahren zum Betreiben der LED-Anordnung
DE102004002026A1 (de) Ansteuerung von Leuchtmittel-Betriebsgeräten über einen modulierten DC-Bus
DE112011105504T5 (de) LED-Beleuchtungseinrichtung
DE102010030520A1 (de) Arbeitsleuchte für ein Nutzfahrzeug, insbesondere Flurförderzeug
EP2687418B1 (de) LED-Streckensignal für den Schienenverkehr sowie Schnittstelle für ein solches LED-Streckensignal
EP2894389B1 (de) Ersatz von Glühlampen an Bahnsignalen durch Leuchtdioden
DE102008029725A1 (de) Signalgeber
EP2182778B1 (de) Verfahren zum Steuern einer Außenleuchte und zugehörige Leuchte
DE112011100717B4 (de) Betriebsgerät für Leuchtmittel sowie Bussystem und Verfahren zum Betreiben eines Betriebsgerätes
DE10206649A1 (de) Anzeigevorrichtung
EP2866524A2 (de) Anordnung und Verfahren zur Überwachung mehrerer LED-Stränge sowie LED-Leuchte mit einer solchen Anordnung
EP3934384B1 (de) Anordnung zur ansteuerung von led's
DE10358993B4 (de) Lichtsignalgeber und Lichtsignalanlage mit einem Lichtsignalgeber
DE102011001549B4 (de) Anordnung und Verfahren zum Steuern und Überwachen der Außenbeleuchtung von Schienenfahrzeugen
DE102013108689B3 (de) Schaltung zur Regelung der Leistungsaufnahme einer LED-Einheit sowie LED-Leuchte mit einer solchen LED-Einheit
EP2564488A2 (de) Energieversorgungseinheit für signalmittel mit energiequellen mit getrennten massen
DE202010016339U1 (de) Schaltungsanordnung
WO2011104060A2 (de) Steuergerät zum übertragen einer steuerinformation an eine lampeneinheit sowie verfahren
DE202008006297U1 (de) LED Anordnung für Lichtsignalgeber insbesondere für Bahnübergänge sowie Lichtsignalgeber insbesondere für Bahnübergänge mit einer solchen LED-Anordnung
DE102012019861B4 (de) Verfahren zurn Betreiben eines Signalgebers und Signalgeber
EP2979954A2 (de) Led-einheit für lichtsignalgeber, lichtsignalgeber mit einer solchen einheit und verfahren zur überwachung eines led-strangs einer led-einheit
EP2979955B1 (de) Led-einheit für lichtsignalgeber sowie lichtsignalgeber mit einer solchen einheit
WO2012126895A2 (de) Led-signalgeber sowie verfahren zum betreiben eines solchen
EP2691266B1 (de) Schienenfahrzeugleuchtenmodul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20160107

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180327

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS MOBILITY AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190716

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012889

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1194044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191023

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200124

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012889

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200123

26N No opposition filed

Effective date: 20200724

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200114

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220318

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191023

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220411

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20221209

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014012889

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131